JPH075430B2 - Single crystal pulling control method - Google Patents

Single crystal pulling control method

Info

Publication number
JPH075430B2
JPH075430B2 JP61012349A JP1234986A JPH075430B2 JP H075430 B2 JPH075430 B2 JP H075430B2 JP 61012349 A JP61012349 A JP 61012349A JP 1234986 A JP1234986 A JP 1234986A JP H075430 B2 JPH075430 B2 JP H075430B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
liquid surface
radius
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61012349A
Other languages
Japanese (ja)
Other versions
JPS62171985A (en
Inventor
正夫 斉藤
正義 増田
博 金剛寺
正一 阿部川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP61012349A priority Critical patent/JPH075430B2/en
Publication of JPS62171985A publication Critical patent/JPS62171985A/en
Publication of JPH075430B2 publication Critical patent/JPH075430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明はシリコン単結晶等を製造する際に用いられる
単結晶引上げ制御方法に関する。
TECHNICAL FIELD The present invention relates to a single crystal pulling control method used when manufacturing a silicon single crystal or the like.

「従来の技術」 シリコン単結晶の製造方法として、引上げ法が知られて
いる。この方法は、まず、第3図に示す石英坩堝1内に
原料を入れ、加熱して溶融させる。次に、融液2に種結
晶を付け、この種結晶を回転させながら引き上げる。こ
の引上げの際、単結晶3が成長する。
"Prior Art" A pulling method is known as a method for producing a silicon single crystal. In this method, first, a raw material is put into the quartz crucible 1 shown in FIG. 3 and heated to melt it. Next, a seed crystal is attached to the melt 2 and the seed crystal is pulled up while rotating. During this pulling, the single crystal 3 grows.

ところで、シリコン単結晶の製造においては、製造され
た単結晶3の外径が正確に規定寸法とならなければなら
ない。この単結晶3の外径は、引上げ速度Vsによって決
まり、速度Vsを小とすれば外径が大となり、速度Vsを大
とすれば外径が小となる。そこで、引上げ法によるシリ
コン単結晶の製造においては、融液2の液面2aが常に一
定レベルとなるように、坩堝1をある速度Vcで上昇さ
せ、そして、液面2aと単結晶3との境界にできるヒート
リング3aをセンサ(放射温度計)4によって検出し、こ
の検出結果に応じて引上げ速度Vsを制御するようになっ
ている。液面2aのレベルと、単結晶3の半径r1との関係
を第4図に示す。第4図(イ)は単結晶3の半径r1を一
定に保てる液面2aのレベルの状態を示す。第4図(ロ)
は、液面2aのレベルが上昇すると、センサ4が固定され
ているため、検出点が単結晶3の半径r1の外側R1とな
り、単結晶3の半径がR1(>r1)として検出されること
を示す。第4図(ハ)は、液面2aのレベルが下降する
と、センサ4の検出点が単結晶3の半径r1の内側R2とな
り、単結晶3の半径がR2(<r1)として検出されること
を示す。このように、液面2aのレベルを一定に保たなけ
れば、単結晶の径が安定しない。
By the way, in the production of a silicon single crystal, the outer diameter of the produced single crystal 3 must be exactly the specified dimension. The outer diameter of the single crystal 3 is determined by the pulling speed Vs. The smaller the speed Vs, the larger the outer diameter, and the larger the speed Vs, the smaller the outer diameter. Therefore, in the production of a silicon single crystal by the pulling method, the crucible 1 is raised at a certain speed Vc so that the liquid surface 2a of the melt 2 is always at a constant level, and then the liquid surface 2a and the single crystal 3 are separated. The heat ring 3a formed at the boundary is detected by the sensor (radiation thermometer) 4, and the pulling speed Vs is controlled according to the detection result. The relationship between the level of the liquid surface 2a and the radius r1 of the single crystal 3 is shown in FIG. FIG. 4 (a) shows a state of the level of the liquid surface 2a which can keep the radius r1 of the single crystal 3 constant. Figure 4 (b)
When the level of the liquid level 2a rises, the sensor 4 is fixed, so the detection point is outside the radius r1 of the single crystal 3 R1, and the radius of the single crystal 3 is detected as R1 (> r1). Indicates. In FIG. 4 (c), when the level of the liquid surface 2a is lowered, the detection point of the sensor 4 becomes the inner side R2 of the radius r1 of the single crystal 3, and the radius of the single crystal 3 is detected as R2 (<r1). Indicates. As described above, unless the level of the liquid surface 2a is kept constant, the diameter of the single crystal is not stable.

