JPH0753376B2 - Mold cooling device - Google Patents

Mold cooling device

Info

Publication number
JPH0753376B2
JPH0753376B2 JP29324187A JP29324187A JPH0753376B2 JP H0753376 B2 JPH0753376 B2 JP H0753376B2 JP 29324187 A JP29324187 A JP 29324187A JP 29324187 A JP29324187 A JP 29324187A JP H0753376 B2 JPH0753376 B2 JP H0753376B2
Authority
JP
Japan
Prior art keywords
cooling
tank
temperature
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29324187A
Other languages
Japanese (ja)
Other versions
JPH01135605A (en
Inventor
直樹 残松
正行 森島
俊明 川田
好夫 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29324187A priority Critical patent/JPH0753376B2/en
Publication of JPH01135605A publication Critical patent/JPH01135605A/en
Publication of JPH0753376B2 publication Critical patent/JPH0753376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/007Tempering units for temperature control of moulds or cores, e.g. comprising heat exchangers, controlled valves, temperature-controlled circuits for fluids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、常温よりも高い所定温度に維持する必要のあ
るプラスチック成形用金型の冷却装置に関するものであ
る。
TECHNICAL FIELD The present invention relates to a cooling device for a plastic molding die that needs to be maintained at a predetermined temperature higher than room temperature.

〈従来の技術〉 冷媒圧縮機等と共に冷凍サイクルを構成する蒸発器を、
水またはブラインといった冷却液を貯留するタンク内に
配設して、タンク内の冷却液を冷やすようにした液体冷
却装置については例えば実公昭60-15107号公報に開示さ
れており、従来公知である。この冷媒圧縮機が運転可能
な冷却液温度は通常40℃以下であり、これよりも高くな
ると、冷媒圧縮機の吸入ガスの過熱度が過大となって、
高圧ガスの温度上昇やモータ巻線温度の異常上昇を招く
惧れが生ずる。
<Prior Art> An evaporator that constitutes a refrigeration cycle together with a refrigerant compressor,
A liquid cooling device that is arranged in a tank that stores a cooling liquid such as water or brine to cool the cooling liquid in the tank is disclosed in, for example, Japanese Utility Model Publication 60-15107, and is conventionally known. . The coolant temperature at which this refrigerant compressor can operate is usually 40 ° C or lower, and when it is higher than this, the degree of superheat of the suction gas of the refrigerant compressor becomes excessive,
There is a risk that the temperature of the high-pressure gas will rise and the temperature of the motor winding will rise abnormally.

〈発明が解決しようとする問題点〉 上記した冷凍サイクルを用いた液体冷却装置をプラスチ
ック成形用金型の冷却装置として利用するとき問題とな
る点は、冷媒圧縮機の運転可能としている温度より高目
の冷却液温度に設定されることがあるということであ
る。本出願人は、先に、このような場合でも何度支障な
く運転可能とする第3図に示す金型冷却装置について案
出し、特許出願を行なった。
<Problems to be Solved by the Invention> When a liquid cooling device using the above refrigeration cycle is used as a cooling device for a plastic molding die, a problem is that the temperature is higher than the operating temperature of the refrigerant compressor. This means that the temperature of the eye coolant may be set. The applicant of the present invention has previously devised a patent for a mold cooling device shown in FIG. 3 that can be operated without trouble even in such a case, and applied for a patent.

