JPH0756052B2 - Manufacturing method of cold rolled steel sheet for processing - Google Patents

Manufacturing method of cold rolled steel sheet for processing

Info

Publication number
JPH0756052B2
JPH0756052B2 JP61090054A JP9005486A JPH0756052B2 JP H0756052 B2 JPH0756052 B2 JP H0756052B2 JP 61090054 A JP61090054 A JP 61090054A JP 9005486 A JP9005486 A JP 9005486A JP H0756052 B2 JPH0756052 B2 JP H0756052B2
Authority
JP
Japan
Prior art keywords
hot rolling
slab
cold
steel sheet
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61090054A
Other languages
Japanese (ja)
Other versions
JPS62247026A (en
Inventor
志郎 佐柳
彪 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61090054A priority Critical patent/JPH0756052B2/en
Publication of JPS62247026A publication Critical patent/JPS62247026A/en
Publication of JPH0756052B2 publication Critical patent/JPH0756052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は薄鋳片により軟質で加工性の優れた冷延鋼板を
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing a cold rolled steel sheet which is soft and excellent in workability by a thin cast piece.

〈従来の技術〉 加工用冷延鋼板は従来、200〜250mm厚みの連続鋳造スラ
ブまたは分塊スラブを用い、熱間圧延により、2〜6mm
の厚みまで圧延し、酸洗後、冷延・焼鈍され製造されて
いる。この場合、熱間圧延比(スラブ厚み/熱延厚み)
が40〜100と大きいため、強大な熱延機列を必要とし、
熱延のために多大なエネルギーを必要とする。最近、鋳
片寸法を製品形状に近ずけ、加工のためのエネルギーを
少なくしようという試みがなされている。ストリップ製
品に関しては鋳片を薄くするストリップ連鋳法がある。
しかし、この薄い鋳片を用いて冷延鋼板を製造する場合
は、得られる製品は一般に硬質でしかも加工性が劣るた
め、加工性を必要とする用途に使用できない。また、プ
レス加工時に肌あれが発生する場合があった。
<Prior art> Conventionally, cold-rolled steel sheet for processing uses a continuous cast slab or a slab of slab with a thickness of 200 to 250 mm, and is 2 to 6 mm by hot rolling.
It is manufactured by rolling it to the thickness of No. 1, pickling, cold rolling and annealing. In this case, hot rolling ratio (slab thickness / hot rolled thickness)
Since it is as large as 40-100, it requires a powerful hot rolling machine train,
A large amount of energy is required for hot rolling. Recently, attempts have been made to reduce the energy required for processing by making the slab size closer to the product shape. For strip products, there is a strip continuous casting method for thinning a cast piece.
However, when a cold-rolled steel sheet is manufactured using this thin slab, the obtained product is generally hard and inferior in workability, and therefore cannot be used in applications requiring workability. In addition, roughening may occur during press working.

〈発明が解決しようとする問題点〉 本発明の目的は上記従来技術の問題点を解決し、薄鋳片
を出発材とする加工性が良好で、加工時に肌あれの発生
しない冷延鋼板の製造方法の提供にある。
<Problems to be Solved by the Invention> The object of the present invention is to solve the above-mentioned problems of the prior art, good workability with a thin slab as a starting material, and a cold-rolled steel sheet in which roughening does not occur during processing. The provision of a manufacturing method.

〈問題点を解決するための手段〉 本発明の要旨とするところは下記のとおりである。<Means for Solving Problems> The gist of the present invention is as follows.

