JPH0755104A - Starting method for hot-banked boiler - Google Patents

Starting method for hot-banked boiler

Info

Publication number
JPH0755104A
JPH0755104A JP19737793A JP19737793A JPH0755104A JP H0755104 A JPH0755104 A JP H0755104A JP 19737793 A JP19737793 A JP 19737793A JP 19737793 A JP19737793 A JP 19737793A JP H0755104 A JPH0755104 A JP H0755104A
Authority
JP
Japan
Prior art keywords
furnace wall
water
temperature fluid
steam
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19737793A
Other languages
Japanese (ja)
Inventor
Ichiro Tashiro
一郎 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19737793A priority Critical patent/JPH0755104A/en
Publication of JPH0755104A publication Critical patent/JPH0755104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To prevent damages which can occur due to thermal stress at the time of starting a hot-banked boiler on connection part between a furnace wall and a heat recovery area, suppress the decrease of main steam pressure at starting and stabilize the flow rate of feed water introduced into the furnace wall. CONSTITUTION:Low temperature fluid C1 which has been held in lower part of a hot-banked furnace wall 1 is extracted downward before a feed water pump 8 is started. High temperature fluid H1 held in upper part of the furnace wall 1 is not immediately sent to a steam separator 12. The high temperature fluid H1 is sent to the steam separator 12 after high temperature fluid H2 which has been held in upper part of an economizer 6 is sent to the lower part of the furnace wall 1. In this way, low temperature fluid C2 flows to a furnace wall outlet A after the high temperature fluids H1, H1 has been sent. The high temperature fluid and the low temperature fluid, therefore, do not repeatedly alternate with each other in passing through the furnace wall outlet A. Fluctuating thermal stress is not applied on the connection part of the furnace wall 1. The boiler is prevented from being cooled by the discharge of the low temperature fluid, that is, the decrease of the main steam pressure is suppressed and the variation of water level HL in a steam separator tank 13 caused by pressure does not occur repeatedly so that the feed water flow rate is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はホットバンキングされた
ボイラ設備の起動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a hot-banked boiler facility.

【0002】[0002]

【従来の技術】一般的なボイラの一例は図8に示されて
おり、図中、1は下部に燃料バーナ2を備えた火炉壁、
3は火炉壁1の上部後方に接続された後伝部(過熱
器)、4は後伝部3内に収納された再熱器、5は後伝部
3に収納された過熱器、6は後伝部3に収納された節炭
器、7は後伝部3の下部に接続された排ガスダクトであ
る。
2. Description of the Related Art An example of a general boiler is shown in FIG. 8, in which 1 is a furnace wall having a fuel burner 2 at the bottom,
3 is a rear transmission part (superheater) connected to the upper rear part of the furnace wall 1, 4 is a reheater accommodated in the rear transmission part 3, 5 is a superheater accommodated in the rear transmission part 3, and 6 is The economizer stored in the rear transmission part 3 is an exhaust gas duct connected to the lower part of the rear transmission part 3.

【0003】斯かるボイラの水や蒸気の流れの概要は図
9〜図12に示され、図中、8は給水ポンプ、9は給水
ポンプ8からの水を節炭器6へ供給するための給水管、
10は節炭器6で加熱された水を火炉壁1の炉壁管1a
に供給するための連絡管、11は炉壁管1a内で生成さ
れた蒸気を気水分離器12へ送る連絡管、13は気水分
離器12で分離された分離水が分離水排出管14を介し
て供給される気水分離タンク、15は気水分離タンク1
3内の水を給水管9へ戻す再循環水供給管、16は再循
環水供給管15の中途部に接続されたボイラ再循環ポン
プ、17は再循環水供給管15の中途部にボイラ再循環
ポンプ16よりも下流に位置するよう接続された再循環
流量制御弁、18は再循環水供給管15のボイラ再循環
ポンプ16上流側に排水管19を介して接続され且つ気
水分離タンク13内の水位が上限に達したら開くように
した水位制御弁である。又気水分離器12で水を分離さ
れた蒸気は、過熱器5を経て図示してない高圧蒸気ター
ビンへ送給され、高圧蒸気タービンから排出された蒸気
は図8に示す再熱器4で再熱されて図示してない低圧蒸
気タービンへ与え得るようになっており、低圧蒸気ター
ビンから排出された蒸気は図示してない復水器で水に戻
され給水ポンプ8へ循環し得るようになっている。
An outline of the flow of water and steam in such a boiler is shown in FIGS. 9 to 12, in which 8 is a water supply pump, and 9 is water for supplying water from the water supply pump 8 to the economizer 6. Water pipe,
Reference numeral 10 denotes water heated by the economizer 6 for the furnace wall tube 1a of the furnace wall 1.
Connecting pipe for supplying the steam generated in the furnace wall pipe 1a to the steam separator 12, and 13 a separated water discharge pipe for separating the separated water separated by the steam separator 12 Air-water separation tank supplied via
The recirculation water supply pipe for returning the water in 3 to the water supply pipe 9, 16 is a boiler recirculation pump connected to the middle part of the recirculation water supply pipe 15, and 17 is a boiler recirculation water pipe in the middle part of the recirculation water supply pipe 15. A recirculation flow rate control valve 18 connected downstream of the circulation pump 16 is connected to the upstream side of the boiler recirculation pump 16 of the recirculation water supply pipe 15 via a drain pipe 19 and the steam separation tank 13 It is a water level control valve that opens when the water level inside reaches the upper limit. The steam from which the water has been separated by the steam separator 12 is sent to a high-pressure steam turbine (not shown) through the superheater 5, and the steam discharged from the high-pressure steam turbine is reheated by the reheater 4 shown in FIG. It can be reheated and supplied to a low-pressure steam turbine (not shown). The steam discharged from the low-pressure steam turbine is returned to water by a condenser (not shown) and can be circulated to the feed water pump 8. Has become.

【0004】上記ボイラにおいては、通常の運転時に
は、火炉壁1により包囲されて形成された火炉内で燃料
バーナ2から噴射された燃料が燃焼することにより生成
された燃焼ガスは、火炉内を上昇しつつ火炉壁1の炉壁
管1a内を流れる水や蒸気を加熱して後伝部3内へ送給
され、後伝部3においては後伝部3を形成する炉壁管内
の蒸気を加熱すると共に過熱器5や図8に示す再熱器4
内を流れる蒸気を過熱し、節炭器6を流れる水を加熱し
たうえ、排ガスダクト7を経て大気へ排出される。
In the above-mentioned boiler, during normal operation, the combustion gas generated by the combustion of the fuel injected from the fuel burner 2 in the furnace surrounded by the furnace wall 1 rises in the furnace. While heating the water and steam flowing in the furnace wall tube 1a of the furnace wall 1 and being fed into the rear transfer section 3, in the rear transfer section 3, the steam in the furnace wall tube forming the rear transfer section 3 is heated. And the superheater 5 and the reheater 4 shown in FIG.
The steam flowing inside is superheated to heat the water flowing through the economizer 6, and then discharged to the atmosphere via the exhaust gas duct 7.

