JPH0755826B2 - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH0755826B2
JPH0755826B2 JP63027101A JP2710188A JPH0755826B2 JP H0755826 B2 JPH0755826 B2 JP H0755826B2 JP 63027101 A JP63027101 A JP 63027101A JP 2710188 A JP2710188 A JP 2710188A JP H0755826 B2 JPH0755826 B2 JP H0755826B2
Authority
JP
Japan
Prior art keywords
superconductor
temperature
oxygen
sulfur
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63027101A
Other languages
Japanese (ja)
Other versions
JPH01203220A (en
Inventor
洋 市川
秀明 足立
清孝 和佐
久美子 広地
真一郎 八田
里佳 山尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63027101A priority Critical patent/JPH0755826B2/en
Publication of JPH01203220A publication Critical patent/JPH01203220A/en
Publication of JPH0755826B2 publication Critical patent/JPH0755826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体に関するものである。特に化合物薄膜
超電導体に関するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to superconductors. In particular, it relates to a compound thin film superconductor.

従来の技術 高温超電導体として、A15型2元系化合物として窒化ニ
オブ(NbN)やゲルマニウムニオブ(Nb3Ge)などが知ら
れていたが、これらの材料の超電導転移温度はたかだか
24°Kであった。一方、ペロブスカイト系3元化合物
は、さらに高い転移温度が期待され、Y-Ba-Cu-O系の高
温超電導体が提案された[M.K.Wu等、フィジカル レビ
ュー レターズ(Physical Review Latters)Vol.58,No
9,908-910(1987)] さらに、Bi-Sr-Ca-Cu-O系がより高温の超電導体である
ことが最近提案された。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (Nb 3 Ge) were known as A15 type binary compounds, but the superconducting transition temperature of these materials is at most
It was 24 ° K. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Y-Ba-Cu-O-based high-temperature superconductors have been proposed [MKWu et al., Physical Review Latters] Vol.58, No.
9,908-910 (1987)] Furthermore, it was recently proposed that the Bi-Sr-Ca-Cu-O system is a higher temperature superconductor.

Bi-Sr-Ca-Cu-O系の材料の超電導機構の詳細は明らかで
はないが、転移温度が液体窒素温度以上に高くなる可能
性があり、高温超電導体として従来の2元系化合物よ
り、より有望な特性が期待される。
Although the details of the superconducting mechanism of Bi-Sr-Ca-Cu-O-based materials are not clear, the transition temperature may be higher than the liquid nitrogen temperature. More promising characteristics are expected.

発明が解決しようとする課題 しかしながら、Bi-Sr-Ca-Cu-O系の材料は、現在の技術
では焼結という過程でしか形成できないため、セラミッ
クの粉末あるいはブロックの形状でしか得られない。一
方、この種の材料を実用化する場合、薄膜化あるいは線
状化が強く要望されているが、従来の技術では900〜100
0℃の高い加工温度が必要で、いずれも実用化は非常に
困難とされている。
However, Bi-Sr-Ca-Cu-O-based materials can only be formed in the form of ceramic powder or blocks, because they can be formed only in the process of sintering with the current technology. On the other hand, when this kind of material is put to practical use, thinning or linearization is strongly demanded, but in the conventional technology, 900 to 100
A high processing temperature of 0 ° C is required, and it is extremely difficult to put them into practical use.

本発明者らは、この種の材料の酵素成分を硫黄などの他
元素で一部置換し、例えばスパッタリング法等の薄膜化
手法を用いると加工温度が下がり、薄膜状の高温超電導
体が低温で形成されることを発見し、これにもとづいて
新規な超電導体構成を発明した。
The present inventors have partially replaced the enzyme component of this type of material with another element such as sulfur, and when a thinning method such as a sputtering method is used, the processing temperature is lowered, and the thin film high-temperature superconductor has a low temperature. It was discovered that they were formed, and based on this, they invented a new superconductor structure.

課題を解決するための手段 本発明の超電導体は、 Bi-Sr-Ca-Cu-Oで、さらに酸素成分の一部を硫黄、セレ
ン、テルル、ポロニウムのうちの少なくとも一種で置換
したことを特徴としている。
Means for Solving the Problems The superconductor of the present invention is Bi-Sr-Ca-Cu-O, further characterized in that a part of the oxygen component is replaced with at least one of sulfur, selenium, tellurium, and polonium. I am trying.

作用 本発明にかかる超電導体は酸化物セラミックスではな
く、例えば酸化物と硫化物からなる複合セレミックスで
あり、複合化は加工温度を下げることが本発明で実現さ
れる。
Action The superconductor according to the present invention is not an oxide ceramic, but a composite ceremix composed of, for example, an oxide and a sulfide, and the present invention realizes that the processing temperature is lowered in the composite.