(1) 重量%でC:0.0010〜0.070%,Mn:0.05〜0.50%,
S:0.013%未満,Al:0.005〜0.090%を含有し、残部が鉄
および不可避的不純物からなる薄手鋳片を、鋳片の冷却
速度:V(1350〜1000℃間の平均冷速℃/min)と熱延圧下
比:R(鋳片厚み/熱延終了厚み)の関係がV≦103℃/mi
nでは4.5≧R≧{−(5/6)logV+3.5}を満足し、V>
103℃/minでは4.5≧R>1.0を満足する条件で熱間圧延
を行ない、引続いて冷間圧延し、次いで焼鈍することを
特徴とする加工用冷延鋼板の製造法。
(1) C: 0.0010 to 0.070%, Mn: 0.05 to 0.50% by weight%,
S: Less than 0.013%, Al: 0.005 to 0.090%, with the balance being iron and inevitable impurities, a thin cast piece, the cooling rate of the cast piece: V (average cooling rate between 1350 and 1000 ° C / min. ) And hot rolling reduction ratio: R (thickness of slab / thickness of hot rolling) is V ≦ 10 3 ℃ / mi
In n, 4.5 ≧ R ≧ {− (5/6) logV + 3.5} is satisfied, and V>
A method for producing a cold-rolled steel sheet for working, comprising performing hot rolling under conditions satisfying 4.5 ≧ R> 1.0 at 10 3 ° C./min, followed by cold rolling and then annealing.

(2) 重量%でC:0.0010〜0.070%,Mn:0.05〜0.50%,
S:0.015%以下,Al:0.005〜0.090%を含有し、さらに50p
pm以下のCa,REM/S≦2.0のREM,50ppm以下のMg,Zr/S≦10
のZr,0.3≦B/N≦1.5のBの1種または2種以上を含有
し、残部が鉄および不可避的不純物からなる薄手鋳片
を、鋳片の冷却速度:V(1350〜1000℃間の平均冷速℃/m
in)と熱延圧下比:R(鋳片厚み/熱延終了厚み)の関係
がV≦103℃/minでは4.5≧R≧{−(5/6)logV+3.5}
を満足し、V>103℃/minでは4.5≧R>1.0を満足する
条件で熱間圧延を行ない、引続いて冷間圧延し、次いで
焼鈍することを特徴とする加工用冷延鋼板の製造法。
(2) C: 0.0010 to 0.070%, Mn: 0.05 to 0.50% by weight%
S: 0.015% or less, Al: 0.005 to 0.090%, 50p
pm or less Ca, REM / S ≦ 2.0 REM, 50ppm or less Mg, Zr / S ≦ 10
Zr, 0.3 ≤ B / N ≤ 1.5, one or more of B, with the balance being iron and unavoidable impurities, the thin cast slab being cooled at a cooling rate of V (between 1350 and 1000 ℃ Average cold speed of ℃ / m
in) and hot rolling reduction ratio: R (thickness of slab / thickness of hot rolling) is V ≧ 10 3 ℃ / min 4.5 ≧ R ≧ {− (5/6) logV + 3.5}
And V> 10 3 ° C / min, hot rolling is performed under the condition of 4.5 ≧ R> 1.0, followed by cold rolling, and then annealing. Manufacturing method.

以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

連続鋳造の薄鋳片をただ単に通常の熱間圧延・冷間圧延
・焼鈍すると、硬質で加工性が劣ることは前述したが、
加えて、成品の結晶粒が細粒であるにもかかわらず、加
工時に層状の肌あれが発生し、成品の表面性状を著じる
しく悪くする。本発明者等は加工性が良好で、しかもプ
レス加工後に於いても肌あれの発生しない、薄鋳片によ
る冷延鋼板の製造方法を種々検討した結果、鋳造後の鋳
片の冷却速度を制御しつつ、冷却速度と熱間圧延での圧
下比の関係をコントロールすることにより、熱延での消
費エネルギーを最小としつつ、しかも加工性が良好で、
肌あれの発生しない冷延鋼板が製造できることを知見
し、本発明を完成した。
As mentioned above, if thin cast pieces of continuous casting are simply hot-rolled, cold-rolled and annealed, they are hard and inferior in workability.
In addition, even though the crystal grains of the product are fine grains, a layered surface roughness is generated during processing, and the surface properties of the product are significantly deteriorated. The inventors of the present invention have various workability, have good workability, and do not have rough surface even after pressing, and as a result of various studies on a method for producing a cold rolled steel sheet by a thin cast piece, control the cooling rate of the cast piece after casting. At the same time, by controlling the relationship between the cooling rate and the reduction ratio in hot rolling, energy consumption in hot rolling can be minimized, and workability is good,
The present invention has been completed by finding that a cold-rolled steel sheet that does not cause rough skin can be manufactured.