第3図に示す金型冷却装置について簡単に説明すると、
Aは冷媒圧縮機1、凝縮器2、ドライヤー3、蒸発器
4、アキュムレータ5等を連結して構成した冷凍サイク
ルの冷媒回路、6はファン、Bはタンク7内に貯留した
冷却液を循環ポンプ8、金型9を経て再びタンク7に戻
す冷却液循環回路である。このタンク7の内部は通液孔
11を明けた仕切板10によってタンク上室7aとタンク下室
7bとに二分され、タンク上室7aには蒸発器4を配設し、
タンク下室7bには冷却液温度調節用のヒータ12を配設し
ている。冷却液回路Bは、タンク下室7bと循環ポンプ8
の吸込口とを送り出し配管13によって接続し、特に金型
9からの戻り配管14については、タンク上室7aに繋がる
細い戻り配管14aと、タンク下室7bに繋がる比較的太い
戻り配管14bとの分岐戻り流路となし、且つ後者の戻り
配管14bの内側には流量調整用の抵抗体15と戻り温度検
出用の温度センサ16を設け、温度センサ16の温度信号は
制御回路17に送られて、冷媒圧縮機1の運転並びにヒー
タ12のオン・オフ時間をリニヤに制御するようにしてい
る。
Briefly describing the mold cooling device shown in FIG. 3,
A is a refrigerating cycle refrigerant circuit configured by connecting a refrigerant compressor 1, a condenser 2, a dryer 3, an evaporator 4, an accumulator 5 and the like, 6 is a fan, and B is a circulation pump for a cooling liquid stored in a tank 7. 8, a cooling liquid circulation circuit for returning to the tank 7 again via the mold 9. The inside of this tank 7 is a liquid passage hole.
Partition plate 10 with 11 open shows the tank upper chamber 7a and the tank lower chamber
7b, and the evaporator 4 is installed in the tank upper chamber 7a,
A heater 12 for adjusting the temperature of the cooling liquid is arranged in the lower tank chamber 7b. The cooling liquid circuit B includes the tank lower chamber 7b and the circulation pump 8
Is connected to the suction port of the mold by a delivery pipe 13, and particularly for the return pipe 14 from the mold 9, a thin return pipe 14a connected to the tank upper chamber 7a and a relatively thick return pipe 14b connected to the tank lower chamber 7b. There is no branch return flow path, and a flow rate adjusting resistor 15 and a return temperature detection temperature sensor 16 are provided inside the latter return pipe 14b, and the temperature signal of the temperature sensor 16 is sent to the control circuit 17. The operation of the refrigerant compressor 1 and the on / off time of the heater 12 are linearly controlled.

このように、二つの戻り配管14a,14bの管径の相異と抵
抗体15の働きにより、蒸発器4のあるタンク上室7aに戻
る液量を抑制して、譬え冷却液温度が例えば50℃と高く
ても、タンク上室7a内の冷却液平均温度を冷媒圧縮機が
運転可能な温度まで下げるようにしたものであった。
In this way, the difference in the pipe diameters of the two return pipes 14a and 14b and the function of the resistor 15 suppress the amount of liquid returning to the tank upper chamber 7a in which the evaporator 4 is provided, and the temperature of the cooling liquid is, for example, 50%. Even if the temperature was as high as 0 ° C, the average temperature of the cooling liquid in the tank upper chamber 7a was lowered to a temperature at which the refrigerant compressor could operate.

しかし、この種の装置は、通常、気温の変化の影響をま
ともに受ける場所に設置される場合が多いから、冬季は
可成り低温の環境下に置かれることになり、したがって
冷媒圧縮機が運転可能な高温の冷却液温度と冬季の室温
とには充分な温度差があり、空冷式の熱交換器であって
も充分な熱交換量が得られるはずである。それにもかか
わらず、これを有効に利用しないで専ら冷凍サイクルに
依るのは不経済である。
However, since this type of device is usually installed in a place that is properly affected by changes in temperature, it will be placed in a fairly cold environment in winter, and thus the refrigerant compressor will not operate. There is a sufficient temperature difference between the possible high temperature coolant temperature and the winter room temperature, and a sufficient amount of heat exchange should be obtained even with an air-cooled heat exchanger. Nevertheless, it is uneconomical to rely exclusively on the refrigeration cycle without making effective use of it.

本発明では、かかる不経済性の払拭を図りたい。In the present invention, it is desired to eliminate such uneconomical.

〈問題点を解決するための手段〉 本発明は、金型から分岐戻り流路に至る流路中に切換装
置を設け、その切換装置と前記分岐戻り流路との間に空
冷式熱交換器を有する空冷式熱交換器用流路を併設し、
冷却液温度と室温の温度差が小さいときは、前記冷凍装
置を駆動するとともに冷却液を前記空冷式熱交換器を経
ずに戻す状態に前記切換装置を切換え、また、冷却液温
度と室温の温度差が大きいときは、前記冷凍装置を停止
するとともに冷却液を前記空冷式熱交換器を経て戻す状
態に前記切換装置を切換える自動制御装置を設け、こう
して上記した不経済性を解消した。
<Means for Solving Problems> The present invention provides a switching device in a flow path from a mold to a branch return flow path, and an air-cooled heat exchanger between the switching device and the branch return flow path. With a flow path for air-cooled heat exchanger with
When the temperature difference between the cooling liquid temperature and the room temperature is small, the refrigerating device is driven and the switching device is switched to a state in which the cooling liquid is returned without passing through the air-cooling type heat exchanger, and the cooling liquid temperature and the room temperature are changed. When the temperature difference is large, an automatic control device for switching the switching device to a state in which the refrigerating device is stopped and the cooling liquid is returned through the air-cooled heat exchanger is provided, thus eliminating the above-mentioned uneconomical.