すなわち、引上げ法によるシリコン単結晶の製造におい
ては、液面2aのレベルが常に一定となるように坩堝1を
上昇させることが必須の要件となる。
That is, in the production of a silicon single crystal by the pulling method, it is an essential requirement to raise the crucible 1 so that the level of the liquid surface 2a is always constant.

次に、坩堝1の上昇速度Vcの求め方を説明する。この速
度Vcは、単結晶3の引上げ速度Vsに基づいて、次式によ
り決定される。
Next, how to obtain the rising speed Vc of the crucible 1 will be described. This speed Vc is determined by the following equation based on the pulling speed Vs of the single crystal 3.

Vc=K・Vs ……(1) ここで、Kは係数であり、この係数Kはつぎのようにし
て求められる。まず、時間T1の間に成長する単結晶3の
高さh1(第3図)は、 h1=Vs・T1 ……(2) であり、一方、この間に減少する融液2の高さh2(第
図)は、 h2=Vc・T1 ……(3) である。いま、単結晶3の半径をr1、坩堝1内部の半径
をr2とし、また、単結晶3の密度をρ1、融液2の密度
をρ2とすれば、時間T1の間に成長した単結晶3の重量
と、この間に減少した融液2の重量が等しいことから、 πr12・VsT・ρ1=πr22・VcT・ρ2 ……(4) なる式が成り立つ。そして、この(4)式から係数K
が、 K=Vc/Vs=r12・ρ1/r22・ρ2 ……(5) として求められる。
Vc = K · Vs (1) Here, K is a coefficient, and this coefficient K is obtained as follows. First, the height h1 (FIG. 3) of the single crystal 3 grown during the time T1 is h1 = Vs · T1 (2), while the height h2 ( (Fig.) Is h2 = Vc · T1 (3). Now, if the radius of the single crystal 3 is r1, the radius inside the crucible 1 is r2, and the density of the single crystal 3 is ρ1 and the density of the melt 2 is ρ2, the single crystal 3 grown during the time T1 Since the weight of the melt is equal to the weight of the melt 2 reduced in the meantime, the formula of πr1 2 · VsT · ρ1 = πr2 2 · VcT · ρ2 (4) holds. Then, from this equation (4), the coefficient K
Is calculated as K = Vc / Vs = r1 2 · ρ1 / r2 2 · ρ2 (5).

ここで、坩堝1においてr2が一定の範囲、すなわち、第
3図に示す範囲D2においては、係数Kの値が一定とな
り、また、その値は(5)式から容易に求められる(以
下、この一定値をKaとする)。そして、求められた一定
値Kaおよび第(1)式から、坩堝1の上昇速度Vcが求め
られる。
Here, in the range where r2 is constant in the crucible 1, that is, in the range D2 shown in FIG. 3, the value of the coefficient K is constant, and the value is easily obtained from the equation (5) (hereinafter, this Ka and a constant value). Then, the rising speed Vc of the crucible 1 is obtained from the obtained constant value Ka and the equation (1).