本発明の加工用冷延鋼板の成分限定について説明する。The component limitation of the cold rolled steel sheet for processing of the present invention will be described.

Cは添加量が多くなると硬質となり、加工性を劣化せし
める元素であることが良く知られており、C:0.070%を
超えると本発明の方法でも加工性が劣化するので、上限
を0.070%とした。C量が低ければ低いほど加工性が良
好となるので、C量の下限は工業的に実施可能な0.0010
%とした。好ましい範囲はC:0.0010〜0.050%である。
It is well known that C is an element that becomes hard when the added amount is large and deteriorates the workability. If C exceeds 0.070%, the workability is deteriorated even by the method of the present invention, so the upper limit is set to 0.070%. did. The lower the C content, the better the workability, so the lower limit of the C content is 0.0010 which is industrially practicable.
%. A preferred range is C: 0.0010 to 0.050%.

Mnは熱間圧延時のSによる熱間脆性を防止するため、0.
05%以上は必要である。Mn量が0.50%を超えるとCの場
合と同様に加工性を劣化せしめ、本発明の特徴を損う。
したがってMn量は0.05〜0.50%に限定した。好ましい範
囲は0.10〜0.30%である。
In order to prevent hot brittleness due to S at the time of hot rolling, Mn is 0.
05% or more is necessary. If the amount of Mn exceeds 0.50%, the workability is deteriorated as in the case of C and the characteristics of the present invention are impaired.
Therefore, the amount of Mn was limited to 0.05 to 0.50%. A preferred range is 0.10 to 0.30%.

Sの限定は本発明では特に重要である。Sは熱間加工時
の割れを誘発する元素であるので、低い方が好ましいだ
けでなく、本発明では加工性に大きな影響を与える成分
である。S量が0.013%以上になると鋼が硬質化し、加
工性が劣化するので、S量は0.013%未満と規定する。
ただし、請求項2の発明における如く、選択元素として
Ca,REM,Mg,Bの1種または2種以上を含有する場合は、
S量を0.015%まで増大しても、加工性が劣化せず、本
発明の効果は何ら損なわれるものではないので、請求項
2の発明においては、S量を0.015%以下と規定する。
好ましい範囲は0.009%以下である。S量の下限は加工
性の点から低い方が好ましく、工業的に達成可能な値は
0.0005%である。
The limitation of S is particularly important in the present invention. Since S is an element that induces cracking during hot working, not only is it preferable that it be low, but it is a component that greatly affects workability in the present invention. If the S content is 0.013% or more, the steel hardens and the workability deteriorates, so the S content is specified to be less than 0.013%.
However, as in the invention of claim 2, as a selective element
When containing one or more of Ca, REM, Mg, B,
Even if the S content is increased to 0.015%, the workability is not deteriorated and the effect of the present invention is not impaired. Therefore, in the invention of claim 2, the S content is defined as 0.015% or less.
A preferred range is 0.009% or less. The lower limit of the S content is preferably lower from the viewpoint of workability, and the industrially achievable value is
It is 0.0005%.

Alはキルド鋼とするため、少なくとも0.005%が必要で
ある。一方Al量が0.090%を超えると、鋼板が硬質化
し、表面疵も増加し、しかもコスト上昇をもたらす。好
ましい範囲はAl:0.010〜0.060%である。他のP,Si,O等
の不純物は特に限定しないが、出来るだけ少ないことが
好ましい。
Since Al is a killed steel, at least 0.005% is required. On the other hand, when the amount of Al exceeds 0.090%, the steel plate becomes hard, surface defects increase, and the cost increases. A preferred range is Al: 0.010 to 0.060%. Other impurities such as P, Si and O are not particularly limited, but it is preferable that they are as small as possible.