すなわち、本発明者らは、この種の酸化物セラミックス
の酸素元素をVIb族の酸素以外の元素例えば硫黄
(S)、セレン(Se)、テルル(Te)、ポロニウム(P
o)などで一部置換しても同様の超電導特性が得られる
ことを発見した。この場合特に酸素の置換量が50%以
下、すなわち、 であると、特に安定な超電導特性が得られた。この理由
の詳細は明らかではないが、Bi-Sr-Ca-Cu-O系の酸化物
セラミックスの基体構造が酸素置換量が50%以下であれ
ば安定に形成されたことを示している。すなわち、50%
以上酸素を置換するとペロブスカイト構造あるいは、ペ
ロブスカイト構造を形成する酸素八面体構造が安定に形
成されない。この場合、特に注目すべき点は、酸素を硫
黄、セレン、テルル、ポロニウム等で置換すると、結晶
化温度が低くなり、この種の材料の形成温度の低温化を
可能とすることが明らかになった。この場合、酸素の置
換は必ずしも単一元素でなくともよく、例えば硫黄とセ
レン、硫黄とテルルのように硫黄、セレン、テルル、ポ
ロニウムの中から2種以上用いればよいことも本発明者
らは確認した。
That is, the present inventors have determined that the oxygen element of this type of oxide ceramic is an element other than oxygen of the VIb group, such as sulfur (S), selenium (Se), tellurium (Te), polonium (P
It has been discovered that similar superconducting properties can be obtained even if some of them are replaced with o). In this case, especially the oxygen substitution amount is 50% or less, that is, In that case, a particularly stable superconducting property was obtained. Although details of the reason are not clear, it shows that the base structure of the Bi-Sr-Ca-Cu-O-based oxide ceramics was stably formed when the oxygen substitution amount was 50% or less. That is, 50%
When oxygen is replaced as described above, the perovskite structure or the oxygen octahedral structure forming the perovskite structure is not stably formed. In this case, what is particularly noteworthy is that when oxygen is replaced by sulfur, selenium, tellurium, polonium, etc., the crystallization temperature becomes low, and it becomes possible to lower the formation temperature of this kind of material. It was In this case, the substitution of oxygen does not necessarily have to be a single element, and the present inventors have also found that two or more of sulfur, selenium, tellurium, and polonium, such as sulfur and selenium and sulfur and tellurium, may be used. confirmed.

実施例 以下本発明の内容をさらに深く理解させるために、さら
に具体的な具体実施例を示す。
Examples Hereinafter, more specific examples will be shown in order to deepen the understanding of the content of the present invention.

(具体実施例) サファイア単結晶R面を基体11として用い、焼結したBi
-(SrCa)2-Cu2-OxSyターゲットの高周波プレナーマグネ
トロンスパッタにより、被膜12を付着させた。この場
合、Arガスの圧力は0.5Pa、スパッタリング電力150W、
スパッタリング時間6時間、被膜の膜厚5μm、基体温
度350℃であった。形成された被膜をさらに硫黄雰囲気
中で500℃、2時間熱処理徐冷した。このように、比較
的低い加工温度で形成された被膜の室温抵抗率は10mΩc
m、超電導転移温度90°Kであった。
(Specific Example) Sintered Bi using the sapphire single crystal R surface as the substrate 11
- (SrCa) by high-frequency planar magnetron sputtering of 2 -Cu 2 -O x S y target was deposited coating 12. In this case, the pressure of Ar gas is 0.5 Pa, the sputtering power is 150 W,
The sputtering time was 6 hours, the film thickness was 5 μm, and the substrate temperature was 350 ° C. The formed film was further heat-treated and slowly cooled at 500 ° C. for 2 hours in a sulfur atmosphere. As described above, the room temperature resistivity of the film formed at the relatively low processing temperature is 10 mΩc.
m, superconducting transition temperature 90 ° K.

この場合、硫黄を添加しない場合500℃の加工温度が必
要であった。
In this case, a processing temperature of 500 ° C. was required without adding sulfur.

とりわけ、本発明にかかる超電導体は、超電導体を薄膜
化すると一層好都合でる。すなわち、薄膜化は超電導体
の素材を原子状態という極微粒子に分解してから、基体
上に堆積させるから、形成された超電導体の組成は本質
的に、従来の焼結体に比べて均質でしかも低温で形成で
きる。したがって、非常に高精度の超電導体で実現され
る。
In particular, the superconductor according to the present invention is more convenient when the superconductor is made into a thin film. That is, thinning decomposes the material of the superconductor into ultrafine particles in the atomic state and then deposits it on the substrate, so that the composition of the formed superconductor is essentially more uniform than that of the conventional sintered body. Moreover, it can be formed at a low temperature. Therefore, it can be realized with a very high-precision superconductor.

