JPH075364A - Non-axial and confocal zoom reflection optical system - Google Patents

Non-axial and confocal zoom reflection optical system

Info

Publication number
JPH075364A
JPH075364A JP5145020A JP14502093A JPH075364A JP H075364 A JPH075364 A JP H075364A JP 5145020 A JP5145020 A JP 5145020A JP 14502093 A JP14502093 A JP 14502093A JP H075364 A JPH075364 A JP H075364A
Authority
JP
Japan
Prior art keywords
optical system
reflection
focus
focal point
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5145020A
Other languages
Japanese (ja)
Other versions
JP2507912B2 (en
Inventor
Katsushi Kitagawa
勝志 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP5145020A priority Critical patent/JP2507912B2/en
Publication of JPH075364A publication Critical patent/JPH075364A/en
Application granted granted Critical
Publication of JP2507912B2 publication Critical patent/JP2507912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To continuously vary the focal distance of an entire optical system by attaining the combination of a large number of reflection surfaces, introducing a large number of variable parameters, using the combination of secondary curved surfaces with point focuses, and changing an angle made by the symmetric axes of the front and rear surfaces with confocal relation. CONSTITUTION:A first surface S1 as an incident plane is constituted of a rotational parabolic surface, second surface S2 is constituted of the outside reflection surface of a rotational elliptic surface, and third surface S3 is constituted of the inside reflection surface of the rotational elliptic surface. The positions of a light exit focus F1' of the first surface S1 and an incident focus F2 of the second surface S2, and the positions of a light exit focus F2' of the second surface S2 and an incident focus F3 of the third surface S3 are in the confocal relation in the same positions. Moreover, rotational symmetric axes F1-F1', F2-F2', and F3-F3' of each surface S1, S2, and S3 are arranged so as not be co-axial but be non-axial. Angles beta21 and beta32 made by each rotational symmetric axes F1-F1', F2-F2', and F3-F3', and an angle Bi made by the F3-F3' and an image surface are changed, so that the focal distance of the optical system can be continuously changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は広視野高分解能でズーム
が可能な非同軸共焦点ズーム反射光学系に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-coaxial confocal zoom catoptric system capable of zooming with a wide field of view and high resolution.

【0002】[0002]

【従来の技術】結像光学系は、物体から反射する太陽
光、あるいは物体自身から放出している赤外光を集光
し、光の像を作る作用を持っている。また、アフォーカ
ル光学系は、何らかの結像光学系と合わせて用いられ、
結像光学系と同様に、物体の光の像を作る作用を持って
いる。
2. Description of the Related Art An image forming optical system has a function of collecting sunlight reflected from an object or infrared light emitted from the object itself to form an image of the light. Also, the afocal optical system is used in combination with some kind of imaging optical system,
Like an imaging optical system, it has the function of forming an image of the light of an object.

【0003】そして、この種の光学系としては、視野が
広く、高分解能で、波長範囲も広く、大口径で、明る
く、加工容易で、かつ平面直線像ができ、さらに、焦点
距離が連続的に可変できるズーム化されたものが、長く
求められてきた。
An optical system of this type has a wide field of view, high resolution, a wide wavelength range, a large aperture, bright brightness, easy processing, and a plane straight line image, and a continuous focal length. There has been a long-felt need for a zoomed lens that can be changed to.

【0004】ところで、光学系には、レンズ等の屈折材
料を用いる屈折光学系と、金属等の反射面を用いる反射
光学系に大きく分けられる。
By the way, the optical system is roughly classified into a refracting optical system using a refracting material such as a lens and a reflecting optical system using a reflecting surface such as a metal.

【0005】ここで、屈折光学系と反射光学系との長所
短所の比較を表1に示す。
Table 1 shows a comparison of advantages and disadvantages of the refractive optical system and the reflective optical system.

【0006】[0006]

【表1】 [Table 1]

【0007】この表から解るように、反射光学系には多
くの長所があるにもかかわらず、天体望遠鏡のように、
視野の狭い(例えば1度以下)特殊な用途にしか用いら
れておらず、カメラ等の多くは屈折光学系である。この
原因は単に反射光学系の視野の狭さとズーム化が困難な
ためと考えられる。
As can be seen from this table, even though the reflection optical system has many advantages, like the astronomical telescope,
It is used only for special applications with a narrow field of view (for example, 1 degree or less), and many cameras and the like are refractive optical systems. It is considered that this is simply due to the narrow field of view of the reflective optical system and difficulty in zooming.

【0008】では、何故屈折光学系の視野は広く、かつ
ズーム化の設計ができるのに、反射光学系では視野を広
く、かつズーム化された設計ができないのであろうか。
これについては、次のように考えられる。
Then, why is the field of refraction optical system wide and can be designed to be zoomed, but the reflection optical system cannot be designed to have a wide field of view and zoomed?
This can be considered as follows.

【0009】屈折光学系では、光軸に沿って1方向に光
が進み、多くのレンズの組み合わせ構成が容易にでき、
よって、曲率の異なる多くの球面(あるいは球面を基本
とした非球面)の組み合わせ、種々の面間隔の組み合わ
せ、及び屈折率の異なる材料の組み合わせ等の多種で多
量のパラメータの組み合わせが可能なため、多くの変化
させられるパラメータが存在し、組み合わせをうまく設
計すれば、周辺でもボケの無い広いイメージフォーマッ
ト面が作られ、広い視野に渡り高分解能なズーム光学系
が実現できる。
In the refracting optical system, light travels in one direction along the optical axis, and a combination of many lenses can be easily constructed.
Therefore, it is possible to combine a large number of various parameters such as a combination of many spherical surfaces with different curvatures (or an aspherical surface based on a spherical surface), a combination of various surface intervals, and a combination of materials with different refractive indexes. There are many parameters that can be changed, and if the combination is designed properly, a wide image format surface with no blurring can be created even in the periphery, and a zoom optical system with high resolution over a wide field of view can be realized.

【0010】これに対し、反射光学系は、反射現象のた
め、光線は光軸に沿って一方向に進まず、反射の度に逆
方向に進み、ニュートン、カセグレン、グレゴリー式反
射光学系等で代表されるように、図3に示す従来の同軸
配置によるズーム反射光学系では、同軸L10−L10' 上
に4枚の反射面S10,S11,S12,S13を配置し、各面
S10,S11,S12,S13の間隔を変化させることにより
焦点距離が可変できる構成となっているが、多くの面の
組み合わせができず、せいぜい4枚の組み合わせしかで
きなかった。このため、変化させられるパラメータが少
なく、イメージフォーマット面の広い範囲に渡って収差
の補正ができず、当然、さらに多くのパラメータが必要
なズーム化された広視野反射光学系の設計など到底でき
ないわけである。
On the other hand, since the reflection optical system is a reflection phenomenon, the light ray does not travel in one direction along the optical axis, but travels in the opposite direction with each reflection, and is reflected in Newton, Cassegrain, Gregory type reflection optical system, etc. As is typical, in the conventional zoom reflection optical system having the coaxial arrangement shown in FIG. 3, four reflection surfaces S10, S11, S12, S13 are arranged on the coaxial L10-L10 ', and each surface S10, S11, Although the focal length can be changed by changing the distance between S12 and S13, many surfaces cannot be combined, and at most four combinations are possible. Therefore, the number of parameters that can be changed is small, and it is not possible to correct aberrations over a wide range of the image format surface. Naturally, it is impossible to design a zoomed wide-field reflective optical system that requires more parameters. Is.

【0011】[0011]

【発明が解決しようとする課題】以上まとめると、反射
光学系は多くの利点を有するが、従来の光軸を有する同
軸配置では、多くの面の構成ができないため、変化させ
られるパラメータが少なく、収差の補正ができないばか
りでなく、さらに困難な広視野のズーム化設計など不可
能に近く、天体望遠鏡のように、狭視野でズーム化され
ない特殊な用途にしか反射光学系が用いられないと言え
る。
In summary, although the reflective optical system has many advantages, many parameters cannot be changed in the conventional coaxial arrangement having the optical axis, and therefore the number of parameters that can be changed is small. Not only is it impossible to correct aberrations, but it is almost impossible to design a zoom with a wide field of view that is even more difficult, and it can be said that the catoptric system can only be used for special applications such as astronomical telescopes where zooming is not possible with a narrow field of view. .

【0012】従って、図3に示す従来の反射光学系は、
反射面が同軸に配置されて用いられているため、せいぜ
い数枚程度の組み合わせしかできず、収差を補正した加
工容易な広視野高分解能のズーム反射光学系の設計がで
きなかった。
Therefore, the conventional reflective optical system shown in FIG.
Since the reflecting surfaces are coaxially arranged and used, it is possible to combine only a few of them at most, and it has been impossible to design a wide-field, high-resolution zoom reflecting optical system that corrects aberrations and is easy to process.

【0013】そこで、本発明は、これまでの同軸(光
軸)を無くすことにより、多くの枚数の反射面の組み合
わせを可能とし、これにより、多くの変化させられるパ
ラメータを導入でき、かつ指導原理として、任意の曲面
でなく、使用する反射曲面として、点としての焦点を持
つ回転放物面、回転楕円面、回転2葉双曲面、球面、平
面(以下、有焦点2次曲面という)の組み合わせを用い
て、連続的にその光学系全体の焦点距離が可変できる広
視野高分解能の反射光学系を提供することを目的として
いる。
Therefore, the present invention makes it possible to combine a large number of reflecting surfaces by eliminating the conventional coaxial (optical axis), thereby introducing many variable parameters and guiding principles. As a reflection curved surface to be used, not as an arbitrary curved surface, a combination of a rotation paraboloid, a rotation ellipsoid, a rotation bilobular hyperboloid, a spherical surface, and a plane (hereinafter referred to as a focused quadric surface) as the reflection surface It is an object of the present invention to provide a wide-field, high-resolution reflective optical system in which the focal length of the entire optical system can be continuously changed by using.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載した非同軸共焦点ズーム反射光学系
は、焦点を持つ曲面を複数枚用い、かつその曲面の一部
を反射面とし、各々の反射面は回転対称軸を持ち、その
個々の回転対称軸のうちの少なくとも1つは、ある1つ
の固定された直線上に置かない配置で、かつ任意のある
曲面の焦点とその前後の曲面の焦点とを同一位置に置
き、該前後の曲面の2つの対称軸の成す角度の変化によ
り焦点距離が連続的に変化することを特徴としている。
また、請求項2では、曲面の最初の入射面を回転放物面
としている。さらに、請求項3のアフォーカル反射光学
系では、曲面の最初の入射面及び最後の射出面を回転放
物面としている。また、請求項4では、曲面が、焦点を
持つ面形状を基本として、その面から微小に変形してい
る。
In order to achieve the above object, the non-coaxial confocal zoom catoptric system according to claim 1 uses a plurality of curved surfaces having a focal point, and a part of the curved surfaces is a reflecting surface. And each reflecting surface has a rotational symmetry axis, and at least one of the individual rotational symmetry axes is arranged not to lie on one fixed straight line, and the focal point of any curved surface and its It is characterized in that the focal points of the front and rear curved surfaces are placed at the same position, and the focal length is continuously changed by changing the angle formed by the two symmetry axes of the front and rear curved surfaces.
Further, in claim 2, the first incident surface of the curved surface is a paraboloid of revolution. Further, in the afocal reflection optical system according to the third aspect, the first incident surface and the last exit surface of the curved surface are rotation paraboloids. Further, in claim 4, the curved surface is slightly deformed from the surface based on the surface shape having the focus.

【0015】[0015]

【作用】本発明の曲面として用いられる回転楕円面、回
転2葉双曲面の片方の面には、2つの異なる、点として
の焦点があることは良く知られている。また、回転放物
面にも通常の焦点以外に、無限遠にもう一つの焦点が有
ると考えれば、結局2つの異なる焦点を持つ面と考えら
れる。さらに、球面は1つの焦点を持ち、平面は至ると
ころが焦点と考えられる。ここで、焦点とは、実あるい
は虚の点光源が、反射面により、幾何光学的な意味で、
厳密に実あるいは虚の点像になるような、その反射面に
固有の点を言う。
It is well known that one of the spheroidal surfaces and the rotating bilobed hyperboloids used as the curved surface of the present invention has two different focal points. If it is considered that the paraboloid of revolution also has another focus at infinity in addition to the normal focus, it can be considered as a plane having two different focuses. Further, the spherical surface has one focal point, and the flat surface is considered to be a focal point everywhere. Here, the focus is a geometrical optical meaning of a real or imaginary point light source due to a reflecting surface,
It is a point peculiar to the reflecting surface that is exactly a real or imaginary point image.

【0016】そして、ある有焦点2次曲面の焦点近傍に
物体が有るとすれば、その光学像は、実像及び虚像を含
めて、やはりその曲面のもう一つの焦点近傍にできるは
ずである。なぜなら、まったく厳密な意味で、焦点から
出た光束または焦点に向かう光束は、もう一つの焦点に
集光あるいは焦点から発散する、すなわち、実あるいは
虚の厳密な点像ができるからであり、また、この作用は
連続的になされるので、物体側焦点と像側焦点で厳密な
点像の対応が有るのであれば、焦点近傍でも、ボケの度
合いを考えなければ、やはり像は焦点近傍にできるから
である。この像のボケの無い近傍がかなり広くなれば、
収差の補正ができたことになり、広視野性が達成でき
る。なお、収差の補正とは、光学系が使用される用途に
応じて、それぞれ許容範囲が示されるものであり、一般
的かつ厳密に決められるものではなく、ある許容範囲を
必ず含むものである。
If there is an object near the focal point of a certain quadric surface with a focal point, its optical image, including the real image and the virtual image, should also be near the other focal point of the curved surface. This is because, in a quite strict sense, a light beam emitted from or directed to a focus is focused on or diverged from another focus, that is, an exact point image of real or imaginary is formed, and , Since this action is performed continuously, if there is a strict point image correspondence between the object-side focus and the image-side focus, even in the vicinity of the focus, the image can still be in the vicinity of the focus without considering the degree of blurring. Because. If the unblurred neighborhood of this image is fairly wide,
Since the aberration has been corrected, a wide field of view can be achieved. It should be noted that the correction of aberration means that an allowable range is indicated depending on the application in which the optical system is used, and is not a general and strict determination, and always includes a certain allowable range.

【0017】以上、単一面で考えたが、多数の有焦点2
次曲面を、前後の面と焦点を合わせながら構成すれば、
以上の議論はそのまま成立する。すなわち、共焦点にす
ることにより、狭義の意味での球面収差は完全に除かれ
た反射光学系の構成が保証でき、像の生成作用は連続的
に行われるため、入射焦点近傍の物体は、射出焦点近傍
に光の像ができ、このボケの無い近傍を、多くのパラメ
ータを変化させて広げる設計が可能となる。また、多く
のパラメータを変化できるには、反射面を非同軸にすれ
ば容易に可能である。本発明では、焦点を持つ多くの反
射面を前後で共焦点に配置し、しかも、非同軸な配置を
行うことにより、広視野高分解能の反射光学系を構成し
ている。ここで、非同軸な配置とは、各面は回転対称軸
を持つが、その回転対称軸の1つでもある1つの直線と
一致しない配置を言う。また、ある1つの共焦点位置は
その前後の反射面の対称軸が交わる点であるが、本発明
では、その2つの対称軸の成す角度を共焦点のまま変化
させることにより、光学系全体の焦点距離が連続的に可
変できるようになっている。
As described above, a single plane is considered, but a large number of focal points 2
By constructing the quadric surface while focusing on the front and back surfaces,
The above discussion holds true. That is, by making the confocal point, the configuration of the reflective optical system in which spherical aberration in the narrow sense is completely removed can be guaranteed, and the image generating action is continuously performed. A light image is formed in the vicinity of the exit focal point, and it is possible to design by expanding many parameters in the vicinity without blurring by changing many parameters. Also, it is possible to change many parameters easily by making the reflecting surface non-coaxial. In the present invention, a large number of reflective surfaces having a wide field of view and high resolution are configured by arranging a large number of reflective surfaces having a focal point confocally in the front and rear, and arranging them non-coaxially. Here, the non-coaxial arrangement means an arrangement in which each surface has a rotational symmetry axis, but does not coincide with one straight line which is also one of the rotational symmetry axes. Further, a certain confocal position is a point where the symmetry axes of the reflection surfaces before and after the confocal position intersect, but in the present invention, the angle formed by the two symmetry axes is changed as the confocal point so that the entire optical system is changed. The focal length can be changed continuously.

【0018】十分遠方に物体が有る場合には、焦点が無
限遠に有ると考えられる放物面を入射面とすべきであ
り、又、アフォーカル系では、入射面と射出面が回転放
物面で構成されている。
When the object is sufficiently far away, the parabolic surface, which is considered to have the focal point at infinity, should be the incident surface, and in the afocal system, the incident surface and the exit surface are rotational paraboloids. It is composed of faces.

【0019】反射シュミット光学系の入射面に用いられ
る曲面のように、回転対称軸の無い非球面加工は現代に
おいても加工困難であるが、焦点を持つ曲面として本発
明に用いられる放物面、楕円面、双曲面は非球面である
が、回転対称軸を有し、その軸からかなり離れた面の加
工でさえ、ダイヤモンドターニング等の超精密加工技術
が成熟してきた現代においては、加工容易である。
Like the curved surface used for the incident surface of the reflective Schmidt optical system, aspherical surface processing without a rotational symmetry axis is still difficult to process in modern times, but a parabolic surface used in the present invention as a curved surface with a focus, Elliptical surfaces and hyperboloids are aspherical surfaces, but they have an axis of rotational symmetry, and even the machining of surfaces far away from that axis is easy to machine in modern times when ultra-precision machining technologies such as diamond turning have matured. is there.

【0020】屈折光学系で面を減らすために、小数の面
に球面を基本とした非球面の導入がよく行われている
が、本発明では、この考えを適用して反射光学系を構成
する曲面の枚数を減少させることができる。
In order to reduce the number of surfaces in a refracting optical system, an aspherical surface based on a spherical surface is often introduced into a small number of surfaces. In the present invention, this idea is applied to construct a reflecting optical system. The number of curved surfaces can be reduced.

【0021】[0021]

【実施例】図1は本発明による3面構成の結像型非同軸
共焦点ズーム反射光学系の一実施例を示す。
FIG. 1 shows an embodiment of an image forming type non-coaxial confocal zoom catoptric optical system having a three-sided structure according to the present invention.

【0022】この実施例のズーム反射光学系は、焦点を
持つ3つの有焦点2次曲面で構成されており、図におい
て、S1 は入射面であり、かつ第1面である回転放物
面、S2 は第2面の回転楕円面の外側反射面、S3 は第
3面の回転楕円面の内側反射面である。F1 は無限遠に
存在する第1面S1 の入射焦点、F1'は第1面S1 の射
出焦点である。同様にF2 は第2面S2 の入射焦点、F
2'は第2面S2 の射出焦点、F3 は第3面S3 の入射焦
点、F3'は第3面S3 の射出焦点である。
The zoom reflection optical system of this embodiment is composed of three focal quadric surfaces having a focal point. In the figure, S1 is an incident surface and a first surface is a paraboloid of revolution, S2 is an outer reflecting surface of the spheroid of the second surface, and S3 is an inner reflecting surface of the spheroid of the third surface. F1 is the entrance focal point of the first surface S1 existing at infinity, and F1 'is the exit focal point of the first surface S1. Similarly, F2 is the incident focal point of the second surface S2, F2
2'is the exit focal point of the second surface S2, F3 is the entrance focal point of the third surface S3, and F3 'is the exit focal point of the third surface S3.

【0023】第1面S1 の射出焦点F1'と第2面S2 の
入射焦点F2 の位置は同じ位置にある。同様に第2面S
2 の射出焦点F2'と第3面S3 の入射焦点F3 の位置も
同じ位置にあって共焦点な関係にあり、光学像は第3面
S3 の射出焦点F3'近傍に形成されるようになってい
る。
The exit focal point F1 'of the first surface S1 and the entrance focal point F2 of the second surface S2 are at the same position. Similarly, the second surface S
The exit focal point F2 'of the second surface S3 and the incident focal point F3 of the third surface S3 are in the same position and have a confocal relationship, and an optical image is formed in the vicinity of the exit focal point F3' of the third surface S3. ing.

【0024】回転対称軸は第1面の放物面S1 でF1 −
F1'、第2面の楕円面S2 でF2 −F2'、第3面の楕円
面S3 でF3 −F3'であり、これらの軸は同軸でなく、
非同軸に配置されている。また、βjiはi面(iは整
数)とこのi面に続くj面の回転対称軸の成す角であ
る。
The axis of rotational symmetry is the paraboloid S1 of the first surface and is F1-
F1 ', the second elliptical surface S2 is F2-F2', and the third elliptical surface S3 is F3-F3 '. These axes are not coaxial,
It is arranged non-coaxially. Further, βji is an angle formed by the rotational symmetry axis of the i-plane (i is an integer) and the j-plane following the i-plane.

【0025】なお、楕円面の内側反射と双曲面の外側反
射は同じ作用をし、この作用と逆の作用をする面は、楕
円面の外側反射と双曲面の内側反射であることが解って
いることから、楕円面と双曲面の内外の面を反射面とし
て多数組み合わせることにより、収差の補正を可能とし
ている。その組み合わせとしては、2枚構成の場合、楕
円面の内側反射と楕円面の外側反射、双曲面の内側反射
と双曲面の外側反射、楕円面の内側反射と双曲面の内側
反射、楕円面の外側反射と双曲面の外側反射の4通りが
考えられる。
It can be understood that the inner reflection of the ellipsoid and the outer reflection of the hyperboloid have the same action, and the faces that have the opposite action are the outer reflection of the ellipsoid and the inner reflection of the hyperboloid. Therefore, aberrations can be corrected by combining a large number of elliptical surfaces and inner and outer surfaces of hyperboloids as reflecting surfaces. As a combination thereof, in the case of a two-sheet configuration, the inside reflection of an ellipsoid and the outside reflection of an ellipsoid, the inside reflection of a hyperboloid and the outside reflection of a hyperboloid, the inside reflection of an ellipsoid and the inside reflection of a hyperboloid, the ellipsoid There are four possibilities: outer reflection and hyperbolic outer reflection.

【0026】上記のように構成されたズーム反射光学系
において、十分遠方からの光(平行光)は、第1面の放
物面S1 に軸外しで入射した後、第1面S1 の射出焦点
F1'に集光されようとする。このF1'と第2面の楕円面
S2 の入射焦点F2 は同位置に置かれており、集光され
ようとする光は第2面の楕円面S2 の外面で反射し、楕
円面S2 のもう一つの焦点である射出焦点F2'から出た
ように反射する。
In the zoom catoptric system constructed as described above, light (parallel light) from a sufficiently distant point is incident off-axis on the parabolic surface S1 of the first surface, and then the exit focal point of the first surface S1. Attempt to focus on F1 '. The F1 'and the incident focal point F2 of the elliptical surface S2 of the second surface are placed at the same position, and the light to be condensed is reflected by the outer surface of the elliptic surface S2 of the second surface and is not reflected by the other surface of the elliptic surface S2. The light is reflected as if it came out from one focal point, the exit focal point F2 '.

【0027】一方、第3面の楕円面S3 の入射焦点であ
るF3 はF2'と同位置に置かれており、第2面S2 によ
り発散した光束は第3面S3 の楕円面の内側反射面で反
射し、楕円面S3 の射出焦点であるF3'で結像する。
On the other hand, F3, which is the incident focal point of the ellipsoidal surface S3 of the third surface, is located at the same position as F2 ', and the light beam diverged by the second surface S2 is the inner reflection surface of the elliptical surface of the third surface S3. And is imaged at F3 ', which is the exit focal point of the elliptical surface S3.

【0028】通常、光軸があれば、像は光軸に垂直にで
きるが、本実施例では、非同軸のため、像がある軸に垂
直にできるとは一概に言えない。
Normally, if there is an optical axis, the image can be made perpendicular to the optical axis, but in the present embodiment, since it is not coaxial, it cannot be generally said that the image can be made perpendicular to the axis.

【0029】一般に有焦点2次曲面の曲面形状は、焦点
を原点とした極座標で、 ρ(θ)=L/(1+ε・cos(θ)) と表せる。ここで、Lは垂直長(内側反射か外側反射か
を決定し、かつ曲面の大きさを表すパラメータ)、εは
離心率(曲面の種類及び内側反射か外側反射を決定する
もの)である。
Generally, the curved surface shape of a quadric surface with focus is expressed by polar coordinates with the focus at the origin, and can be expressed as ρ (θ) = L / (1 + ε · cos (θ)). Here, L is a vertical length (a parameter that determines the inner reflection or the outer reflection and represents the size of the curved surface), and ε is an eccentricity (which determines the type of the curved surface and the inner reflection or the outer reflection).

【0030】また、上述した非同軸共焦点ズーム反射光
学系の焦点距離faは、理論的解析により次式で表すこ
とができる。
The focal length fa of the non-coaxial confocal zoom catoptric system described above can be expressed by the following equation by theoretical analysis.

【0031】[0031]

【数1】 [Equation 1]

【0032】ここで、yp は入射高、θ2 は焦点と光線
が反射面に当たる点とを結ぶ線と対称軸の成す角度、β
i は像面と対称軸の成す角度、Δθは反射点を基準とし
て反射光線と焦点が成す角度を示す。また、添字のυは
任意の面、pは入射放物面、kは最終面を表す。この式
には2つの対称軸の成す角度βjiは陽に現れていない
が、βjiを変化させることにより、光学系の焦点距離は
連続的に変化する。また、パラメータを上手に選定すれ
ば、ズーム領域全体に渡って、高分解能かつ広視野性が
保たれる。
Where yp is the incident height, θ 2 is the angle between the line connecting the focal point and the point where the ray hits the reflecting surface, and the axis of symmetry, β
i is the angle between the image plane and the symmetry axis, and Δθ is the angle between the reflected ray and the focal point with reference to the reflection point. The subscript υ represents an arbitrary surface, p represents an incident parabolic surface, and k represents a final surface. The angle βji formed by the two axes of symmetry does not appear explicitly in this equation, but the focal length of the optical system changes continuously by changing βji. If the parameters are selected properly, high resolution and wide field of view can be maintained over the entire zoom area.

【0033】なお、図1のβjiの配置では、焦点距離f
aは1821.47mmである。また、図2に示すよう
に、図1と同じ反射面を用いて対称軸の成す角度βjiを
共焦点のまま変化させた場合のβjiの配置では、焦点距
離faは1094.77mmとなっている。
In the arrangement of βji in FIG. 1, the focal length f
a is 1821.47 mm. Further, as shown in FIG. 2, when the angle βji formed by the axis of symmetry is changed while keeping the confocal point using the same reflecting surface as in FIG. 1, the focal length fa is 1094.77 mm in the arrangement of βji. .

【0034】そして、本実施例では、3つの曲面を非同
軸で共焦点な関係に多面配置しているので、各面の離心
率及び垂直長を変換できるだけでなく、軸と軸の成す角
度(図1のβji)も変化させることができる。
In this embodiment, since three curved surfaces are arranged in a non-coaxial and confocal relationship in a multifaceted manner, the eccentricity and vertical length of each surface can be converted, and the angle formed by the axes ( Βji) in Fig. 1 can also be changed.

【0035】また、反射シュミット光学系の入射面に用
いられる曲面のように、回転対称軸の無い非球面加工は
現代においても加工困難であるが、焦点を持つ曲面とし
て本実施例に用いられる放物面、楕円面、双曲面は非球
面であるが、回転対称軸を有し、その軸からかなり離れ
た面の加工でさえ、ダイヤモンドターニング等の超精密
加工技術を用いることによって容易に加工することがで
きる。
Further, like the curved surface used for the entrance surface of the reflective Schmidt optical system, aspherical surface processing without a rotational symmetry axis is still difficult in modern times, but it is used as a curved surface with a focus in this embodiment. Object surfaces, ellipsoids, and hyperboloids are aspherical surfaces, but they have an axis of rotational symmetry, and even surfaces far away from the axis can be easily processed by using ultra-precision processing technology such as diamond turning. be able to.

【0036】さらに、従来の同軸に配置されたニュート
ン式等の反射光学系では、第2反射面及びその支持体が
遮光板として働き、赤外線領域のイメージャとして不具
合であったが、本実施例のズーム反射光学系では、各曲
面が非同軸に配置されているので、全光束中に光を遮る
支持体等がなく、赤外線イメージャ用にも最適である。
Further, in the conventional reflection optical system of the Newton type or the like arranged coaxially, the second reflecting surface and its support function as a light shielding plate, which is a problem as an imager in the infrared region. In the zoom reflection optical system, since the curved surfaces are arranged non-coaxially, there is no support for blocking the light in the entire luminous flux, which is also suitable for an infrared imager.

【0037】なお、十分遠方に物体が有る場合には、焦
点が無限遠に有ると考えられる放物面を入射面とする必
要があり、又、アフォーカル系の反射光学系では、入射
面と射出面が回転放物面で構成されている。
When the object is sufficiently far away, it is necessary to make the parabolic surface, which is considered to have the focus at infinity, the incident surface, and in the afocal reflection optical system, the incident surface The exit surface is a paraboloid of revolution.

【0038】また、屈折光学系で面を減らすために、小
数の面に球面を基本とした非球面の導入がよく行われて
いるが、本実施例では、この考えを適用し、焦点を持つ
面形状、すなわち、有焦点2次曲面である回転放物面、
回転楕円面、回転2葉双曲面、球面、平面を基本とし
て、その面から微小に変形して反射光学系を構成するこ
とにより、曲面の枚数を減少させることができる。
Further, in order to reduce the number of surfaces in the refracting optical system, an aspherical surface based on a spherical surface is often introduced into a small number of surfaces, but in this embodiment, this idea is applied and a focal point is provided. Surface shape, that is, a paraboloid of revolution that is a quadric surface with focus,
The number of curved surfaces can be reduced by forming a reflective optical system by slightly deforming the surface based on a spheroidal surface, a hyperboloid of rotation, a spherical surface, and a flat surface.

【0039】ところで、本実施例では、使用される曲面
が3面構成であるが、曲面を上述した非同期共焦点配置
とすれば、何面でも構成することができ、それに伴って
変化させられるパラメータの数も増加し、イメージフォ
ーマット面周辺まで収差の無いズーム反射光学系を設計
することができる。
By the way, in the present embodiment, the curved surface used has a three-sided structure, but if the curved surface has the above-mentioned asynchronous confocal arrangement, any number of surfaces can be formed, and parameters that can be changed accordingly. It is possible to design a zoom reflection optical system that does not have aberrations up to the periphery of the image format surface.

【0040】また、本実施例では、3本の回転対称軸
は、全て2次元の平面内(本紙面)に含まれているが、
各回転対称軸を3次元的に配置してもよい。
Further, in the present embodiment, all three rotational symmetry axes are included in the two-dimensional plane (the real paper surface),
The axes of rotational symmetry may be arranged three-dimensionally.

【0041】[0041]

【発明の効果】本発明によれば、光軸を持たない非同軸
のため、多くの反射面が導入でき、焦点を持つ反射面を
前後の面で共焦点配置とすることにより、狭義の意味の
球面収差が完全に除かれた光学系の構成が常に保証さ
れ、共焦点のまま回転対称軸の成す角度を変化させるこ
とにより、連続的に光学系全体の焦点距離を可変するこ
とができる。また、さらに多くの面の導入により、パラ
メータが多く取れ、それ等のパラメータを上手に選定す
ることにより、ズーム化された広視野高分解能の反射光
学系を実現することができる。
According to the present invention, since it is non-coaxial without an optical axis, many reflecting surfaces can be introduced, and the reflecting surfaces having a focal point are confocal on the front and rear surfaces. The configuration of the optical system in which the spherical aberration is completely eliminated is always guaranteed, and the focal length of the entire optical system can be continuously changed by changing the angle formed by the axis of rotational symmetry while keeping the confocal point. Also, by introducing more surfaces, a large number of parameters can be taken, and by appropriately selecting those parameters, it is possible to realize a catoptric system with a zoomed wide field of view and high resolution.

【0042】また、本発明で用いる面は全て回転対称軸
を持っているので、非球面と言えども、現代の超精密加
工技術を用いれば容易に加工できる。
Further, since all the surfaces used in the present invention have a rotational symmetry axis, even an aspherical surface can be easily processed by using modern ultra-precision processing technology.

【0043】さらに、従来のズーム反射光学系は、各反
射面が同軸に配置されているため、図3の例からもわか
るように、第2及び第3反射面とその支持体が遮光板と
して働き、赤外線領域のイメージャとして不具合であっ
たが、本発明のズーム反射光学系では、各曲面が非同軸
に配置されているので、全光束中に光を遮る支持体等が
なく、赤外線イメージャ用にも最適である。
Further, in the conventional zoom reflection optical system, since the respective reflecting surfaces are coaxially arranged, as can be seen from the example of FIG. 3, the second and third reflecting surfaces and their supports serve as a light shielding plate. Although it worked, it was a defect as an imager in the infrared region, but in the zoom reflection optical system of the present invention, since each curved surface is arranged non-coaxially, there is no support or the like that blocks light in the entire light flux, It is also perfect for

【0044】また、焦点を持つ面形状を基本として、そ
の面から微小に変形させることにより、使用される曲面
を減少することができる。
Further, it is possible to reduce the number of curved surfaces to be used by slightly deforming the surface having a focal point as a basic shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による3面構成の結像型非同軸共焦点ズ
ーム反射光学系の一実施例を示す図
FIG. 1 is a diagram showing an embodiment of a three-sided image-forming non-coaxial confocal zoom catoptric optical system according to the present invention.

【図2】図1と同一の反射面を用いて回転対称軸の成す
角度βjiを変化させた時の反射光学系を示す図
FIG. 2 is a diagram showing a reflection optical system when the angle βji formed by the rotational symmetry axis is changed using the same reflection surface as in FIG.

【図3】従来の光軸のある4枚構成の同軸ズーム反射光
学系の一構成例を示す図
FIG. 3 is a diagram showing a configuration example of a conventional coaxial zoom catoptric optical system having a four-element configuration with an optical axis.

【符号の説明】[Explanation of symbols]

S1 …回転放物面(第1面)、S2 …回転楕円面(第2
面)、S3 …回転楕円面(第3面)、F1 …第1面の入
射焦点、F1'…第1面の射出焦点、F2 …第2面の入射
焦点、F2'…第2面の射出焦点、F3 …楕円面の入射焦
点、F3'…第3面の射出焦点、F1 −F1'…第1面の回
転対称軸、F2 −F2'…第2面の回転対称軸、F3 −F
3'…第3面の回転対称軸、β…回転対称軸間の成す角。
S1 ... Rotating paraboloid (first surface), S2 ... Spherical ellipsoid (second surface)
Surface), S3 ... spheroidal surface (third surface), F1 ... first surface entrance focus, F1 '... first surface exit focus, F2 ... second surface entrance focus, F2' ... second surface exit Focus, F3 ... Elliptical entrance focus, F3 '... Third surface exit focus, F1-F1' ... First surface rotational symmetry axis, F2-F2 '... Second surface rotational symmetry axis, F3-F
3 '... The angle formed between the rotational symmetry axis of the third surface and β ... rotational symmetry axis.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 焦点を持つ曲面を複数枚用い、かつその
曲面の一部を反射面とし、各々の反射面は回転対称軸を
持ち、その個々の回転対称軸のうちの少なくとも1つ
は、ある1つの固定された直線上に置かない配置で、か
つ任意のある曲面の焦点とその前後の曲面の焦点とを同
一位置に置き、該前後の曲面の2つの対称軸の成す角度
の変化により焦点距離が連続的に変化することを特徴と
する非同軸共焦点ズーム反射光学系。
1. A plurality of curved surfaces having a focal point are used, and a part of the curved surfaces is used as a reflecting surface, each reflecting surface having a rotational symmetry axis, and at least one of the individual rotational symmetry axes is By arranging the focal point of a given curved surface and the focal points of the curved surfaces before and after it on the same position without arranging them on a fixed straight line, and by changing the angle formed by the two symmetry axes of the front and rear curved surfaces. A non-coaxial confocal zoom catoptric system characterized in that the focal length changes continuously.
【請求項2】 前記曲面の最初の入射面を回転放物面と
した請求項1記載の非同軸共焦点ズーム反射光学系。
2. The non-coaxial confocal zoom catoptric system according to claim 1, wherein the first entrance surface of the curved surface is a paraboloid of revolution.
【請求項3】 前記曲面の最初の入射面及び最後の射出
面を回転放物面とした請求項1記載の非同軸共焦点ズー
ム反射光学系。
3. The non-coaxial confocal zoom catoptric system according to claim 1, wherein the first entrance surface and the last exit surface of the curved surface are rotation paraboloids.
【請求項4】 前記曲面は、焦点を持つ面形状を基本と
して、その面から微小に変形した請求項1記載の非同軸
共焦点ズーム反射光学系。
4. The non-coaxial confocal zoom catoptric system according to claim 1, wherein the curved surface is basically a surface having a focal point and is slightly deformed from the surface.
JP5145020A 1993-06-16 1993-06-16 Non-coaxial confocal zoom reflection optical system Expired - Lifetime JP2507912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5145020A JP2507912B2 (en) 1993-06-16 1993-06-16 Non-coaxial confocal zoom reflection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5145020A JP2507912B2 (en) 1993-06-16 1993-06-16 Non-coaxial confocal zoom reflection optical system

Publications (2)

Publication Number Publication Date
JPH075364A true JPH075364A (en) 1995-01-10
JP2507912B2 JP2507912B2 (en) 1996-06-19

Family

ID=15375579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5145020A Expired - Lifetime JP2507912B2 (en) 1993-06-16 1993-06-16 Non-coaxial confocal zoom reflection optical system

Country Status (1)

Country Link
JP (1) JP2507912B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222561A (en) * 1996-02-15 1997-08-26 Canon Inc Zoom optical system and image pickup device using same
US6636360B1 (en) 1995-02-28 2003-10-21 Canon Kabushiki Kaisha Reflecting type of zoom lens
CN103075974A (en) * 2012-12-14 2013-05-01 哈尔滨工业大学 Radial polarized lighting ellipsoidal surface pupil amplitude filtering confocal imaging device
JP2013122538A (en) * 2011-12-12 2013-06-20 Samsung Techwin Co Ltd Imaging optical system and imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636360B1 (en) 1995-02-28 2003-10-21 Canon Kabushiki Kaisha Reflecting type of zoom lens
US6639729B2 (en) 1995-02-28 2003-10-28 Canon Kabushiki Kaisha Reflecting type of zoom lens
JPH09222561A (en) * 1996-02-15 1997-08-26 Canon Inc Zoom optical system and image pickup device using same
JP2013122538A (en) * 2011-12-12 2013-06-20 Samsung Techwin Co Ltd Imaging optical system and imaging apparatus
CN103075974A (en) * 2012-12-14 2013-05-01 哈尔滨工业大学 Radial polarized lighting ellipsoidal surface pupil amplitude filtering confocal imaging device

Also Published As

Publication number Publication date
JP2507912B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US5638219A (en) Ultracompact complex optical device
US3527526A (en) Catoptric image-forming system in which light is reflected twice from each surface
US5854713A (en) Reflection type angle of view transforming optical apparatus
JP4422432B2 (en) Decentered optical system and optical system using the same
TWI485427B (en) Off-axial three-mirror system
US5477395A (en) Two nested all-reflective afocal telescopes providing four fields of view
JP7234498B2 (en) Projection optical system unit and projection optical device
JPH06273671A (en) High-speed reflecting system, which has wide angle and returns large, clear image
JPH05241080A (en) Double visual field reflection type picture reforming telescope
JPH11326768A (en) Anamorphic luminous flux shaping optical system and shaping method
JPS6032012A (en) Focus detector of camera
CN111367066B (en) Coaxial four-reflection optical system
US5947576A (en) Oblique projection optical apparatus
US5963376A (en) Variable-magnification image-forming optical system
JP2507912B2 (en) Non-coaxial confocal zoom reflection optical system
WO2001025832A2 (en) Ultra-wide field of view concentric scanning sensor system
JP3220462B2 (en) Reflection type angle-of-view conversion optical device and manufacturing method
JP2008298866A (en) Imaging optical system
JP2003524797A (en) 3D image acquisition device
JPH07140395A (en) Stereomicroscope
WO2022230416A1 (en) Offset optical system including primary mirror and positionally-offset sub-mirror
US4674826A (en) Optico-mechanical scanning device
JP2001066504A (en) Optical device and photographing device using the optical device
JPH075363A (en) Non-axial and confocal multi-surface reflection optical system
JP2021517279A (en) Meniscus Cassegrain lens

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term