以上本発明を構成するC,Mn,S,Alの基本成分の限定理由
について述べたが、本発明に於いてCa≦50ppm、好まし
くは5ppm≦Ca≦50ppm、REM/S≦2.0、好ましくは0.5≦RE
M/S≦2.0ののREM,Mg≦50ppm、好ましくは5ppm≦Mg≦50p
pm、Zr/S≦10、好ましくは5≦Zr/S≦10のZr、0.3≦B/N
≦1.5のBのうち1種又は2種以上を含有せしめること
によって本発明の効果は一層顕現される。これら元素の
上限値を超えるとその効果が飽和しまた高価となる。特
にBの添加に関していえば、第1項発明の基本成分に窒
化物形成元素であるBを添加することによって本発明の
特徴が一層発揮される。B/Nが0.3未満ではB添加による
加工性の向上効果がなく、B/Nが1.5を超えると逆に加工
性が低下する。
Although the reasons for limiting the basic components of C, Mn, S, and Al constituting the present invention have been described above, in the present invention Ca ≦ 50 ppm, preferably 5 ppm ≦ Ca ≦ 50 ppm, REM / S ≦ 2.0, preferably 0.5. ≤RE
REM of M / S ≦ 2.0, Mg ≦ 50ppm, preferably 5ppm ≦ Mg ≦ 50p
pm, Zr / S ≦ 10, preferably 5 ≦ Zr / S ≦ 10 Zr, 0.3 ≦ B / N
The effect of the present invention is further manifested by including one or more of B of ≦ 1.5. If the upper limits of these elements are exceeded, the effect will be saturated and the cost will be high. Particularly regarding the addition of B, the feature of the present invention is further exhibited by adding B which is a nitride forming element to the basic component of the first aspect of the invention. If the B / N is less than 0.3, the workability will not be improved by adding B, and if the B / N exceeds 1.5, the workability will be decreased.

またTi,Nb等の炭窒化物形成元素を添加しても本発明の
特徴を損なわない。添加する場合はTi≧4C+3.42N+1.5
S,Nb≧3Cの条件を満足することが好ましい。
The addition of carbonitride forming elements such as Ti and Nb does not impair the characteristics of the present invention. When adding, Ti ≧ 4C + 3.42N + 1.5
It is preferable to satisfy the condition of S, Nb ≧ 3C.

上記のごとく特定された成分は溶製後薄鋳片にされた
後、直ちに熱間圧延される(熱間圧延なしも含む)が、
本発明では鋳片の冷却速度および熱間圧延比の特定が、
極めて重要な構成要件であり、以下、これを説明する。
The components specified as above are melt-cast into thin slabs and immediately hot-rolled (including those without hot-rolling).
In the present invention, the cooling rate of the slab and the specification of the hot rolling ratio,
This is an extremely important constituent element, which will be described below.

実験室において、C:0.030%,Mn:0.25%,S:0.007%,Al:
0.035%,Si:0.01%,P:0.008%,N:0.0025%の鋼につい
て、凝固直後の鋳片の冷却速度(1350〜1000℃間)を種
々変え、また鋳片厚を変えることによりその鋳片の熱延
圧下比を変えて、3.7mmの熱延板および鋳片まま(圧延
なし)材とした。これを冷延率78.4%で0.80mmまで冷間
圧延し、750℃×1min+400℃×3minの焼鈍を行い、1.0
%のスキンパス後に材質特性を調査した。
In the laboratory, C: 0.030%, Mn: 0.25%, S: 0.007%, Al:
For 0.035%, Si: 0.01%, P: 0.008%, N: 0.0025% steel, casting temperature can be changed by variously changing the cooling rate (between 1350 and 1000 ℃) of the slab immediately after solidification and by varying the slab thickness. The hot rolling reduction ratio of the piece was changed to obtain a 3.7 mm hot-rolled sheet and an as-cast piece (without rolling). This was cold-rolled at a cold rolling rate of 78.4% to 0.80 mm, and annealed at 750 ° C x 1 min + 400 ° C x 3 min to obtain 1.0
Material properties were investigated after a skin pass of%.