「発明が解決しようとする問題点」 ところで、融液2が減少し、その液面2aが坩堝1の湾曲
部にかかった場合においては、液面2aの降下速度が速く
なることから、上述した一定係数Kaおよび第(1)式に
によってきまる速度Vcで坩堝1を上昇させると、液面2a
のレベルを一定に保つことができず、結果として、単結
晶3の径が小さくなってしまう。そこで従来は、液面2a
が坩堝1の湾曲部にかかった場合に、一定係数Kaをさら
に補正して第(1)式に適用していた。しかしながら、
従来の係数Kaの補正は、過去の経験に基づく補正であ
り、正確なものとはいえず、このため、完成した単結晶
3の下端部において外径誤差が生じる問題があった。
[Problems to be Solved by the Invention] By the way, when the melt 2 is reduced and the liquid surface 2a is applied to the curved portion of the crucible 1, the descending speed of the liquid surface 2a is increased, and therefore, the above-mentioned problem is solved. When the crucible 1 is raised at a constant coefficient Ka and a speed Vc determined by the equation (1), the liquid level 2a
Cannot be kept constant, and as a result, the diameter of the single crystal 3 becomes small. Therefore, conventionally, the liquid level 2a
When was applied to the curved portion of the crucible 1, the constant coefficient Ka was further corrected and applied to the equation (1). However,
The conventional correction of the coefficient Ka is a correction based on past experience and cannot be said to be accurate. Therefore, there is a problem that an outer diameter error occurs at the lower end portion of the completed single crystal 3.

この発明は上述した事情に鑑みてなされたもので、融液
の液面が坩堝の湾曲部にかかった場合においても、液面
を正確に一定レベルに保つことができ、この結果、完成
した単結晶に外径誤差が生じることがない単結晶引上げ
制御方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and even when the liquid surface of the melt hits the curved portion of the crucible, the liquid surface can be accurately maintained at a constant level. It is an object of the present invention to provide a single crystal pulling control method in which an outer diameter error does not occur in a crystal.

「問題点を解決するための手段」 この発明は、融液の液面が坩堝の湾曲部にかかった場合
に、次の過程によって坩堝の上昇速度を求めることを特
徴としている。
"Means for Solving Problems" The present invention is characterized in that, when the liquid surface of the melt hits the curved portion of the crucible, the ascending speed of the crucible is obtained by the following process.

(a)前記坩堝内の残留融液の量を求める第1の過程。(A) A first step of obtaining the amount of residual melt in the crucible.

(b)上記残留融液の量に基づいて、坩堝底面から液面
までの距離を求める第2の過程。
(B) A second step of obtaining the distance from the crucible bottom surface to the liquid surface based on the amount of the residual melt.

(c)上記第2の過程によって求められた距離から液面
の半径を求める第3の過程。
(C) A third step of obtaining the radius of the liquid surface from the distance obtained by the second step.

(d)上記第3の過程によって求められた半径および前
記種結晶の引上げ速度に基づいて坩堝の上昇速度を算出
する第4の過程。
(D) A fourth step of calculating the ascending rate of the crucible based on the radius obtained in the third step and the pulling rate of the seed crystal.

「作用」 この発明によれば、液面が湾曲部にかかった場合に、時
々刻々変化する液面半径を逐次求め、求められた半径の
値に基づいて、坩堝の上昇速度を算出するので、液面レ
ベルを極めて正確に一定レベルに保つことができる。
[Operation] According to the present invention, when the liquid surface is applied to the curved portion, the liquid surface radius that changes momentarily is sequentially obtained, and the ascending speed of the crucible is calculated based on the value of the obtained radius. The liquid surface level can be maintained extremely accurately at a constant level.

「実施例」 以下、図面を参照してこの発明の一実施例について説明
する。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

まず、第1図に示すように、坩堝1の湾曲部は、曲率半
径R1,曲率中心P1の範囲D1と、曲率半径R2,曲率中心P2
範囲D0とに分けられる。この場合、図に示す長さa,d,e,
fは各々、範囲D2の半径をR0とすれば次式によって求め
られる。
First, as shown in FIG. 1, the curved portion of the crucible 1 is divided into a range D1 of the radius of curvature R 1 and the center of curvature P 1 and a range D0 of the radius of curvature R 2 and the center of curvature P 2 . In this case, the lengths a, d, e,
Each f is calculated by the following equation, where R 0 is the radius of the range D2.

f=R2(R0−R1)/(R2−R1) ……(7) a=d−e ……(9) すなわち、R0〜R2の値から長さa,d,e,fが求められる。 f = R 2 (R 0 −R 1 ) / (R 2 −R 1 ) ... (7) a = d−e (9) That is, the lengths a, d, e, f are obtained from the values of R 0 to R 2 .