また、本発明の超電導体を薄膜として形成するに際して
は、前述した種々の基体並びに結晶面を用いることがで
きるとともに、集積化も同様に可能である。
Further, when the superconductor of the present invention is formed as a thin film, the above-mentioned various substrates and crystal planes can be used, and integration can be similarly performed.

発明の効果 すでに説明したごとく、本発明は酸素の一部置換により
結晶化温度を低く出来、超電導体の製造上有利な方法を
得ることができ、SiあるいはGaAsなどのデバイスとの集
積化ならびに、ジョセフソン素子など各種の超電導デバ
イスの要素材料に極めて好都合となる。特にこの種の化
合物超電導体の転移温度が室温になる可能性もあり、従
来の実用の範囲は広く、本発明の工業的価値は高い。
Effects of the Invention As described above, the present invention can lower the crystallization temperature by partially substituting oxygen, can obtain an advantageous method in the production of a superconductor, integration with a device such as Si or GaAs, It is extremely convenient for element materials of various superconducting devices such as Josephson devices. In particular, the transition temperature of this type of compound superconductor may reach room temperature, the range of conventional practical use is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例の超電導体の基体構成図である。 11……基体、12……3元化合物被膜。 FIG. 1 is a block diagram of a superconductor substrate according to an embodiment of the present invention. 11 ... Substrate, 12 ... Ternary compound coating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 広地 久美子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 八田 真一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山尾 里佳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭63−319245(JP,A) 特開 昭64−52321(JP,A) 特開 昭64−100818(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kumiko Hirochi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Shinichiro Hatta 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Rika Yamao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP 63-319245 (JP, A) JP 64-52321 (JP, A) JP 64-100818 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】主成分がBi,Sr,Ca,Cu-Oの酸化物でありか
つ、酸素の一部を硫黄、セレン、テルル、ポロニウムの
うちの少なくとも一種で置換したことを特徴とする超電
導体。
1. A superconducting material, characterized in that the main component is an oxide of Bi, Sr, Ca, Cu-O, and a part of oxygen is replaced by at least one of sulfur, selenium, tellurium and polonium. body.
【請求項2】硫黄、セレン、テルル、またポロニウム成
分と酸素成分の比率が であることを特徴とする特許請求の範囲第1項記載の超
電導体。
2. The ratio of sulfur, selenium, tellurium, and the polonium component to the oxygen component is The superconductor according to claim 1, wherein
JP63027101A 1988-02-08 1988-02-08 Superconductor Expired - Lifetime JPH0755826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027101A JPH0755826B2 (en) 1988-02-08 1988-02-08 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027101A JPH0755826B2 (en) 1988-02-08 1988-02-08 Superconductor

Publications (2)

Publication Number Publication Date
JPH01203220A JPH01203220A (en) 1989-08-16
JPH0755826B2 true JPH0755826B2 (en) 1995-06-14

Family

ID=12211694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027101A Expired - Lifetime JPH0755826B2 (en) 1988-02-08 1988-02-08 Superconductor

Country Status (1)

Country Link
JP (1) JPH0755826B2 (en)

Also Published As

Publication number Publication date
JPH01203220A (en) 1989-08-16

Similar Documents

Publication Publication Date Title
JP2933225B2 (en) Metal oxide material
JPH11278837A (en) Mg doped low anisotropy high temperature superconductor and its production
JPH0755826B2 (en) Superconductor
JPH0358488A (en) Planar josephson element and manufacturing method of the same
JPH10236821A (en) Low-anisotropy high-temperature superconductor based on uncertainty principle and its production
JPS61194786A (en) Heat treatment method of oxide superconductor thin-film
JPS63306676A (en) Josephson element
JPH0818837B2 (en) Sputtering target and method for manufacturing superconducting thin film
JP2506798B2 (en) Superconductor
JPH0688858B2 (en) Superconductor
JP2517085B2 (en) Superconducting thin film
US5141919A (en) Superconducting device and method of producing superconducting thin film
JPH07106896B2 (en) Superconductor
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JPH02311396A (en) Thin-film superconductor and its production
JPH01105416A (en) Manufacture of thin film superconductor
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPS6161717B2 (en)
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
JPH01219023A (en) Production of thin superconductor film
JPH0719922B2 (en) Superconductor and integrated superconducting device
JPS63306678A (en) Josephson element
JPS63299010A (en) Ceramic superconductive material
JP2517055B2 (en) Superconductor