第1図に伸び、第2図にr値、第3図にプレス加工後の
肌あれ性と鋳片の冷却速度・熱延圧下比の関係を示し
た。第1図〜第3図の図中の等高線は多数の実験結果の
平均値で作成した。肌あれ評点は1〜5段階で行い、評
点5は肌あれが極めて大、4は大、3は肌あれ有り、2
は軽微の肌あれが認められる、1は肌あれ無しとした。
なお評点2以下であれば実用上合格である。
FIG. 1 shows the elongation, FIG. 2 shows the r value, and FIG. 3 shows the relationship between the surface roughness after press working and the cooling rate / hot rolling reduction ratio of the slab. The contour lines in FIGS. 1 to 3 are created by the average value of a large number of experimental results. The skin is scored on a scale of 1 to 5, with a score of 5 being extremely large, a score of 4 being large, and a score having 3 being 2
Indicates slight skin roughness, and 1 indicates no skin roughness.
A score of 2 or less is a pass in practical use.

第1図より鋳片の冷却速度と圧下比の組合わせにより伸
びの良好な領域がある事がわかる。即ち、ある冷却速度
の断面では、熱延圧下比が小さすぎても、大きすぎても
伸びが低下することが判る。
It can be seen from FIG. 1 that there is a region of good elongation due to the combination of the cooling rate of the slab and the reduction ratio. That is, in the cross section at a certain cooling rate, it can be seen that the elongation decreases if the hot rolling reduction ratio is too small or too large.

第2図より値は熱延圧下比が大きくなると高くなるこ
とが判る。しかし、冷却速度が早い場合は、低い熱延圧
下比で高値が得られる。
It can be seen from FIG. 2 that the value increases as the hot rolling reduction ratio increases. However, when the cooling rate is high, a high value can be obtained with a low hot rolling reduction ratio.

肌あれ性は冷却速度が103℃/min超では熱延圧下比:1.0
超であれば肌あれが発生しない。しかし冷却速度≦103
℃/minでは圧下比が小さいと肌あれが発生し、肌あれを
抑制するためには、所定量以上の圧下比を必要とする。
Roughness is a hot rolling reduction ratio of 1.0 when the cooling rate exceeds 10 3 ° C / min.
If it is super, there will be no rough skin. However, cooling rate ≤ 10 3
If the reduction ratio is small at ° C / min, roughening of the skin occurs, and in order to suppress the roughening, a reduction ratio of a predetermined amount or more is required.

以上の知見、即ち値,伸びの加工性がすぐれ、肌あれ
が発生しない領域として、鋳片の冷却速度と熱間圧下比
の関係をV≦103℃/minでは4.5≧R≧{−(5/6)logV
+3.5}、V>103℃/minでは4.5≧R>1.0と限定した。
(R:熱延圧下比(鋳片厚み/熱延終了厚み),V:鋳片の
冷却速度℃/min(1350〜1000℃間))。Rの上限は良好
な伸びが得られ、熱間圧延機のコンパクト化が可能な条
件により決めた。熱間圧延機のコンパクト化が可能でか
つ伸びが安定して得られるためにはR≦4.0が好まし
い。一方Rの下限は肌あれ、伸び、値よりR≧(−5/
6logV+3.5)を決定した。鋼板の加工性,鋼板の板厚寸
法精度からはR≧1.2とすることが好ましい。
The above knowledge, that is, as a region in which the workability of value and elongation is excellent and the surface roughness does not occur, the relationship between the cooling rate of the slab and the hot rolling reduction ratio is 4.5 ≧ R ≧ {-(V ≦ 10 3 ℃ / min 5/6) logV
+3.5}, and V> 10 3 ° C / min, 4.5 ≧ R> 1.0.
(R: hot rolling reduction ratio (thickness of slab / thickness of hot rolling), V: cooling rate of slab ℃ / min (between 1350 and 1000 ℃)). The upper limit of R was determined by the conditions that a good elongation was obtained and the hot rolling mill could be made compact. R ≦ 4.0 is preferable in order to make the hot rolling machine compact and to obtain stable elongation. On the other hand, the lower limit of R is skin roughness, elongation, and R ≧ (−5 /
6logV + 3.5) was determined. From the workability of the steel sheet and the accuracy of the thickness of the steel sheet, it is preferable that R ≧ 1.2.