次に、坩堝1内の範囲D0の部分の体積V0は、坩堝1の底
部から任意断面までの距離をαとすれば(第1図参
照)、 なる式により求められる。また、範囲D1の部分の体積V1
は、範囲D0,D1の境界面から任意断面までの距離をβと
すれば、 但し:M=R0−R1 なる式により求められる。
Next, the volume V 0 of the portion of the range D 0 in the crucible 1 is α, where the distance from the bottom of the crucible 1 to the arbitrary cross section is α (see FIG. 1), It is calculated by Also, the volume V 1 of the part of the range D1
Is the distance from the boundary surface of the range D0, D1 to the arbitrary cross section, Where: M = R 0 −R 1

すなわち、体積V0,V1もR0〜R2の値から求めることがで
きる。
That is, the volumes V 0 and V 1 can also be obtained from the values of R 0 to R 2 .

次に、液面2aが範囲D0内にある場合における融液2の残
量体積V(α)を第(10)式と同様にして求めれば、 V(α)=πα{R2−(α/3)} ……(12) として求められる。また、液面2aが範囲D1内にある場合
における融液2の残量体積V(β)は、 なる式により求められる。
Next, when the residual volume V (α) of the melt 2 when the liquid surface 2a is within the range D0 is obtained in the same manner as in the equation (10), V (α) = πα 2 {R 2 − ( α / 3)} …… (12). Further, the remaining volume V (β) of the melt 2 when the liquid surface 2a is within the range D1 is It is calculated by

次に、液面2aが範囲D0内にある場合の液面半径R(α)
は、 なる式により求められ、また、液面2aが範囲D1内にある
場合の液面半径Rβは、 なる式により求められる。
Next, the liquid surface radius R (α) when the liquid surface 2a is within the range D0
Is And the liquid surface radius Rβ when the liquid surface 2a is within the range D1 is It is calculated by

他方、引上げ開始から時間Tが経過した時点における融
液2の残量体積Vは、引上げ開始前の融液2の重量をC
H、時間Tが経過した時点における引上げ結晶長をLE
(第1図参照)とすれば、 V=(CH−πr12・LE・ρ1)/ρ2 ……(16) なる式により求められる。すなわち、残量体積Vは、引
上げ結晶長LEに基づいて容易に算出することができる。
On the other hand, the residual volume V of the melt 2 at the time point T after the start of pulling is the weight of the melt 2 before the start of pulling by C
H, the pulling crystal length when time T has passed is LE
(See FIG. 1) V = (CH-πr1 2 · LE · ρ1) / ρ2 (16) That is, the remaining volume V can be easily calculated based on the pulled crystal length LE.

しかして、この発明の実施例による引上げ制御方法は、
上述した各事項を基礎として、次の過程によって行なわ
れる。
Thus, the pulling control method according to the embodiment of the present invention is
It is carried out by the following process based on the above-mentioned matters.

まず、引上げ開始時点以降、一定時間(例えば、1分)
が経過する毎に、第(16)式に基づいて残量体積Vを算
出し、次いで、この算出結果と、第(10),第(11)式
によって算出される体積V0,V1の和V0+V1とを比較す
る。そして、前者が大の場合、すなわち、液面2aが範囲
D2内の場合は、第(1)式の係数Kに前述した一定係数
Kaを代入して速度Vcを算出する。また逆の場合、すなわ
ち、液面2aが坩堝1の湾曲部にかかっていた場合は次の
処理によって上昇速度Vcを算出する。
First, a certain time (for example, 1 minute) after the start of pulling
Every time elapses, the remaining volume V is calculated based on the equation (16), and then the calculation result and the volumes V 0 and V 1 calculated by the equations (10) and (11) are calculated. Compare the sum V 0 + V 1 . When the former is large, that is, the liquid level 2a
In the case of D2, the constant coefficient described above is added to the coefficient K of the equation (1).
The velocity Vc is calculated by substituting Ka. In the opposite case, that is, when the liquid surface 2a is on the curved portion of the crucible 1, the rising speed Vc is calculated by the following process.