〈実施例〉 本発明になる実施例を第1図に示す。<Example> An example according to the present invention is shown in FIG.

第1図において、第3図に示した部分や部材と同じもの
には第3図で使った符号と同じ符号を付すことで対比に
便ならしめている。第1図を第3図と対比することによ
って、つぎの点が理解されよう。すなわち、冷却液を貯
留するタンク7が通液孔11を明けた仕切板10によって上
下に二分され、タンク上室7aには冷凍装置の蒸発器4
を、タンク下室7bにはヒータ12を設ける点、冷却液循環
回路Bはタンク下室7bのみ循環ポンプ8の吸込口に冷却
液送り出し配管13で接続するが、金型9からの戻り配管
14は、タンク上室7aに繋がる細い戻り配管14aと、タン
ク下室7bに繋がる比較的太い戻り配管14bとの分岐戻り
流路として、その比較的太い戻り配管14bの内側には流
量調整用の抵抗体15を設けて、蒸発器4のあるタンク上
室7aに戻る冷却液の流量を抑制している点、更に冷却液
の温度センサ16と、その温度センサ16の検出信号で作動
する制御回路17があって、冷媒圧縮機1の運転並びにヒ
ータ12のオン・オフを制御している点で、両者は特別変
ったところはない。
In FIG. 1, the same parts and members as those shown in FIG. 3 are given the same reference numerals as those used in FIG. 3 for convenience. By comparing FIG. 1 with FIG. 3, the following points will be understood. That is, the tank 7 for storing the cooling liquid is divided into upper and lower parts by the partition plate 10 having the liquid passage hole 11 and the evaporator 4 of the refrigerating device is provided in the tank upper chamber 7a.
The heater 12 is provided in the tank lower chamber 7b. In the cooling liquid circulation circuit B, only the tank lower chamber 7b is connected to the suction port of the circulation pump 8 by the cooling liquid delivery pipe 13, but the return pipe from the mold 9 is connected.
Reference numeral 14 denotes a thin return pipe 14a connected to the tank upper chamber 7a and a branch return flow passage of a relatively thick return pipe 14b connected to the tank lower chamber 7b. A resistor 15 is provided to suppress the flow rate of the cooling liquid returning to the tank upper chamber 7a in which the evaporator 4 is provided. Further, a temperature sensor 16 for the cooling liquid and a control circuit that operates by the detection signal of the temperature sensor 16 are provided. There is no particular difference between the two in that it controls the operation of the refrigerant compressor 1 and the on / off of the heater 12.

しかし、第1図の場合は、金型9から分岐戻り流路14a,
14bに至る流路中に、矢印イと矢印ロで示した二つの方
向へ戻り冷却液の流路を切換えることができる、例えば
三方電磁弁といった切換装置18を設けていて、矢印イの
方向に流れる場合は前述したところと同様にタンク上室
7aとタンク下室7bとに戻されることになる。しかし、矢
印ロの方向に流れる場合は、その切換装置18から分れ且
つ分岐戻り流路14a,14bを共通とする空冷式熱交換器19
の流路20に流れたのち、最後はタンク上室7aとタンク下
室7bとに戻されるようになっている。この空冷式熱交換
器19は凝縮器2と並べて配設することで、ファン6の共
通化を図る。図示したように、パイプ内に抵抗体22を設
けたバイパス管21を取付けることによって空冷式熱交換
器19内を通過する冷却液流量つまり熱交換熱量の調整が
可能である。
However, in the case of FIG. 1, the branch return flow path 14a,
In the flow path leading to 14b, it is possible to return to the two directions shown by arrow a and arrow b to switch the flow path of the cooling liquid, for example, a switching device 18 such as a three-way solenoid valve is provided, and in the direction of arrow a When flowing, the tank upper chamber is the same as described above.
7a and the tank lower chamber 7b. However, in the case of flowing in the direction of arrow B, the air-cooled heat exchanger 19 which is separated from the switching device 18 and has the common branch return flow paths 14a and 14b.
After flowing into the flow path 20, the last is returned to the tank upper chamber 7a and the tank lower chamber 7b. The air-cooled heat exchanger 19 is arranged side by side with the condenser 2 so that the fan 6 can be used in common. As shown in the figure, by installing the bypass pipe 21 provided with the resistor 22 in the pipe, the flow rate of the cooling liquid passing through the air-cooled heat exchanger 19, that is, the heat exchange heat amount can be adjusted.