熱間圧延がある場合は、熱間圧延終了温度がAr3点以上
とすることが、鋼板の通板性,冷間圧延,焼鈍後の加工
性の点から好ましい。また鋼帯は通常行なわれる範囲の
500〜800℃で捲取られる。
When there is hot rolling, it is preferable that the hot rolling finish temperature is Ar 3 points or more from the viewpoints of the steel sheet passing property, cold rolling, and workability after annealing. Also, steel strips are
It is wound up at 500-800 ℃.

鋳片の冷却速度を1350〜1000℃までの平均速度だけで代
表したが、この理由は計測および制御が容易であるから
である。
The cooling rate of the slab was represented by only the average rate from 1350 to 1000 ° C, because the measurement and control are easy.

以上の工程で製造された鋼板は脱スケール後に冷間圧延
される。冷間圧下率は通常の場合と同様に60〜90%の範
囲で実施される。
The steel sheet manufactured by the above process is cold-rolled after descaling. Cold reduction is carried out in the range of 60 to 90% as in the usual case.

焼鈍は連続焼鈍でも、箱焼鈍でもかまわない。焼鈍板は
必要に応じスキンパスし成品に供される。
The annealing may be continuous annealing or box annealing. The annealed plate is skin-passed as required and is used as a finished product.

このようにして製造された冷延鋼板はZn,Zn-Al,Zn-Fe,S
n等の表面処理鋼板として適用しても本発明の特徴を発
揮する。
The cold-rolled steel sheets produced in this way are Zn, Zn-Al, Zn-Fe, S
The characteristics of the present invention are exhibited even when applied as a surface-treated steel sheet such as n.

〈実施例〉 第1表に示す化学成分および、製造条件で冷延鋼板を製
造し、その材質特性を同表に示した。すなわち、鋳片の
板厚および冷却速度を変え、熱延圧下比を変え、熱延板
とし、酸洗後、冷延し、第1表記載の条件の焼鈍を行
い、1.5%の調質圧延を行い、材質特性を調査した。肌
あれ性は、バルジテストにより、肌あれの程度により評
点は1〜5にランク別けた。評点1は肌あれなし,2は若
干の肌あれが認められる,3は肌あれ発生,4は肌あれ程度
大,5は極めて大きい肌あれが発生する。
<Example> A cold-rolled steel sheet was manufactured under the chemical composition and manufacturing conditions shown in Table 1, and the material properties thereof are shown in the table. That is, by changing the plate thickness and cooling rate of the slab, changing the hot rolling reduction ratio to obtain a hot rolled plate, pickling, cold rolling, annealing under the conditions shown in Table 1, and temper rolling at 1.5%. Then, the material characteristics were investigated. The skin roughness was classified into 1 to 5 according to the degree of skin roughness by a bulge test. A score of 1 indicates no rough skin, a slight roughness of 2 is recognized, a rough skin of 3 occurs, a rough texture of 4 is large, and a rough texture of 5 is extremely large.

第1表の結果から、本発明の方法で製造したものは、本
発明以外の方法で製造されたものより、高い延性と高
値を示すと共に、肌あれ評点も1と良好な特性となって
いることがわかる。コイルNo.11,12,13は成分的に本発
明範囲外で製造されたものであるが、加工性が劣ってい
る。コイルNo.14,15は鋳片の冷速と熱延の圧下比が少な
い側に本発明範囲がはずれたものであるが、肌あれが発
生している。一方コイルNo.16は圧下比が大きい側で本
発明範囲外である。この場合は延性が劣っている。
From the results shown in Table 1, those manufactured by the method of the present invention have higher ductility and higher value than those manufactured by the methods other than the present invention, and the skin roughening score is 1 which is a good characteristic. I understand. Coil Nos. 11, 12, and 13 are componentally manufactured outside the scope of the present invention, but have poor workability. Coil Nos. 14 and 15 are out of the scope of the present invention on the side where the cold speed of the slab and the rolling ratio of the hot rolling are small, but the skin is rough. On the other hand, coil No. 16 is outside the scope of the present invention on the side with a large reduction ratio. In this case, the ductility is poor.