すなわち、まず、残量体積Vと体積V0とを比較する。そ
して、V>V0の場合、すなわち液面2aが範囲D1内の場合
は、次に、 β=a/2 ……(17) を第(13)式に代入して体積V(β)を求め(以下、求
められた体積をVβ1とする)、この体積Vβ1と残量
体積Vとを比較する。そして、Vβ1<Vの場合は、次
に、 β=(a/2)+(a/4) ……(18) を第(13)式に代入して体積V(β)を求め(求められ
た体積をVβ2とする)、この体積Vβ2と残量体積V
とを比較する。そして、Vβ2>Vの場合は、次に、 β=(a/2)+(a/4)+(−a/8) ……(19) を第(13)式に代入して体積V(β)を求め、以下この
過程を繰り返す。そして、体積V(β)と残量体積Vと
の差が残量体積Vの1%以下となった場合に、その時の
βの値を、その時点における液面2aのレベルと見なし、
その値βを第(15)式に代入して液面2aの半径R(β)
を求める。次に、求められた半径R(β)を第(5)式
のr2に代入して係数Kを求め、この求めた係数Kを第
(1)式に代入して速度Vcを求める。
That is, first, the remaining volume V and the volume V 0 are compared. Then, when V> V 0 , that is, when the liquid surface 2a is within the range D1, then β = a / 2 (17) is substituted into the equation (13) to calculate the volume V (β). Obtained (hereinafter, the obtained volume is referred to as Vβ1), and this volume Vβ1 is compared with the remaining volume V. If Vβ1 <V, then β = (a / 2) + (a / 4) (18) is substituted into the equation (13) to obtain the volume V (β) ( Volume Vβ2), the volume Vβ2 and the remaining volume V
Compare with. If Vβ2> V, then β = (a / 2) + (a / 4) + (− a / 8) (19) is substituted into the equation (13), and the volume V ( β) is obtained, and this process is repeated thereafter. Then, when the difference between the volume V (β) and the remaining volume V is 1% or less of the remaining volume V, the value of β at that time is regarded as the level of the liquid surface 2a at that time,
Substituting the value β into the formula (15), the radius R (β) of the liquid surface 2a
Ask for. Next, the obtained radius R (β) is substituted into r2 of the equation (5) to obtain the coefficient K, and the obtained coefficient K is substituted into the equation (1) to obtain the velocity Vc.

残量体積Vが、V<V0の場合も同様の処理を行う。すな
わち、まず、第(12)式を繰り返し用いることにより液
面2aのレベルαを求め、次いで、求められたαを第(1
4)式に代入して液面半径R(α)を求め、次いでこの
半径R(α)を第(5)式のr2に代入して係数Kを求
め、この係数Kを第(1)式に代入して速度Vcを求め
る。
Similar processing is performed when the remaining volume V is V <V 0 . That is, first, the level α of the liquid surface 2a is obtained by repeatedly using the equation (12), and then the obtained α is changed to the (1
Substituting into equation (4) to obtain the liquid surface radius R (α), then substituting this radius R (α) into r2 of the equation (5) to obtain the coefficient K, and the coefficient K from the equation (1) To obtain the velocity Vc.

そして、以上の過程によって求められた速度Vcによって
坩堝1を上昇させる。
Then, the crucible 1 is raised at the velocity Vc obtained by the above process.

以上がこの発明による引上げ制御方法の一実施例であ
る。この方法は、通常、コンピュータを用いた引上げ装
置に適用される。
The above is one embodiment of the pulling control method according to the present invention. This method is usually applied to a pulling device using a computer.