【0005】一方、給水ポンプ8から吐出された水は、
給水管9から節炭器6へ導入され、節炭器6では後伝部
3を下降する排ガスにより加熱され、連絡管10を通っ
て火炉壁1の炉壁管1aへ供給され、炉壁管1aでは、
火炉内を上昇する燃焼ガスにより加熱されて蒸気が生成
される。
On the other hand, the water discharged from the water supply pump 8 is
The water is introduced from the water supply pipe 9 into the economizer 6, and heated in the economizer 6 by the exhaust gas descending the rear transmission part 3, and is supplied to the furnace wall pipe 1a of the furnace wall 1 through the connecting pipe 10. In 1a,
The combustion gas rising in the furnace is heated to generate steam.

【0006】炉壁管1a内で生成された蒸気は、連絡管
11から気水分離器12へ入り、気水分離器12で水を
分離された蒸気は後伝部3及び過熱器5で過熱されて高
圧蒸気タービンへ導入され、高圧蒸気タービンと駆動し
た後排出されて再熱器4へ供給され、再熱器4では後伝
部3を下降して流れる排ガスにより再過熱されて低圧蒸
気タービンへ送られ、低圧蒸気タービンを駆動して排出
され、復水器で水に戻された後、給水ポンプ8へ吸引さ
れ、吐出されて再び節炭器6へ送られる。
The steam generated in the furnace wall tube 1a enters the steam-water separator 12 through the connecting pipe 11, and the steam whose water has been separated by the steam-water separator 12 is superheated by the rear transfer section 3 and the superheater 5. Is introduced into the high-pressure steam turbine, is discharged after being driven with the high-pressure steam turbine, and is supplied to the reheater 4. In the reheater 4, the low-pressure steam turbine is reheated by the exhaust gas flowing down the rear transfer section 3. Is discharged to the water by driving the low-pressure steam turbine, returned to water by the condenser, sucked by the water supply pump 8, discharged, and sent to the economizer 6 again.

【0007】又気水分離器12で分離された水は気水分
離タンク13へ流入し、気水分離タンク13の水位が上
限の水位と下限の水位の間にある場合には再循環流量制
御弁17が開き、気水分離タンク13内の水は、ボイラ
再循環ポンプ16により再循環水供給管15から給水管
9へ送られ、給水ポンプ8からの水と合流して節炭器6
へ送られる。
The water separated by the steam / water separator 12 flows into the steam / water separation tank 13, and when the water level in the steam / water separation tank 13 is between the upper limit water level and the lower limit water level, the recirculation flow rate control is performed. The valve 17 is opened, and the water in the steam / water separation tank 13 is sent from the recirculation water supply pipe 15 to the water supply pipe 9 by the boiler recirculation pump 16 and merges with the water from the water supply pump 8 to save the coal.
Sent to.

【0008】更に、気水分離タンク13の水位が上限の
水位を越えると、水位制御弁18が開いて気水分離タン
ク13内の水は、所定の水位になるまで排水管19から
復水器に排水される。
Further, when the water level in the steam / water separation tank 13 exceeds the upper limit water level, the water level control valve 18 opens and the water in the steam / water separation tank 13 is discharged from the drain pipe 19 to the condenser until the water level reaches a predetermined level. Be drained to.

【0009】更に又、ボイラ停止の場合は、燃料バーナ
2は消火し、給水ポンプ8、ボイラ再循環ポンプ16は
停止し、再循環流量制御弁17及び水位制御弁18等も
閉止している。
Further, when the boiler is stopped, the fuel burner 2 is extinguished, the feed water pump 8, the boiler recirculation pump 16 are stopped, and the recirculation flow rate control valve 17, the water level control valve 18, etc. are also closed.

【0010】而して、ボイラ運転後に停止すると、ボイ
ラは各弁17,18を閉止した状態で暖缶保持(ホット
バンキング)されるが、炉壁管1aや節炭器6内では対
流現象が発生し、その結果図9に示すごとく炉壁管1a
上部の範囲X1や気水分離器12内、気水分離タンク1
3内には高温流体H1が滞留し、節炭器6上部の範囲X2
には高温流体H1と同等若しくはそれ以上の高温流体
(蒸気)H2が滞留し、又炉壁管1a下部の範囲Y1には
低温流体C1が滞留し、節炭器6下部の範囲Y2やその後
方には低温流体C1と略同じ温度、圧力の低温流体C2
滞留する現象が生じる。
When the boiler is stopped after the operation, the boiler holds hot cans (hot banking) with the valves 17 and 18 closed, but a convection phenomenon occurs in the furnace wall tube 1a and the economizer 6. Generated, and as a result, furnace wall tube 1a as shown in FIG.
Upper area X 1 and steam separator 12 inside steam separator tank 1
The high temperature fluid H 1 stays in the area 3 and the area X 2 above the economizer 6 is reduced.
Of high temperature fluid (steam) H 2 equal to or higher than the high temperature fluid H 1 stays in the area, and low temperature fluid C 1 stays in the area Y 1 below the furnace wall tube 1 a and stays in the area below the economizer 6. A phenomenon occurs in which the low temperature fluid C 2 having substantially the same temperature and pressure as the low temperature fluid C 1 stays in Y 2 and its rear part.

【0011】而して、上述のホットバンキングの状態か
らボイラの再起動を行う場合には、再起動指令により、
燃料バーナ2へ点火する前の段階として給水ポンプ8を
起動し、水を給水管9から節炭器6へ供給開始する。こ
のため、各機器内の流体はところてん式に押出されるこ
とになる。
When the boiler is restarted from the above hot banking state, a restart command is issued.
As a stage before igniting the fuel burner 2, the water supply pump 8 is started and water is started to be supplied from the water supply pipe 9 to the economizer 6. For this reason, the fluid in each device will be extruded in a random manner.

【0012】すなわち、節炭器6下部の低温流体C2
給水ポンプ8からの水により押されて節炭器6上部へ移
動し、節炭器6上部の高温流体H2は炉壁管1a下部へ
流入し、炉壁管1a下部の低温流体C1は炉壁管1a上
部へ移動し、炉壁管1a上部の高温流体H1は炉壁管1
a外へ押出されて気水分離器12へ入り、気水分離器1
2内の高温流体H1は、過熱器5及びその下流側へ送ら
れる(図9、図10参照)。
That is, the low temperature fluid C 2 in the lower part of the economizer 6 is pushed by the water from the water supply pump 8 and moves to the upper part of the economizer 6, and the high temperature fluid H 2 in the upper part of the economizer 6 is the furnace wall tube 1a. The low temperature fluid C 1 in the lower part of the furnace wall tube 1a moves to the upper part of the furnace wall tube 1a, and the high temperature fluid H 1 in the upper part of the furnace wall tube 1a flows into the lower part.
a Extruded outside to enter the steam separator 12, steam separator 1
The high temperature fluid H 1 in 2 is sent to the superheater 5 and its downstream side (see FIGS. 9 and 10).