〈発明の効果〉 本発明によれば、上記実施例からも明らかなように、限
定成分の溶鋼を従来技術の如く、強力な熱間圧延機列に
よる累積大圧下の熱延を行うことなく、小さな熱間圧
延、もしくは熱延を行なわなくとも鋳造後の冷速と熱延
圧下比の関係をコントロールすることにより良加工性冷
延鋼板の製造が可能となる。かくして、工程の省力化に
ともなう、省エネルギー、コストの大幅な低減が可能と
なるので、本発明は産業上極めて有用な発明である。
<Effects of the Invention> According to the present invention, as is clear from the above examples, molten steel having a limited component is not subjected to hot rolling under a cumulative large reduction by a powerful hot rolling mill train as in the prior art, By controlling the relationship between the cold speed after casting and the hot rolling reduction ratio without performing small hot rolling or hot rolling, it becomes possible to manufacture a good workable cold rolled steel sheet. Thus, energy saving and cost reduction can be achieved with labor saving in the process, and the present invention is an industrially extremely useful invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は鋳片の冷却速度(1350〜1000℃)および熱延圧
下比と冷延焼鈍後の鋼板の伸びの関係を示す図(図中の
数字は伸び%)、第2図は鋳片の冷却速度および圧下比
と冷延焼鈍後の鋼板の値の関係を示す図(図中の数字
は値)、第3図は鋳片の冷却速度および圧下比と冷延
焼鈍後の鋼板の肌あれ性の関係を示す図(図中の数字は
肌あれ評点)である。
Fig. 1 shows the relationship between the cooling rate of the slab (135 to 1000 ℃) and the hot rolling reduction ratio, and the elongation of the steel sheet after cold rolling annealing (the numbers in the figure are% elongation), and Fig. 2 is the slab. Showing the relationship between the cooling rate and reduction ratio of the steel sheet and the value of the steel sheet after cold rolling and annealing (the numbers in the figure are values), and FIG. 3 is the cooling rate and reduction ratio of the slab and the surface of the steel sheet after cold rolling and annealing. It is a figure (the number in the figure is a rough skin score) which shows the relationship of that nature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.0010〜0.070%,Mn:0.05〜0.5
0%,S:0.013%未満,Al:0.005〜0.090%を含有し、残部
が鉄および不可避的不純物からなる薄手鋳片を、鋳片の
冷却速度:V(1350〜1000℃間の平均冷速℃/min)と熱延
圧下比:R(鋳片厚み/熱延終了厚み)の関係がV≦103
℃/minでは4.5≧R≧{−(5/6)logV+3.5}を満足
し、V>103℃/minでは4.5≧R>1.0を満足する条件で
熱間圧延を行ない、引続いて冷間圧延し、次いで焼鈍す
ることを特徴とする加工用冷延鋼板の製造法。
1. C: 0.0010 to 0.070% by weight%, Mn: 0.05 to 0.5
0%, S: less than 0.013%, Al: 0.005 to 0.090%, with the balance being iron and unavoidable impurities, the thin cast piece has a cooling rate: V (average cooling rate between 1350 and 1000 ℃). (° C / min) and hot rolling reduction ratio: R (thickness of slab / thickness of hot rolling) is V ≦ 10 3
At ℃ / min, 4.5 ≧ R ≧ {-(5/6) logV + 3.5} is satisfied, and at V> 10 3 ℃ / min, 4.5 ≧ R> 1.0 is satisfied. A method for producing a cold rolled steel sheet for working, which comprises cold rolling and then annealing.
【請求項2】重量%でC:0.0010〜0.070%,Mn:0.05〜0.5
0%,S:0.015%以下,Al:0.005〜0.090%を含有し、さら
に50ppm以下のCa,REM/S≦2.0のREM,50ppm以下のMg,Zr/S
≦10のZr,0.3≦B/N≦1.5のBの1種または2種以上を含
有し、残部が鉄および不可避的不純物からなる薄手鋳片
を、鋳片の冷却速度:V(1350〜1000℃間の平均冷速℃/m
in)と熱延圧下比:R(鋳片厚み/熱延終了厚み)の関係
がV≦103℃/minでは4.5≧R≧{−(5/6)logV+3.5}
を満足し、V>103℃/minでは4.5≧R>1.0を満足する
条件で熱間圧延を行ない、引続いて冷間圧延し、次いで
焼鈍することを特徴とする加工用冷延鋼板の製造法。
2. C: 0.0010 to 0.070% by weight%, Mn: 0.05 to 0.5
0%, S: 0.015% or less, Al: 0.005 to 0.090%, 50 ppm or less of Ca, REM / S ≤ 2.0 REM, 50 ppm or less of Mg, Zr / S
A thin cast slab containing Zr of ≦ 10, B of 0.3 ≦ B / N ≦ 1.5, and the balance of iron and unavoidable impurities, and the cooling rate of the slab: V (135 to 1000 Average cold speed between ℃ ℃ / m
in) and hot rolling reduction ratio: R (thickness of slab / thickness of hot rolling) is V ≧ 10 3 ℃ / min 4.5 ≧ R ≧ {− (5/6) logV + 3.5}
And V> 10 3 ° C / min, hot rolling is performed under the condition of 4.5 ≧ R> 1.0, followed by cold rolling, and then annealing. Manufacturing method.
JP61090054A 1986-04-21 1986-04-21 Manufacturing method of cold rolled steel sheet for processing Expired - Lifetime JPH0756052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090054A JPH0756052B2 (en) 1986-04-21 1986-04-21 Manufacturing method of cold rolled steel sheet for processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090054A JPH0756052B2 (en) 1986-04-21 1986-04-21 Manufacturing method of cold rolled steel sheet for processing