なお、理論上は、その時点における残量体積Vを第(1
2)式のV(α)または第(13)式のV(β)に代入
し、これらの式を解けば、αまたはβを求めることがで
きる。しかしながら、特に第(13)式は実際上解くのが
むずかしく、したがって、上記の処理によらざるを得な
い。
Note that theoretically, the remaining volume V at that time is
By substituting V (α) in the equation 2) or V (β) in the equation (13) and solving these equations, α or β can be obtained. However, in particular, the equation (13) is difficult to solve in practice, so that the above processing cannot be avoided.

「発明の効果」 以上説明したように、この発明によれば、坩堝内の融液
の液面が坩堝の湾曲部にかかった場合において、逐次液
面の半径を求め、この求めた半径に基づいて坩堝の上昇
速度を算出し、この上昇速度によって坩堝を上昇させる
ようにしたので、液面レベルを極めて正確に一定レベル
に保つことができ、この結果、完成した単結晶に生じる
外径誤差を極めて小とすることができる。第2図(イ)
は従来の方法によって製造した単結晶の外径誤差を示す
図であり、また、第2図(ロ)は、前述したこの発明の
一実施例による方法によって製造した単結晶の外径誤差
を示す図である。この図に示すように、この発明によれ
ば、従来1.5〜3mmあった誤差を、0.5mm以下とすること
ができる。
[Effect of the Invention] As described above, according to the present invention, when the liquid surface of the melt in the crucible is applied to the curved portion of the crucible, the radius of the liquid surface is sequentially obtained, and based on the obtained radius. Since the rising speed of the crucible was calculated and the rising speed was used to raise the crucible, the liquid surface level could be maintained extremely accurately at a constant level, and as a result, the outer diameter error generated in the completed single crystal could be reduced. It can be extremely small. Figure 2 (a)
Is a diagram showing the outer diameter error of the single crystal produced by the conventional method, and FIG. 2B shows the outer diameter error of the single crystal produced by the method according to the embodiment of the present invention. It is a figure. As shown in this figure, according to the present invention, the error which was 1.5 to 3 mm in the past can be reduced to 0.5 mm or less.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による方法を説明するため
の坩堝断面図、第2図はこの発明の効果を説明するため
の図、第3図は従来の方法を説明するための坩堝断面
図、第4図(イ)〜(ハ)は各々センサ4aによる液面2a
の検出状態を示す図である。 1……坩堝、2……融液、3……単結晶。
FIG. 1 is a cross-sectional view of a crucible for explaining a method according to an embodiment of the present invention, FIG. 2 is a view for explaining the effect of the present invention, and FIG. 3 is a cross-section of a crucible for explaining a conventional method. Figures 4 (a) to 4 (c) show the liquid level 2a by the sensor 4a.
It is a figure which shows the detection state of. 1 ... crucible, 2 ... melt, 3 ... single crystal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金剛寺 博 千葉県野田市西三ヶ尾金打314 日本シリ コン株式会社野田工場内 (72)発明者 阿部川 正一 千葉県野田市西三ヶ尾金打314 日本シリ コン株式会社野田工場内 (56)参考文献 特開 昭60−21893(JP,A) 特公 昭51−5993(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kongoji 314 Nishimigao Kinuchi, Noda City, Chiba Prefecture Inside the Noda Factory of Nippon Silicon Co., Ltd. (72) Shoichi Abegawa Nishimikkao, Noda City, Chiba Prefecture Kinuchi 314 Japan Silicon Co., Ltd. Noda Factory (56) References JP-A-60-21893 (JP, A) JP-B-51-5993 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】坩堝内の原料融液に種結晶を付け、前記融
液の液面レベルを一定に保ちつつ前記種結晶を引き上げ
て単結晶を成長させる際の引上げ制御方法において、前
記融液の液面が前記坩堝の湾曲部にかかった場合に、次
の過程によって前記坩堝の上昇速度を求めることを特徴
とする単結晶引上げ制御方法。 (a)前記坩堝内の残留融液の量を求める第1の過程。 (b)上記残留融液の量に基づいて、坩堝底面から液面
までの距離を求める第2の過程。 (c)上記第2の過程によって求められた距離から液面
の半径を求める第3の過程。 (d)上記第3の過程によって求められた半径および前
記種結晶の引上げ速度に基づいて坩堝の上昇速度を算出
する第4の過程。
1. A pulling control method in which a seed crystal is attached to a raw material melt in a crucible, and the single crystal is grown by pulling up the seed crystal while maintaining a constant liquid level of the melt. A method for controlling pulling of a single crystal, wherein the rising speed of the crucible is obtained by the following process when the liquid surface of (1) is applied to the curved portion of the crucible. (A) A first step of obtaining the amount of residual melt in the crucible. (B) A second step of obtaining the distance from the crucible bottom surface to the liquid surface based on the amount of the residual melt. (C) A third step of obtaining the radius of the liquid surface from the distance obtained by the second step. (D) A fourth step of calculating the ascending rate of the crucible based on the radius obtained in the third step and the pulling rate of the seed crystal.
JP61012349A 1986-01-23 1986-01-23 Single crystal pulling control method Expired - Lifetime JPH075430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012349A JPH075430B2 (en) 1986-01-23 1986-01-23 Single crystal pulling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012349A JPH075430B2 (en) 1986-01-23 1986-01-23 Single crystal pulling control method

Publications (2)

Publication Number Publication Date
JPS62171985A JPS62171985A (en) 1987-07-28
JPH075430B2 true JPH075430B2 (en) 1995-01-25

Family

ID=11802803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012349A Expired - Lifetime JPH075430B2 (en) 1986-01-23 1986-01-23 Single crystal pulling control method

Country Status (1)

Country Link
JP (1) JPH075430B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106906513B (en) * 2017-04-07 2019-03-22 天通吉成机器技术有限公司 The pot of single crystal growing furnace with than adjusting method and pot with than regulating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850983A (en) * 1971-10-29 1973-07-18
DE3248103C1 (en) * 1982-12-24 1987-11-12 W.C. Heraeus Gmbh, 6450 Hanau Crucible for pulling single crystals

Also Published As

Publication number Publication date
JPS62171985A (en) 1987-07-28

Similar Documents

Publication Publication Date Title
EP0388503B1 (en) Method for pulling single crystals
US5223078A (en) Conical portion growth control method and apparatus
JPS6379790A (en) Crystal pulling up device
CA1318224C (en) System for controlling apparatus for growing tubular crystalline bodies
JPH075430B2 (en) Single crystal pulling control method
JPH0785489B2 (en) Single crystal diameter measurement method
JP2009057270A (en) Method of raising silicon single crystal
JP3598642B2 (en) Method for producing silicon single crystal by continuous charge method
US20030051658A1 (en) Method and apparatus for controlling the oxygen concentration of a silicon single crystal, and method and apparatus for providing guidance for controlling the oxygen concentration
TW200300027A (en) Single crystal production method
JPH03247585A (en) Crystal growing method
JPS58145694A (en) Production of compound semiconductor
JPH06172081A (en) Method for controlling oxygen concentration of semiconductor single crystal
JP4138970B2 (en) Crystal manufacturing apparatus and method
JP2579761B2 (en) Control method of single crystal diameter
JP2787042B2 (en) Single crystal pulling method
JP2783049B2 (en) Method and apparatus for manufacturing single crystal silicon rod
JPS6283395A (en) Method for controlling diameter of single crystal pulling-up device
JPH0310598B2 (en)
JPS5933560B2 (en) Bi↓4Ge↓3O↓1↓2 single crystal manufacturing method
RU2184803C2 (en) Technique controlling process of growth of monocrystals from melt and device for its realization
EP2799596A1 (en) Silica glass crucible and method for producing monocrystalline silicon using same
KR100963054B1 (en) Manufacturing method of a single crystal ingot
JPH0196088A (en) Method for controlling diameter of single crystal
JPH06316483A (en) Production of silicon single crystal