【0013】又なおも給水を行うと、節炭器6下部の水
が節炭器6上部へ移動し、節炭器6上部の低温流体C2
が炉壁管1a下部へ流入し、炉壁管1a下部の高温流体
2が炉壁管1a上部へ移動し、炉壁管1a上部の低温
流体C1が気水分離器12を経て気水分離タンク13へ
送出される(図10、図11参照)。この際、気水分離
タンク13の水位が上限に達すると、水位制御弁18が
開いて気水分離タンク13内の低温流体C1を含む水が
復水器へ排出される。
When water is still supplied, the water in the lower part of the economizer 6 moves to the upper part of the economizer 6, and the low temperature fluid C 2 in the upper part of the economizer 6 is added.
Flows into the lower part of the furnace wall tube 1a, the high temperature fluid H 2 in the lower part of the furnace wall tube 1a moves to the upper part of the furnace wall tube 1a, and the low temperature fluid C 1 in the upper part of the furnace wall tube 1a passes through the steam separator 12 It is sent to the separation tank 13 (see FIGS. 10 and 11). At this time, when the water level of the steam separation tank 13 reaches the upper limit, the water level control valve 18 opens and the water containing the low temperature fluid C 1 in the steam separation tank 13 is discharged to the condenser.

【0014】更に給水ポンプ8からの給水を続行する
と、節炭器6内の水は炉壁管1a下部へ流入し、炉壁管
1a下部の低温流体C2は、炉壁管1a上部へ移動し、
炉壁管1a上部の高温流体H2は気水分離器12及び気
水分離タンク13へ送出され(図11、図12参照)、
気水分離タンク13内の水位が低下する。
When the water supply from the water supply pump 8 is further continued, the water in the economizer 6 flows into the lower part of the furnace wall pipe 1a, and the low temperature fluid C 2 in the lower part of the furnace wall pipe 1a moves to the upper part of the furnace wall pipe 1a. Then
The high temperature fluid H 2 on the upper part of the furnace wall tube 1a is sent to the steam separator 12 and the steam separation tank 13 (see FIGS. 11 and 12),
The water level in the steam separation tank 13 decreases.

【0015】その後低温流体C2が気水分離器12及び
気水分離タンク13に送出される(図12)と水位が上
昇し水位制御弁18が開き、ボイラ再循環ポンプ16が
起動される。このとき、気水分離タンク13内の水は、
一部は復水器へ排出されると共に残りはボイラ再循環ポ
ンプ16により循環されて再循環水供給管15から給水
管9へ入り、給水ポンプ8からの水と一緒に再び節炭器
6へ供給される。又ボイラ再循環ポンプ16が起動され
たら、図8に示す燃料バーナ2が点火し、燃焼が開始さ
れる。
After that, when the low temperature fluid C 2 is sent to the steam separator 12 and the steam separator tank 13 (FIG. 12), the water level rises, the water level control valve 18 opens, and the boiler recirculation pump 16 is started. At this time, the water in the steam separation tank 13 is
Part of the water is discharged to the condenser, and the rest is circulated by the boiler recirculation pump 16 to enter the recirculation water supply pipe 15 into the water supply pipe 9 and to the economizer 6 together with the water from the water supply pump 8. Supplied. When the boiler recirculation pump 16 is started, the fuel burner 2 shown in FIG. 8 is ignited and combustion is started.

【0016】上述のボイラ再起動の際の状況をグラフに
より説明すると、ボイラのホットバンキング中に給水ポ
ンプ8が図13に示すように時間t0で起動された後は
一定の給水ポンプ流量WBFPが保持され、給水が行われ
る。
The situation at the time of restarting the boiler will be explained with a graph. When the water supply pump 8 is started at time t 0 as shown in FIG. 13 during hot banking of the boiler, a constant water supply pump flow rate W BFP. Is maintained and water is supplied.

【0017】又、図10に示すごとく炉壁管出口部Aに
低温流体C1が流れ始めると図15の時間t1以後に示す
ように、炉壁管出口部Aの温度Tは急激に下降を始め、
図16に示すように気水分離器12内の圧力Pは時間t
2以後、急激に低下し始め、更に低温流体C1は気水分離
器12から気水分離タンク13へ入るため、図17に示
すように時間t3以後、気水分離タンク13の水位HL
急上昇し水位制御弁18が開く。
Further, as shown in FIG. 10, when the low temperature fluid C 1 starts to flow into the furnace wall tube outlet portion A, the temperature T of the furnace wall tube outlet portion A rapidly drops as shown after time t 1 in FIG. Started
As shown in FIG. 16, the pressure P in the steam separator 12 is the time t.
After 2 , the cold fluid C 1 starts to drop sharply, and the low temperature fluid C 1 enters the steam / water separation tank 13 from the steam / water separator 12, so as shown in FIG. 17, after time t 3 , the water level HL of the steam / water separation tank 13 is reached. Rapidly rises and the water level control valve 18 opens.

【0018】図11に示すごとく、当初は節炭器6内に
あった高温流体H2が炉壁管1aの上部に達し、炉壁管
出口部Aを通り始めると、図15に示すように炉壁管出
口部Aの温度Tは時間t5から上昇し始め、時間t7でピ
ークとなり、その後漸次低下する。
As shown in FIG. 11, when the high temperature fluid H 2 initially in the economizer 6 reaches the upper part of the furnace wall tube 1a and starts passing through the furnace wall tube outlet portion A, as shown in FIG. The temperature T at the outlet A of the furnace wall tube begins to rise at time t 5 , reaches a peak at time t 7 , and then gradually decreases.

【0019】又、高温流体H2が炉壁管出口部Aを通っ
て気水分離器12に入り始めると、時間t6以後気水分
離器12内の圧力Pが高温流体H2により上昇し、時間
8でピークとなり、以後は徐々に下降する。この場
合、時間t8のときの圧力Pは、ホットバンキング時の
圧力よりも低くなるが、これは当初炉壁管1a下部に滞
留していた低温流体により、炉壁管1a上部及び気水分
離器12が冷やされたためである。
When the high temperature fluid H 2 begins to enter the steam / water separator 12 through the outlet A of the furnace wall tube, the pressure P in the steam / water separator 12 is increased by the high temperature fluid H 2 after time t 6. , It peaks at time t 8 and then gradually falls. In this case, the pressure P at time t 8 becomes lower than the pressure at the time of hot banking, but this is due to the low temperature fluid originally retained in the lower part of the furnace wall tube 1a and the upper part of the furnace wall tube 1a and the separation of steam and water. This is because the container 12 has been cooled.