また、第1図の場合は、室温検知用の温度センサ23を設
け、制御回路17には、温度センサ16で検知した液温と温
度センサ23で検知した室温との差により、二つの冷却方
式の自動切換えを行なえるようになっている。第2図に
は自動制御回路例を示している。第2図において、電源
トランスTの二次側に設けたスイッチSWをオンとする
と、ファン6のモータFMと循環ポンプ8のモータPMの電
気回路は閉回路となるが、冷媒圧縮機1のモータCMと切
換装置18の電磁弁Vについては、つぎに説明するとおり
である。すなわち、電源トランスTの1次側に整流回路
SD1,平滑コンデンサC1,抵抗R1,とツェナダイオードZD1
および制御トランジスタQ1を設けることで入力電圧が変
化しても出力電圧を一定に保持し、冷却液用の感温体TH
1(第1図の符号16)と室温用の感温体TH2(第1図の2
3)を接続すると、TH1とTH2は温度によって電気抵抗が
変るから、TH1とTH2の出力信号を入力信号とする差動増
幅器OP1を設け、その温度差に比例した出力信号を得る
ようにする。この出力信号は比較器COM1の(−)入力ピ
ン側に与え、一方、(+)入力ピン側は抵抗R12とR13
によって決まる設定値とする。温度差が大きくなって、
(−)入力ピン側の方が設定された(+)入力ピン側の
電位より高くなると、比較器COM1の出力は“L"レベルと
なり、トランジスタQ3の働きでリレーX1の励磁をオフと
する。リレーX1の励磁がオフとなると、リレー接点は切
換わって、CMを停止すると共に、戻り冷却液は切換装置
18から空冷式熱交換器19を経てタンク7に戻るように電
磁弁Vを切換える。反対に、液温と室温の温度差が少な
くなると、比較器COM1の出力は“H"レベルとなり、リレ
ーX1を励磁させ、CMを運転開始させると共に、戻り冷却
液は空冷式熱交換器19を経ないで直接タンク7に戻るよ
うに電磁弁Vを切換える。
Further, in the case of FIG. 1, a temperature sensor 23 for room temperature detection is provided, and the control circuit 17 has two cooling methods depending on the difference between the liquid temperature detected by the temperature sensor 16 and the room temperature detected by the temperature sensor 23. It is designed to be able to automatically switch. FIG. 2 shows an example of an automatic control circuit. In FIG. 2, when the switch SW provided on the secondary side of the power transformer T is turned on, the electric circuits of the motor FM of the fan 6 and the motor PM of the circulation pump 8 are closed circuits, but the motor of the refrigerant compressor 1 is closed. The CM and the solenoid valve V of the switching device 18 are as described below. That is, the rectifier circuit is provided on the primary side of the power transformer T.
SD 1 , smoothing capacitor C 1 , resistor R 1 , and Zener diode ZD 1
And by providing the control transistor Q 1 , the output voltage is kept constant even if the input voltage changes, and the temperature sensor TH
1 (reference numeral 16 in Fig. 1) and a temperature-sensing body TH 2 (2 in Fig. 1)
Connecting 3), since TH 1 and TH 2 is electrical resistance varies with temperature, the differential amplifier OP 1 to the input signal an output signal of the TH 1 and TH 2 is provided, an output signal proportional to the temperature difference To get it. This output signal is given to the (−) input pin side of the comparator COM 1 , while the (+) input pin side has a set value determined by the resistors R 12 and R 13 . The temperature difference has become large,
When the (−) input pin side becomes higher than the set (+) input pin side potential, the output of the comparator COM 1 becomes “L” level and the transistor Q 3 acts to turn off the relay X 1 excitation. And When the excitation of the relay X 1 is turned off, the relay contact switches and stops the CM, and the return coolant is the switching device.
The solenoid valve V is switched so as to return from 18 to the tank 7 via the air-cooling type heat exchanger 19. On the contrary, when the temperature difference between the liquid temperature and the room temperature decreases, the output of the comparator COM 1 becomes “H” level, the relay X 1 is excited, the CM starts operating, and the return cooling liquid is the air-cooled heat exchanger. The solenoid valve V is switched so as to return directly to the tank 7 without passing through 19.