Publications (2)

Publication Number Publication Date
JPS62247026A JPS62247026A (en) 1987-10-28
JPH0756052B2 true JPH0756052B2 (en) 1995-06-14

Family

ID=13987875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090054A Expired - Lifetime JPH0756052B2 (en) 1986-04-21 1986-04-21 Manufacturing method of cold rolled steel sheet for processing

Country Status (1)

Country Link
JP (1) JPH0756052B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725203A (en) * 1980-07-18 1982-02-10 Nippon Steel Corp Production of stainless steel plate and wire
JPS5943825A (en) * 1982-09-07 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of cold rolled steel plate for press forming

Also Published As

Publication number Publication date
JPS62247026A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
JP7492114B2 (en) Non-oriented electrical steel sheet
PL194747B1 (en) Method of producing non-grain-oriented electrical sheet
JPS5943824A (en) Manufacture of cold rolled steel plate for press forming
JP3890876B2 (en) Method for producing non-oriented electrical steel sheet
JPH0756052B2 (en) Manufacturing method of cold rolled steel sheet for processing
JP3352904B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
WO1991010517A1 (en) METHOD OF MANUFACTURING Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN SURFACE QUALITY AND MATERIAL THEREOF
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP3051237B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JPH0631394A (en) Production of thin cast slab for non-oriented silicon steel sheet
JPH0726154B2 (en) Manufacturing method of low iron loss non-oriented electrical steel sheet
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPH027374B2 (en)
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JPS634024A (en) Production of cold rolled steel sheet for deep drawing from thin cast strip
JPS6082616A (en) Production of extra low carbon cold rolled steel plate for deep drawing
JPH0723509B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JPH07278665A (en) Manufacture of non-oriented silicon steel sheet with high magnetic flux density
JPH02258922A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2006169577A (en) Method for producing semi-process non-oriented magnetic steel sheet with excellent iron-loss characteristic
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH0692619B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH04202628A (en) Production of austenitic stainless steel sheet excellent in corrosion resistance