【0020】低温流体C2が炉壁管1aから送出され始
めると、該低温流体C2は気水分離器12を経て気水分
離タンク13へ流入し、このため、気水分離タンク13
内の水位HLは徐々に増加し、図17に示すように時間
9で上限となる。而して、時間t9で気水分離タンク1
3内の水位HLが上限に達するとボイラ再循環ポンプ1
6が起動され、図14に示すように一定の再循環ポンプ
流量WBRPが保持される。又この際、水位制御弁18も
開いて気水分離タンク13内の水の一部が復水器へ排水
される。
[0020] cryogen C 2 begins to be transmitted from Rokabekan 1a, low temperature fluid C 2 flows into the gas-water separator tank 13 via a steam separator 12, Therefore, steam-water separator tank 13
The inner water level H L gradually increases, and reaches an upper limit at time t 9 as shown in FIG. And Thus, the gas-water separator tank 1 at time t 9
When the water level H L in 3 reaches the upper limit, the boiler recirculation pump 1
6 is started and a constant recirculation pump flow rate W BRP is maintained as shown in FIG. At this time, the water level control valve 18 is also opened, and a part of the water in the steam separation tank 13 is drained to the condenser.

【0021】更に又、ボイラ再起動の際、後伝部3に
は、高温流体が封入されており、図18に示すように時
間の経過と共に時間t0は徐々に下降するが、その下降
量は小さい。
Furthermore, when the boiler is restarted, the high temperature fluid is filled in the rear transmission part 3, and as shown in FIG. 18, the time t 0 gradually decreases as time elapses. Is small.

【0022】なお、図13〜図17中の時間t0〜t
9は、時間t0を基準として添数字が大きい値となるほ
ど、先の現象の時間を表わしている。
It should be noted that the times t 0 to t in FIGS.
9 indicates the time of the above phenomenon as the subscript has a larger value with respect to the time t 0 .

【0023】[0023]

【発明が解決しようとする課題】従来のホットバンキン
グされたボイラ設備の起動方法にあっては、下記のごと
き問題がある。
The conventional hot banking boiler equipment start-up method has the following problems.

【0024】i)起動時には、炉壁管1a上部には、高
温流体H1、低温流体C1、高温流体H2、低温流体C2
順次通るため、炉壁管1aは加熱と冷却を繰返し受け、
従って炉壁管1aと後伝部3との接続部に大きな熱応力
が繰返し発生する。
I) At startup, the high temperature fluid H 1 , the low temperature fluid C 1 , the high temperature fluid H 2 , and the low temperature fluid C 2 sequentially pass through the upper portion of the furnace wall tube 1a, so the furnace wall tube 1a is repeatedly heated and cooled. received,
Therefore, a large thermal stress is repeatedly generated at the connecting portion between the furnace wall tube 1a and the rear transmission portion 3.

【0025】ii)炉壁管1a及び気水分離器12並に
気水分離タンク13には、高圧の高温流体H1、低圧の
低温流体C1、高圧の高温流体H2、低圧の低温流体C2
の順で流体が送り込まれるため、気水分離タンク13内
の圧力変動が繰返され、従って水位HLが大きく繰返し
変動し、ボイラ再循環ポンプ16を安定的に運転できる
ようになるまでに時間を要し、又この間にボイラ圧力の
低下も大きく、起動時間のロスともなる。
Ii) In the furnace wall tube 1a, the steam separator 12 and the steam separation tank 13, a high-pressure high-temperature fluid H 1 , a low-pressure low-temperature fluid C 1 , a high-pressure high-temperature fluid H 2 and a low-pressure low-temperature fluid are provided. C 2
Since the fluid is sent in this order, the pressure fluctuation in the steam separation tank 13 is repeated, and therefore the water level HL changes greatly repeatedly, and it takes time until the boiler recirculation pump 16 can be stably operated. In addition, the boiler pressure drops significantly during this period, resulting in a loss of startup time.

【0026】本発明は、上述の実情に鑑み、炉壁管と後
伝部の接続部に繰返し大きな温度差が発生せず、起動準
備時の主蒸気圧力降下を抑制し、且つ気水分離タンクの
水位も繰返し大きく変動しないようにしたホットバンキ
ングされたボイラ設備の起動方法を提供することを目的
としてなしたものである。
In view of the above-mentioned situation, the present invention prevents a large temperature difference from being repeatedly generated in the connecting portion between the furnace wall tube and the rear transmission part, suppresses the main steam pressure drop at the time of preparation for starting, and separates the steam / water separation tank. The purpose of the present invention is to provide a method for starting hot-boiled boiler equipment so that the water level in the system does not fluctuate repeatedly.

【0027】[0027]

【課題を解決するための手段】本発明は、給水ポンプ
と、該給水ポンプにより給水された水を排ガスにより加
熱する節炭器と、該節炭器で加熱された水を燃焼ガスに
より加熱して蒸気を生成させるよう後伝部と接続された
火炉壁と、該火炉壁で生成された蒸気から水分を除去す
る気水分離手段と、該気水分離手段で分離された水を前
記節炭器へ循環させるボイラ再循環ポンプとを備えたボ
イラ設備をホットバンキング後に再起動する際に、前記
火炉壁下部に滞留している低温流体を抜出した後、前記
給水ポンプを起動させるものである。
The present invention is directed to a water supply pump, a economizer that heats water supplied by the water supply pump with exhaust gas, and water that is heated by the economizer using combustion gas. Furnace wall connected to the rear transmission part so as to generate steam, steam-water separating means for removing moisture from the steam generated in the furnace wall, and water separated by the steam-water separating means for saving the steam. When the boiler equipment provided with the boiler recirculation pump for circulating to the furnace is restarted after hot banking, the low temperature fluid remaining in the lower part of the furnace wall is extracted, and then the water supply pump is started.

【0028】[0028]

【作用】火炉壁下部に滞留している低温流体を系外へ抜
出した後給水ポンプで給水開始すると同時に、節炭器上
部に滞留していた高温流体を蒸気抜き弁を開け、一定時
間蒸気抜きを行い、その後蒸気抜き弁を閉める。しかる
後、火炉壁上部に滞留していた高温流体が気水分離手段
へ送出され、火炉壁内の高温流体が全量気水分離手段へ
送出された後、水が火炉壁から気水分離手段へ送出され
るが、火炉壁下部に滞留していた低温流体がなくなった
ため、火炉壁の温度の低下は少なく、従って、火炉壁と
後伝部の接続部の温度差が小さくなり、且つこの接続部
には繰返し変動する熱応力が作用することはない。
[Operation] After the low temperature fluid remaining in the lower part of the furnace wall is discharged to the outside of the system, water supply is started by the water supply pump, and at the same time, the high temperature fluid remaining in the upper part of the economizer is opened for a certain time by opening the steam vent valve. And then close the steam vent valve. Then, the high temperature fluid staying in the upper part of the furnace wall is sent to the steam-water separating means, and all the high temperature fluid in the furnace wall is sent to the steam-water separating means, and then the water is transferred from the furnace wall to the steam-water separating means. However, the low temperature fluid staying in the lower part of the furnace wall disappeared, the temperature of the furnace wall did not decrease much, and therefore the temperature difference between the connection part of the furnace wall and the rear transmission part became small, and this connection part Is not subject to repetitively changing thermal stress.