ヒータHの制御はつぎのようにして行なわれる。TH1
抵抗変化は温度に対して負性抵抗特性を示すものとし、
TH1の出力信号は比較器COM2の(−)入力ピン側に与
え、一方、(+)入力ピン側は可変抵抗VR1で設定す
る。液温が高くなって(−)入力ピン側の電位が上がる
と、COM2の出力は“L"となり、リレーX2の励磁をオフと
し、ヒータHの接点をオフとする。反対に、液温が低く
なって(−)入力ピン側の電位が下がると、COM2の出力
は“H"となり、リレーX2の励磁をオンとし、ヒータHの
接点をオンとさせる。このようなオン‐オフ動作で液温
は制御され、VR1による設定値を変えることで基準液温
は任意に変更可能である。
The heater H is controlled as follows. The resistance change of TH 1 shows a negative resistance characteristic with respect to temperature,
The output signal of TH 1 is applied to the (−) input pin side of the comparator COM 2 , while the (+) input pin side is set by the variable resistor VR 1 . When the liquid temperature rises and the potential on the (−) input pin side rises, the output of COM 2 becomes “L”, the excitation of relay X 2 is turned off, and the contact of heater H is turned off. On the contrary, when the liquid temperature becomes low and the potential on the (−) input pin side decreases, the output of COM 2 becomes “H”, the excitation of relay X 2 is turned on, and the contact of heater H is turned on. The liquid temperature is controlled by such on-off operation, and the reference liquid temperature can be arbitrarily changed by changing the set value by VR 1 .

〈発明の効果〉 以上の説明から明らかなように、この発明になる金型冷
却装置は、冷媒圧縮機を運転可能とする冷却液温度範囲
であっても、冷却液と室温の温度差が確保されていれ
ば、自動的に冷媒圧縮機の運転を停止して、空冷式熱交
換器による冷却に切換えるから、装置の消費電力が大幅
に削減することができるし、冷媒圧縮機の運転機会を減
少させる分、装置の耐久性が向上することになって、経
済的である。
<Effects of the Invention> As is clear from the above description, the mold cooling device according to the present invention ensures the temperature difference between the cooling liquid and the room temperature even in the cooling liquid temperature range in which the refrigerant compressor can be operated. If so, the operation of the refrigerant compressor is automatically stopped and the cooling is switched to the cooling by the air-cooled heat exchanger, so that the power consumption of the device can be significantly reduced and the operation opportunity of the refrigerant compressor is reduced. The reduced amount improves the durability of the device, which is economical.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す金型冷却装置の概略
構成図、第2図はその電気回路例、第3図はこの発明に
依らない金型冷却装置の概略構成図である。 4…冷凍装置の蒸発器、7…タンク、7a…タンク上室、
7b…タンク下室、9…金型、10…仕切板、11…通液孔、
12…ヒータ、14a,14b…分岐戻り流路、17a…自動制御装
置、18…切換装置、19…空冷式熱交換器、20…空冷式熱
交換器用流路。
FIG. 1 is a schematic configuration diagram of a mold cooling device showing an embodiment of the present invention, FIG. 2 is an example of its electric circuit, and FIG. 3 is a schematic configuration diagram of a mold cooling device not according to the present invention. 4 ... evaporator of refrigeration system, 7 ... tank, 7a ... tank upper chamber,
7b ... lower chamber of tank, 9 ... mold, 10 ... partition plate, 11 ... liquid passage hole,
12 ... Heater, 14a, 14b ... Branch return flow passage, 17a ... Automatic control device, 18 ... Switching device, 19 ... Air-cooling type heat exchanger, 20 ... Air-cooling type heat exchanger flow passage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金型冷却用の冷却液が入っているタンクの
内部に通液孔を明けた仕切板を取付け、その仕切板を介
してタンク上室は冷凍装置の蒸発器が浸漬する冷却部、
タンク下室はヒータを取付けた加熱部となし、そのタン
ク下室から金型に送って熱交換した冷却液は分岐戻り流
路を経てタンク上室とタンク下室とに戻すようにした金
型冷却装置において、金型から分岐戻り流路に至る流路
中に切換装置を設け、その切換装置と前記分岐戻り流路
との間に空冷式熱交換器を有する空冷式熱交換器用流路
を併設し、冷却液温度と室温の温度差が小さいときは、
前記冷凍装置を駆動するとともに冷却液を前記空冷式熱
交換器を経ずに戻す状態に前記切換装置を切換え、ま
た、冷却液温度と室温の温度差が大きいときは、前記冷
凍装置を停止するとともに冷却液を前記空冷式熱交換器
を経て戻す状態に前記切換装置を切換える自動制御装置
を設けたことを特徴とする金型冷却装置。
1. A cooling system in which a partition plate having liquid passage holes is attached to the inside of a tank containing a cooling liquid for cooling a mold, and the tank upper chamber is immersed in an evaporator of a refrigerating apparatus through the partition plate. Department,
The lower part of the tank is a heating part with a heater attached, and the cooling liquid sent from the lower part of the tank to the mold to exchange heat is returned to the upper part of the tank and the lower part of the tank through a branch return flow path. In the cooling device, a switching device is provided in the flow path from the mold to the branch return flow path, and an air-cooling heat exchanger flow path having an air-cooling heat exchanger is provided between the switching device and the branch return flow path. If the temperature difference between the coolant temperature and room temperature is small,
The switching device is switched to a state in which the cooling device is driven and the cooling liquid is returned without passing through the air-cooling type heat exchanger, and when the temperature difference between the cooling liquid temperature and the room temperature is large, the cooling device is stopped. At the same time, the mold cooling device is provided with an automatic control device for switching the switching device to a state in which the cooling liquid is returned through the air-cooling type heat exchanger.
JP29324187A 1987-11-20 1987-11-20 Mold cooling device Expired - Fee Related JPH0753376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29324187A JPH0753376B2 (en) 1987-11-20 1987-11-20 Mold cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29324187A JPH0753376B2 (en) 1987-11-20 1987-11-20 Mold cooling device