【0029】又、火炉壁下部に滞留していた低温流体及
び節炭器上部に滞留していた高温流体を系外に放出する
ことにより、給水開始後の気水分離器の流体温度の大き
な変動がなく、器内圧力も比較的安定する。従って、気
水分離手段内の水位が気水分離手段内の圧力の変動によ
り繰返し変動することはなく、従って気水分離手段から
ボイラ再循環ポンプにより節炭器へ循環される水量が繰
返し変動することはなく、安定した水の供給が行われ
る。
Further, by releasing the low temperature fluid staying in the lower part of the furnace wall and the high temperature fluid staying in the upper part of the economizer to the outside of the system, the fluid temperature of the steam separator after the start of the water supply greatly fluctuates. The internal pressure is relatively stable. Therefore, the water level in the steam separation means does not repeatedly change due to the fluctuation of the pressure in the steam separation means, and therefore the amount of water circulated from the steam separation means to the economizer by the boiler recirculation pump repeatedly changes. In no case, a stable water supply is provided.

【0030】[0030]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0031】図1〜図7は本発明の一実施例を示す。1 to 7 show an embodiment of the present invention.

【0032】本実施例においては、従来より節炭器6と
炉壁管1aを接続する連絡管10の炉壁管1a入口部近
傍位置にブロー管21を接続し、該ブロー管21の中途
部にブロー弁22を接続しており、又節炭器6出口に蒸
気抜き弁23を設置している。なお、図1〜図4中、図
9〜図12に示すものと同一のものには同一の符号が付
してある。
In the present embodiment, the blow pipe 21 is connected to a position near the inlet of the furnace wall pipe 1a of the connecting pipe 10 which connects the coal economizer 6 and the furnace wall pipe 1a, and a middle portion of the blow pipe 21 is conventionally used. A blow valve 22 is connected to the steam-removing valve 23 and a steam vent valve 23 is installed at the outlet of the economizer 6. In FIGS. 1 to 4, the same components as those shown in FIGS. 9 to 12 are designated by the same reference numerals.

【0033】本実施例においても、ホットバンキング時
には、図1に示すごとく、各弁17,18,22,23
は閉止し、給水ポンプ8、ボイラ再循環ポンプ16は停
止し、炉壁管1a上部から気水分離器12、気水分離タ
ンク13及び気水分離器12の前方には高圧の高温流体
1が滞留し、又節炭器6上部には高温流体H1と同等の
高温流体H2が夫々滞留し、炉壁管1aの下部には低温
の低温流体C1が、又節炭器6下部には低温流体C1と略
同じ圧力の低温流体が滞留している。
Also in the present embodiment, at the time of hot banking, as shown in FIG.
Is closed, the feed water pump 8 and the boiler recirculation pump 16 are stopped, and a high-temperature high-temperature fluid H 1 is supplied from the upper part of the furnace wall pipe 1a to the steam-water separator 12, the steam-water separation tank 13, and the steam-water separator 12. Stay in the upper part of the economizer 6, and the high temperature fluid H 2 equivalent to the high temperature fluid H 1 respectively accumulates in the upper part of the economizer 6, and the low temperature low temperature fluid C 1 in the lower part of the furnace wall tube 1a and the lower part of the economizer 6 A low temperature fluid having substantially the same pressure as that of the low temperature fluid C 1 is retained in the space.

【0034】而して、図1のホットバンキングの状態か
らボイラの再起動を行う場合には、ボイラの起動指令を
受けてブロー弁22が開き、炉壁管1a下部に滞留して
いる低温流体(水)C1は連絡管10、ブロー管21を
経て図示してないブロータンク内へ排出される。又高温
流体H1は炉壁管1a上部に滞留した状態を継続する
(図2参照)。ブロー弁22を開いておく時間は、低温
流体C1の量や高温流体H1の圧力等により異なるが予
め、試運転等により理論的、経験的に決定しておく。
When the boiler is restarted from the hot banking state shown in FIG. 1, the blow valve 22 is opened in response to the boiler start command, and the low temperature fluid remaining in the lower part of the furnace wall tube 1a is opened. (Water) C 1 is discharged into a blow tank (not shown) through the connecting pipe 10 and the blow pipe 21. The high temperature fluid H 1 continues to stay in the upper part of the furnace wall tube 1a (see FIG. 2). The time for which the blow valve 22 is kept open varies depending on the amount of the low temperature fluid C 1 , the pressure of the high temperature fluid H 1 , and the like, but it is determined theoretically and empirically in advance by trial operation or the like.

【0035】炉壁管1a下部の低温流体C1がブロー管
21から排出されると、ブロー弁22が閉止すると共に
給水ポンプ8の駆動が開始され、水が節炭器6へ導入さ
れ、給水開始と同時に節炭器6出口の蒸気抜き弁23が
一定時間開かれる。このため節炭器6内の高温流体H2
は節炭器6下部の低温流体C2により節炭器6から蒸気
抜き弁23を介して系外へ放出される。炉壁管1aの下
部は低温流体C1が排出されているため、給水ポンプ8
を起動してしばらくの間は炉壁管1a上部の高温流体H
1は高温流体H2より押出されることはなく、炉壁管1a
上部に滞留した状態を継続する(図3参照)。
When the low temperature fluid C 1 in the lower part of the furnace wall tube 1a is discharged from the blow tube 21, the blow valve 22 is closed and the driving of the water supply pump 8 is started to introduce water into the economizer 6 to supply water. Simultaneously with the start, the steam vent valve 23 at the outlet of the economizer 6 is opened for a certain time. Therefore, the high temperature fluid H 2 in the economizer 6 is
Is discharged to the outside of the system from the economizer 6 through the vapor vent valve 23 by the low temperature fluid C 2 under the economizer 6. Since the low temperature fluid C 1 is discharged from the lower portion of the furnace wall tube 1a, the water supply pump 8
For a while after starting up the high temperature fluid H above the furnace wall tube 1a
1 is not extruded from the high temperature fluid H 2 , and the furnace wall tube 1a
The state of staying in the upper part is continued (see FIG. 3).

【0036】更に給水ポンプ8による給水が継続される
と、節炭器6内の低温流体C2や給水ポンプ8からの水
(低温流体)も、炉壁管1aの下部から炉壁管1a内へ
入り始め、炉壁管1a内の低温流体C2の水位が増す
と、高温流体H2,H1は低温流体C2により押上げられ
て、気水分離器12、気水分離タンク13へ入る。この
場合、高温流体H1,H2の何れもが炉壁管1a上部から
押出されるまでは、炉壁管1aと後伝部3の接続部には
大きな温度差は生じない。
When the water supply by the water supply pump 8 is further continued, the low temperature fluid C 2 in the economizer 6 and the water (low temperature fluid) from the water supply pump 8 are also introduced from the lower part of the furnace wall tube 1a into the furnace wall tube 1a. When the water level of the low temperature fluid C 2 in the furnace wall tube 1a increases, the high temperature fluids H 2 and H 1 are pushed up by the low temperature fluid C 2 to the steam separator 12 and the steam separation tank 13. enter. In this case, until the high temperature fluids H 1 and H 2 are extruded from the upper part of the furnace wall tube 1a, a large temperature difference does not occur at the connection part between the furnace wall tube 1a and the rear transmission part 3.

【0037】又、炉壁管1a上部から高温流体H1,H2
が全量排出されると、炉壁管1a内は低温流体C2で満
たされ、更に給水ポンプ8からの給水を継続することに
より、低温流体C2は炉壁管1aから炉壁管出口部Aを
通って連絡管11へ排出され、気水分離器12を経て気
水分離タンク13へ導入され、気水分離タンク13の水
位が上昇する。
From the upper part of the furnace wall tube 1a, high temperature fluids H 1 and H 2 are introduced.
When There is exhausted the total amount, in Rokabekan 1a is filled with cryogen C 2, further by continuing the water supply from the water supply pump 8, a low temperature fluid C 2 is Rokabekan 1a from the furnace wall tube outlet portion A It is discharged to the connecting pipe 11 through the water, is introduced into the steam separation tank 13 through the steam separator 12, and the water level of the steam separation tank 13 rises.

【0038】而して、気水分離タンク13内の水位が上
限に達すると水位制御弁18が開いて水の一部は復水器
へ排出されると共にボイラ再循環ポンプ16が起動さ
れ、気水分離タンク13内の水は、再循環水供給管15
を経て給水管9へ送られ、給水ポンプ8からの水と一緒
に再び節炭器6へ供給される。この際気水分離タンク1
3内へは、炉壁管1aから連続的に低温流体C2が供給
されるが、水位制御弁18が開いているため気水分離タ
ンク13の水位は徐々に低下し、所定水位まで低下する
と水位制御弁18は閉止する。又ボイラ再循環ポンプ1
6が起動されたら、図8に示す燃料バーナ2が点火し、
燃焼が開始される。
When the water level in the steam / water separation tank 13 reaches the upper limit, the water level control valve 18 is opened, a part of the water is discharged to the condenser, and the boiler recirculation pump 16 is started to activate the gas. The water in the water separation tank 13 is recirculated water supply pipe 15
After being sent to the water supply pipe 9, it is supplied to the economizer 6 together with the water from the water supply pump 8. At this time, air-water separation tank 1
The low temperature fluid C 2 is continuously supplied to the inside of the interior 3 from the furnace wall pipe 1a, but since the water level control valve 18 is opened, the water level of the steam separation tank 13 gradually decreases to a predetermined water level. The water level control valve 18 is closed. Boiler recirculation pump 1
When 6 is started, the fuel burner 2 shown in FIG. 8 ignites,
Combustion is started.

【0039】上述のボイラ再起動の際の状況を、図5、
図6、図7及び図13、図14、図18により説明する
と、ボイラのホットバンキング中に給水ポンプ8が図1
3に示すように、時間t0で起動された後は、一定の給
水ポンプ流量WBFPが保持され、給水が行われる。
FIG. 5 shows the situation when the boiler is restarted as described above.
6, FIG. 7, FIG. 13, FIG. 14, and FIG. 18, the water supply pump 8 is operated during hot banking of the boiler.
As shown in FIG. 3, after starting at time t 0 , the constant water supply pump flow rate W BFP is maintained and water supply is performed.

【0040】又、図2に示すごとく、炉壁管1a上部に
高温流体H1が滞留している状態で図3に示すごとく、
節炭器6内の高温流体H2が、炉壁管1a下部に流入
し、更に節炭器6からの低温流体C2により高温流体
1,H2が炉壁管1aから押出されるまでは、図5に示
すように、炉壁管出口部Aの温度Tは緩慢な速度で低下
し、低温流体C2が炉壁管出口部Aに到達する時間t11
以後も炉壁管出口部Aの温度は比較的急激に低下するこ
となく、ゆっくり低下する。従って、炉壁管出口部Aの
温度Tは高温状態と低温状態を繰返すことがなく又温度
変化率が小さく、炉壁管1a端部と後伝部3端部の接続
部には変動する熱応力が繰返し作用しないため、接続部
には静的な熱応力のみ作用することとなり、当該接続部
に損傷が生じにくい。
Further, as shown in FIG. 2, in the state where the high temperature fluid H 1 stays in the upper part of the furnace wall tube 1a, as shown in FIG.
The high temperature fluid H 2 in the economizer 6 flows into the lower part of the furnace wall tube 1a, and the high temperature fluids H 1 and H 2 are further extruded from the furnace wall tube 1a by the low temperature fluid C 2 from the economizer 6. As shown in FIG. 5, the temperature T of the furnace wall tube outlet portion A decreases at a slow speed, and the time t 11 at which the low temperature fluid C 2 reaches the furnace wall tube outlet portion A is t 11.
After that, the temperature at the outlet A of the furnace wall tube gradually decreases without decreasing relatively rapidly. Therefore, the temperature T at the outlet A of the furnace wall tube does not repeat high temperature and low temperature conditions and the rate of temperature change is small, and the fluctuating heat at the connection between the end of the furnace wall tube 1a and the end of the rear transmission section 3 is changed. Since the stress does not act repeatedly, only static thermal stress acts on the connection portion, and the connection portion is unlikely to be damaged.

【0041】炉壁管1a内の高温流体H1,H2が全量炉
壁管1a外へ排出されると、引続いて低温流体C2が炉
壁管1aから排出され、低温流体C2は気水分離器12
を経て気水分離タンク13へ流入する。このため、図6
に示すように、気水分離器12内の圧力Pはゆっくり低
下し、又図7に示すように、気水分離タンク13の水位
Lも時間t15以後上昇し、ボイラ再循環ポンプ16が
起動される時間t16以後(図14のt9以後)は低下
し、予め設定された一定の水位に保持される。
When all of the high temperature fluids H 1 and H 2 in the furnace wall tube 1a are discharged to the outside of the furnace wall tube 1a, the low temperature fluid C 2 is subsequently discharged from the furnace wall tube 1a and the low temperature fluid C 2 becomes Steam separator 12
And flows into the steam separation tank 13. Therefore, in FIG.
As shown in FIG. 7, the pressure P in the steam-water separator 12 slowly decreases, and as shown in FIG. 7, the water level HL of the steam-water separation tank 13 also rises after time t 15 , and the boiler recirculation pump 16 turns on. After the time t 16 when starting (after t 9 in FIG. 14), it is lowered and is maintained at a preset constant water level.

【0042】気水分離器12内の圧力Pは、比較的ゆっ
くり降下するため、気水分離タンク13内の水位は、圧
力変動によって繰返し大きく変動することはなく、ボイ
ラ再循環ポンプ16から吐出されて再循環水供給管15
から給水管9を経て炉壁管1aへ送給される水の流量は
安定する。
Since the pressure P in the steam / water separator 12 drops relatively slowly, the water level in the steam / water separation tank 13 does not repeatedly fluctuate largely due to pressure fluctuations, but is discharged from the boiler recirculation pump 16. Recirculation water supply pipe 15
The flow rate of the water supplied from the water supply pipe 9 to the furnace wall pipe 1a is stable.

【0043】各時間はt11,t13,t15,t14,t12
16の順に、図13の時間t0を基準として先の現象の
生じる時間を表わしている。
Each time is t 11 , t 13 , t 15 , t 14 , t 12 ,
The order of t 16 represents the time when the above phenomenon occurs with reference to the time t 0 of FIG. 13.

【0044】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
変更を加え得ることは勿論である。
The present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0045】[0045]

【発明の効果】本発明のホットバンキングされたボイラ
設備の起動方法によれば、炉壁と後伝部の接続部に変動
する熱応力が繰返し作用することがないため当該接続部
が損傷しにくく、又気水分離タンク内の圧力は繰返して
変動することがないため、気水分離タンク内の水位も圧
力変動により繰返し変動することがなく、従って、ボイ
ラ再循環ポンプにより再循環水供給管から給水管を経て
炉壁管へ送給される水の流量が安定し、又、低温流体放
出により、器内圧力、主蒸気圧力低下を抑制できる等種
々の優れた効果を奏し得る。
According to the method for starting a hot-banked boiler facility according to the present invention, the thermal stress that fluctuates does not repeatedly act on the connection portion between the furnace wall and the rear transmission portion, so that the connection portion is less likely to be damaged. Also, since the pressure in the steam separation tank does not fluctuate repeatedly, the water level in the steam separation tank also does not fluctuate repeatedly due to pressure fluctuations. The flow rate of water supplied to the furnace wall pipe through the water supply pipe is stabilized, and the low-temperature fluid discharge can suppress various internal effects such as reduction in internal pressure and main steam pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する場合に用いる機器の配
置概要を示すと共に高温流体が炉壁管上部及び節炭器上
部にあり、低温流体が炉壁管下部及び節炭器下部にある
状態を示す模式図である。
FIG. 1 shows an outline of the arrangement of equipment used for carrying out the method of the present invention, and a high temperature fluid is at the upper part of the furnace wall tube and an upper part of the economizer, and a low temperature fluid is at the lower part of the furnace wall tube and the lower part of the economizer. It is a schematic diagram which shows a state.

【図2】本発明の方法を実施する場合に用いる機器の配
置概要を示すと共に高温流体が炉壁管上部及び節炭器上
部にあり、低温流体が節炭器下部にあり炉壁管下部に滞
留していた低温流体は系外へブローされた状態を示す模
式図である。
FIG. 2 shows an outline of the arrangement of equipment used for carrying out the method of the present invention, in which the high temperature fluid is at the upper part of the furnace wall tube and the upper part of the economizer, and the low temperature fluid is at the lower part of the economizer and the lower part of the furnace wall tube FIG. 6 is a schematic diagram showing a state in which the low temperature fluid that has stagnated is blown out of the system.

【図3】本発明の方法を実施する場合に用いる機器の配
置概要を示すと共に高温流体が炉壁管上部及び下部にあ
り、低温流体が節炭器全体にある状態を示す模式図であ
る。
FIG. 3 is a schematic diagram showing an outline of the arrangement of equipment used for carrying out the method of the present invention, and showing a state in which the high temperature fluid is in the upper and lower portions of the furnace wall tube and the low temperature fluid is in the entire economizer.

【図4】本発明の方法を実施する場合に用いる機器の配
置概要を示すと共に炉壁管及び節炭器の何れにも低温流
体がある状態を示す模式図である。
FIG. 4 is a schematic diagram showing an outline of the arrangement of equipment used for carrying out the method of the present invention and showing a state in which a low temperature fluid is present in both the furnace wall tube and the economizer.

【図5】本発明の方法を実施する際の炉壁管出口部の温
度と時間との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between temperature at the furnace wall tube outlet and time when the method of the present invention is carried out.

【図6】本発明の方法を実施する際の気水分離器内の圧
力と時間との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the pressure in the steam separator and time when carrying out the method of the present invention.

【図7】本発明の方法を実施する際の気水分離タンクの
水位と時間との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the water level of a steam separation tank and time when the method of the present invention is carried out.

【図8】本発明の方法や従来の方法が適用されるボイラ
の概要を示す側面図である。
FIG. 8 is a side view showing an outline of a boiler to which the method of the present invention or the conventional method is applied.

【図9】従来の方法を実施する場合に用いる機器の配置
概要を示すと共に高温流体が炉壁管上部及び節炭器上部
にあり、低温流体が炉壁管下部及び節炭器下部にある状
態を示す模式図である。
FIG. 9 shows an outline of the arrangement of equipment used when performing a conventional method, and shows a state in which a high temperature fluid is at the upper part of the furnace wall tube and the upper part of the economizer and a low temperature fluid is at the lower part of the furnace wall tube and the lower part of the economizer. It is a schematic diagram which shows.

【図10】従来の方法を実施する場合に用いる機器の配
置概要を示すと共に高温流体が炉壁管下部にあり、低温
流体が炉壁管上部及び節炭器上部にある状態を示す模式
図である。
FIG. 10 is a schematic diagram showing an outline of the arrangement of equipment used when performing a conventional method, and showing a state in which a high temperature fluid is at the lower part of the furnace wall tube and a low temperature fluid is at the upper part of the furnace wall tube and the upper part of the economizer. is there.

【図11】従来の方法を実施する場合に用いる機器の配
置概要を示すと共に高温流体が炉壁管上部にあり、低温
流体が炉壁管下部及び節炭器全体にある状態を示す模式
図である。
FIG. 11 is a schematic diagram showing an outline of the arrangement of equipment used when performing a conventional method, and showing a state in which a high temperature fluid is in the upper part of the furnace wall tube and a low temperature fluid is in the lower part of the furnace wall tube and the entire economizer. is there.

【図12】従来の方法を実施する場合に用いる機器の配
置概要を示すと共に低温流体が炉壁管全体及び節炭器全
体にある状態を示す模式図である。
FIG. 12 is a schematic diagram showing an outline of arrangement of equipment used when performing a conventional method and showing a state in which a low temperature fluid is present in the entire furnace wall tube and the entire economizer.

【図13】従来の方法や本発明の方法を実施する際の給
水ポンプ流量と時間との関係を示すグラフである。
FIG. 13 is a graph showing the relationship between the feed water pump flow rate and time when the conventional method or the method of the present invention is performed.

【図14】従来の方法や本発明の方法を実施する際の再
循環ポンプ流量と時間との関係を示すグラフである。
FIG. 14 is a graph showing the relationship between recirculation pump flow rate and time when the conventional method or the method of the present invention is performed.

【図15】従来の方法を実施する際の炉壁管出口部の温
度と時間との関係を示すグラフである。
FIG. 15 is a graph showing the relationship between the temperature at the furnace wall tube outlet and time when the conventional method is carried out.

【図16】従来の方法を実施する際の気水分離器内の圧
力と時間との関係を示すグラフである。
FIG. 16 is a graph showing the relationship between the pressure in the steam separator and time when the conventional method is carried out.

【図17】従来の方法を実施する際の気水分離タンクの
水位と時間との関係を示すグラフである。
FIG. 17 is a graph showing the relationship between the water level of a steam separation tank and time when the conventional method is carried out.

【図18】従来の方法を実施する際の後伝部温度と時間
との関係を示すグラフである。
FIG. 18 is a graph showing the relationship between the temperature of the rear transmission part and the time when the conventional method is performed.

【符号の説明】[Explanation of symbols]

1 火炉壁 3 後伝部 6 節炭器 8 給水ポンプ 12 気水分離器(気水分離手段) 13 気水分離タンク(気水分離手段) 16 ボイラ再循環ポンプ H1,H2 高温流体(蒸気) C1,C2 低温流体(水)1 Furnace wall 3 Post-transmission section 6 Coal saver 8 Water supply pump 12 Steam separator (steam separation means) 13 Steam separation tank (steam separation means) 16 Boiler recirculation pump H 1 , H 2 high temperature fluid (steam) ) C 1 , C 2 low temperature fluid (water)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 給水ポンプと、該給水ポンプにより給水
された水を排ガスにより加熱する節炭器と、該節炭器で
加熱された水を燃焼ガスにより加熱して蒸気を生成させ
るよう後伝部と接続された火炉壁と、該火炉壁で生成さ
れた蒸気から水分を除去する気水分離手段と、該気水分
離手段で分離された水を前記節炭器へ循環させるボイラ
再循環ポンプとを備えたボイラ設備をホットバンキング
後に再起動する際に、前記火炉壁下部に滞留している低
温流体を抜出した後、前記給水ポンプを起動させること
を特徴とするホットバンキングされたボイラ設備の起動
方法。
1. A water supply pump, a economizer that heats the water supplied by the water pump with exhaust gas, and a post-conduction system that heats the water heated by the economizer with combustion gas to generate steam. Part connected to the furnace wall, steam-water separating means for removing water from steam generated in the furnace wall, and a boiler recirculation pump for circulating the water separated by the steam-water separating means to the economizer. When restarting the boiler equipment provided with and after hot banking, after extracting the low-temperature fluid remaining in the lower part of the furnace wall, the hot water supply pump is activated, starting method.
JP19737793A 1993-08-09 1993-08-09 Starting method for hot-banked boiler Pending JPH0755104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19737793A JPH0755104A (en) 1993-08-09 1993-08-09 Starting method for hot-banked boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19737793A JPH0755104A (en) 1993-08-09 1993-08-09 Starting method for hot-banked boiler

Publications (1)

Publication Number Publication Date
JPH0755104A true JPH0755104A (en) 1995-03-03

Family

ID=16373500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19737793A Pending JPH0755104A (en) 1993-08-09 1993-08-09 Starting method for hot-banked boiler

Country Status (1)

Country Link
JP (1) JPH0755104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157004A (en) * 2015-08-19 2015-12-16 广东电网有限责任公司电力科学研究院 Boiler starting method for preventing oxide skin generation of 1,000 MW octagonal tangent circle boiler and secondary combustion accident of tail flue
CN106322346A (en) * 2015-06-30 2017-01-11 新特能源股份有限公司 Method of sliding parameter furnace shutdown for once-through boiler
JP2021004678A (en) * 2019-06-25 2021-01-14 株式会社豊田中央研究所 Heat transport system, adsorption type heat pump and heat transport method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322346A (en) * 2015-06-30 2017-01-11 新特能源股份有限公司 Method of sliding parameter furnace shutdown for once-through boiler
CN106322346B (en) * 2015-06-30 2019-01-01 新特能源股份有限公司 A kind of method of direct current cooker sliding parameter blowing out
CN105157004A (en) * 2015-08-19 2015-12-16 广东电网有限责任公司电力科学研究院 Boiler starting method for preventing oxide skin generation of 1,000 MW octagonal tangent circle boiler and secondary combustion accident of tail flue
CN105157004B (en) * 2015-08-19 2017-04-12 广东电网有限责任公司电力科学研究院 Boiler starting method for preventing oxide skin generation of 1,000 MW octagonal tangent circle boiler and secondary combustion accident of tail flue
JP2021004678A (en) * 2019-06-25 2021-01-14 株式会社豊田中央研究所 Heat transport system, adsorption type heat pump and heat transport method

Similar Documents

Publication Publication Date Title
US4674285A (en) Start-up control system and vessel for LMFBR
US6237542B1 (en) Heat recovery boiler and hot banking releasing method thereof
US5840130A (en) Cleaning of the water/steam circuit in a once-through forced-flow steam generator
CN207179624U (en) A kind of Start-up Systems for Direct-through Boilers
KR100613397B1 (en) Water Supplying Device of Closed Circuit Circular Steam Boiler
US5048466A (en) Supercritical pressure boiler with separator and recirculating pump for cycling service
JPH0755104A (en) Starting method for hot-banked boiler
JP6549342B1 (en) POWER PLANT AND ITS OPERATION METHOD
JPS63500259A (en) Method of starting steam power generators and dual fluid chamber cycle engines
JP5041941B2 (en) Once-through exhaust heat recovery boiler
JPS5966601A (en) Forced once-through steam generator and its operation start-ing method
EP1009951B1 (en) Method for operating a boiler with forced circulation and boiler for its implementation
JPH10317916A (en) Thermal power plant
US20240133319A1 (en) System for readying sub-critical and super-critical steam generator, servicing method of said sub-critical and super-critical steam generator and method of operation of sub-critical and super-critical steam generator
JPH0384301A (en) Naturally circulating waste heat recovery boiler
JP2001033004A (en) Method of draining for waste heat recovery boiler
WO2023166340A1 (en) System for readying sub-critical and super-critical steam generator, servicing method of said sub-critical and super-critical steam generator and method of operation of sub-critical and super-critical steam generator
JP2002005401A (en) Waste heat recovery system for refuse disposal plant
JP2000046301A (en) Waste heat recovery boiler
JPH05322105A (en) Device for heating feedwater for boiler
JPH06126270A (en) Feed water deaerator
JPH0587303A (en) Starting of variable pressure operation boiler
JPH07233907A (en) Method and apparatus for controlling water level of steam boiler
JP3117392B2 (en) Start-up method of an exhaust gas re-combustion complex plant
JPH01230905A (en) Hot starting method of boiler