Publications (2)

Publication Number Publication Date
JPH01135605A JPH01135605A (en) 1989-05-29
JPH0753376B2 true JPH0753376B2 (en) 1995-06-07

Family

ID=17792263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29324187A Expired - Fee Related JPH0753376B2 (en) 1987-11-20 1987-11-20 Mold cooling device

Country Status (1)

Country Link
JP (1) JPH0753376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632535B2 (en) * 1988-02-23 1997-07-23 株式会社松井製作所 Mold temperature controller
JPH0528621U (en) * 1991-09-26 1993-04-16 浅賀 朗夫 Mold temperature controller
CN109128121A (en) * 2018-10-30 2019-01-04 苏州奥天诚机械有限公司 Cooling structure for liquid metal solidification

Also Published As

Publication number Publication date
JPH01135605A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
US4094166A (en) Air conditioning control system
US9207001B1 (en) Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation
US4346755A (en) Two stage control circuit for reversible air cycle heat pump
US5245837A (en) Air-conditioning apparatus wherein a plurality of indoor units are connected to outdoor unit
US4314456A (en) Refrigerant condensing system
US2481469A (en) Refrigerating system
US4067383A (en) Heating and cooling system for a multiple coil installation
US6321548B1 (en) Apparatus for automatically closing a cooling system expansion valve in response to power loss
JP2522974B2 (en) Mold cooling device
JPH0753376B2 (en) Mold cooling device
EP0066553B1 (en) Control system for improving the efficiency of cooling or heating appliances
JP2522975B2 (en) Mold cooling device
JPH0533887Y2 (en)
JP2719456B2 (en) Air conditioner
JPS60596Y2 (en) air conditioner
JPS6144125Y2 (en)
JPS62131167A (en) Refrigeration cycle device
JPS5922437Y2 (en) Air conditioning/heating water heater
JPS6321457A (en) Refrigeration cycle device
JPH0547608Y2 (en)
JPS5984052A (en) Method of controlling capability of refrigerator
JPH0334614Y2 (en)
JP2594129B2 (en) Flow control valve control method
KR840000450B1 (en) Control scheme for a solar assisted heat pump
JPH02192566A (en) Controller for cooling and heating regulating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees