JP2522974B2 - Mold cooling device - Google Patents

Mold cooling device

Info

Publication number
JP2522974B2
JP2522974B2 JP29323987A JP29323987A JP2522974B2 JP 2522974 B2 JP2522974 B2 JP 2522974B2 JP 29323987 A JP29323987 A JP 29323987A JP 29323987 A JP29323987 A JP 29323987A JP 2522974 B2 JP2522974 B2 JP 2522974B2
Authority
JP
Japan
Prior art keywords
cooling
tank
mold
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29323987A
Other languages
Japanese (ja)
Other versions
JPH01135603A (en
Inventor
直樹 残松
俊明 川田
正行 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP29323987A priority Critical patent/JP2522974B2/en
Publication of JPH01135603A publication Critical patent/JPH01135603A/en
Application granted granted Critical
Publication of JP2522974B2 publication Critical patent/JP2522974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/007Tempering units for temperature control of moulds or cores, e.g. comprising heat exchangers, controlled valves, temperature-controlled circuits for fluids

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、常温よりも高い所定温度に維持する必要の
あるプラスチック成形用金型の冷却装置に関するもので
ある。
TECHNICAL FIELD The present invention relates to a cooling device for a plastic molding die that needs to be maintained at a predetermined temperature higher than room temperature.

〈従来の技術〉 冷媒圧縮機等と共に冷凍サイクルを構成する蒸発器
を、水またはブラインといった冷却液を貯留するタンク
内に配設して、タンク内の冷却液を冷やすようにした液
体冷却装置については例えば実公昭60−15107号公報に
開示されており、従来公知である。この冷媒圧縮機が運
転可能な冷却液温度は通常40℃以下であり、これよりも
高くなると、冷媒圧縮機の吸入ガスの過熱度が過大とな
って、高圧ガスの温度上昇やモータ巻線温度の異常上昇
を招く惧れが生ずる。
<Prior Art> Liquid cooling device in which an evaporator that constitutes a refrigeration cycle together with a refrigerant compressor or the like is arranged in a tank that stores a cooling liquid such as water or brine to cool the cooling liquid in the tank Is disclosed, for example, in Japanese Utility Model Publication No. 60-15107 and is conventionally known. The coolant temperature at which this refrigerant compressor can operate is usually 40 ° C or lower, and if it is higher than this, the superheat of the suction gas of the refrigerant compressor becomes excessive, and the temperature rise of the high pressure gas and the motor winding temperature. The fear of causing an abnormal rise in

〈発明が解決しようとする問題点〉 上記した冷凍サイクルを用いた液体冷却装置をプラス
チック成形用金型の冷却装置として利用するとき問題と
なる点は、冷媒圧縮機の運転可能としている温度より高
目の冷却液温度に設定されることがあるということであ
る。本出願人は、先に、このような場合でも何等支障な
く運転可能とする第3図に示す金型冷却装置について案
出し、特許出願を行なった。
<Problems to be Solved by the Invention> When a liquid cooling device using the above refrigeration cycle is used as a cooling device for a plastic molding die, a problem is that the temperature is higher than the operating temperature of the refrigerant compressor. This means that the temperature of the eye coolant may be set. The applicant of the present invention has previously devised a patent application for a mold cooling device shown in FIG. 3 that can be operated without any trouble in such a case, and filed a patent application.

第3図に示す金型冷却装置について簡単に説明する
と、Aは冷媒圧縮機1、凝縮器2、ドライヤー3、蒸発
器4、アキュムレータ5等を連結して構成した冷凍サイ
クルの冷媒回路、6はファン、Bはタンク7内に貯留し
た冷却液を循環ポンプ8、金型9を経て再びタンク7に
戻す冷却液循環回路である。このタンク7の内部は通液
孔11を明けた仕切板10によってタンク上室7aとタンク下
室7bとに二分され、タンク上室7aには蒸発器4を配設
し、タンク下室7bには冷却液温度調節用のヒータ12を配
設している。冷却液回路Bは、タンク下室7bと循環ポン
プ8の吸込口とを送り出し配管13によって接続し、特に
金型9からの戻り配管14については、タンク上室7aに繁
がる細い戻り配管14aと、タンク下室7bに繁がる比較的
太い戻り配管14bとの分岐戻り流路となし、且つ後者の
戻り配管14bの内側には流量調整用の抵抗体15と戻り温
度検出用の温度センサ16を設け、温度センサ16の温度信
号は制御回路17に送られて、冷媒圧縮機1の運転並びに
ヒータ12のオン・オフ時間をリニヤに制御するようにし
ている。
Briefly explaining the mold cooling apparatus shown in FIG. 3, A is a refrigerant circuit of a refrigeration cycle constituted by connecting a refrigerant compressor 1, a condenser 2, a dryer 3, an evaporator 4, an accumulator 5 and the like, and 6 is The fan and B are cooling liquid circulation circuits that return the cooling liquid stored in the tank 7 to the tank 7 again via the circulation pump 8 and the mold 9. The inside of the tank 7 is divided into a tank upper chamber 7a and a tank lower chamber 7b by a partition plate 10 having a liquid passage hole 11. An evaporator 4 is provided in the tank upper chamber 7a and a tank lower chamber 7b is provided. Is provided with a heater 12 for adjusting the coolant temperature. The cooling liquid circuit B connects the tank lower chamber 7b and the suction port of the circulation pump 8 by a delivery pipe 13, and particularly the return pipe 14 from the mold 9 is a thin return pipe 14a that is common in the tank upper chamber 7a. And a relatively thick return pipe 14b proliferating in the tank lower chamber 7b and a branch return flow path, and a resistor 15 for flow rate adjustment and a temperature sensor for return temperature detection inside the latter return pipe 14b. A temperature signal from the temperature sensor 16 is sent to the control circuit 17 to linearly control the operation of the refrigerant compressor 1 and the on / off time of the heater 12.

このように、二つの戻り配管14a,14bの管径の相異と
抵抗体15の働きにより、蒸発器4のあるタンク上室7aに
戻る液量を抑制して、譬え冷却液温度が例えば50℃と高
くても、タンク上室7a内の冷却液平均温度を冷媒圧縮機
が運転可能な温度まで下げるようにしたものである。
In this way, the difference in the pipe diameters of the two return pipes 14a and 14b and the function of the resistor 15 suppress the amount of liquid returning to the tank upper chamber 7a in which the evaporator 4 is provided, and the temperature of the cooling liquid is, for example, 50%. Even if it is as high as ℃, the average temperature of the cooling liquid in the tank upper chamber 7a is lowered to a temperature at which the refrigerant compressor can be operated.

しかし、第3図の装置においても、冷却液温度を更に
上げて行くと、運転可能限界を超え、最悪の場合には故
障を招きかねないから、冷凍装置によらない冷却方式に
変えらえるようにしておく必要があるが、かかる冷却方
式で、水冷式熱交換器はチラーまたは水道等に接続しな
ければならないから、かかる外部設備の整備された場所
でないと採用できないといった不便があった。本発明で
はかかる不便を解消することができる金型冷却装置を提
供することを、その目的としている。
However, even in the device shown in FIG. 3, if the temperature of the cooling liquid is further raised, it may exceed the operable limit and in the worst case, it may cause a failure. However, in such a cooling system, the water-cooled heat exchanger has to be connected to a chiller or a water supply, so that there is an inconvenience that the water-cooled heat exchanger can be adopted only in a place where such external equipment is provided. An object of the present invention is to provide a mold cooling device that can eliminate such inconvenience.

〈問題点を解決するための手段〉 本発明は、金型から分岐戻り流路に至る流路中に切換
装置を設け、その切換装置と前記分岐戻り流路との間に
空冷式熱交換器を有する空冷式熱交換器用流路を併設
し、その冷却式熱交換器は前記冷凍装置の凝縮器と平行
に配設し、その空冷式熱交換器と凝縮器のファンを共通
にしたものであっで、これにより設置場所等の制約を受
けることがないようにしたものである。
<Means for Solving Problems> The present invention provides a switching device in a flow path from a mold to a branch return flow path, and an air-cooled heat exchanger between the switching device and the branch return flow path. An air-cooled heat exchanger having a flow path is provided side by side, the cooling-type heat exchanger is arranged in parallel with the condenser of the refrigeration system, and the fan of the air-cooled heat exchanger and the condenser are common. This is to prevent the installation location from being restricted by this.

また、冷却液温度と室温の温度差の大小によりファン
の回転数を制御することによって、温度差とはかかわり
なく空冷式熱交換器の冷却能力を一定に保てるようにし
たものである。
Further, by controlling the rotation speed of the fan depending on the difference between the temperature of the cooling liquid and the room temperature, the cooling capacity of the air-cooling type heat exchanger can be kept constant regardless of the temperature difference.

〈実施例〉 本発明になる実施例を第1図に示す。<Example> An example according to the present invention is shown in FIG.

第1図において、第3図に示した部分や部材と同じも
のには第3図で使った符号と同じ符号を付すことで対比
に便ならしめている。第1図を第3図と対比することに
よって、つぎの点が理解されよう。すなわち、冷却液を
貯留するタンク7が通液孔11を明けた仕切板10によって
上下に二分され、タンク上室7aには冷凍装置の蒸発器4
を、タンク下室7bにはヒータ12を設ける点、冷却液循環
回路Bはタンク下室7bのみ循環ポンプ8の吸込口に冷却
液送り出し配管13で接続するが、金型9からの戻り配管
14は、タンク上室7aに繁がる細い戻り配管14aと、タン
ク下室7bに繁がる比較的太い戻り配管14bとの分岐戻り
流路として、その比較的太い戻り配管14bの内側には流
量調整用の抵抗体15を設けて、蒸発器4のあるタンク上
室7aに戻る冷却液の流量を抑制している点、更に冷却液
の温度センサ16と、その温度センサ16の検出信号で作動
する制御回路17があって、冷媒圧縮機1の運転並びにヒ
ータ12のオン・オフを制御している点で、両者は特別変
ったところはない。
In FIG. 1, the same parts and members as those shown in FIG. 3 are given the same reference numerals as those used in FIG. 3 for convenience. By comparing FIG. 1 with FIG. 3, the following points will be understood. That is, the tank 7 for storing the cooling liquid is divided into upper and lower parts by the partition plate 10 having the liquid passage hole 11 and the evaporator 4 of the refrigerating device is provided in the tank upper chamber 7a.
The heater 12 is provided in the tank lower chamber 7b. In the cooling liquid circulation circuit B, only the tank lower chamber 7b is connected to the suction port of the circulation pump 8 by the cooling liquid delivery pipe 13, but the return pipe from the mold 9 is connected.
14 is a branch return flow path between a thin return pipe 14a that grows in the tank upper chamber 7a and a relatively thick return pipe 14b that grows in the tank lower chamber 7b, and inside the relatively thick return pipe 14b A resistor 15 for adjusting the flow rate is provided to suppress the flow rate of the cooling liquid returning to the tank upper chamber 7a in which the evaporator 4 is provided. Further, the temperature sensor 16 for the cooling liquid and the detection signal of the temperature sensor 16 are used. There is no special change between the two in that there is a control circuit 17 that operates to control the operation of the refrigerant compressor 1 and the on / off of the heater 12.

しかし、第1図の場合は、金型9から分岐戻り流路14
a,14bに至る流路中に、矢印イと矢印ロで示した二つの
方向へ戻り冷却液の流路を切換えることができる、例え
ば三方電磁弁といった切換装置18を設けていて、矢印イ
の方向に流れる場合は前述したところと同様にタンク上
室7aとタンク下室7bとに戻されることになる。しかし、
矢印ロの方向に流れる場合は、その切換装置18から分れ
且つ分岐戻り流路14a,14bを共通とする空冷式熱交換器1
9の流路20に流れたのち、最後はタンク上室7aとタンク
下室7bとに戻されるようになっている。この空冷式熱交
換器19は凝縮器2と並べて配設することで、ファン6の
共通化を図る。図示したようにパイプ内に抵抗体22を設
けたバイパス管21を取付けることによって空冷式熱交換
器19内を通過する冷却液流量つまり熱交換熱量の調整が
可能である。
However, in the case of FIG.
In the flow path to a, 14b, it is possible to switch the flow path of the cooling liquid by returning to the two directions shown by arrow a and arrow b, for example, by providing a switching device 18 such as a three-way solenoid valve, When flowing in the same direction, it is returned to the tank upper chamber 7a and the tank lower chamber 7b in the same manner as described above. But,
When flowing in the direction of arrow B, the air-cooled heat exchanger 1 which is separated from the switching device 18 and has the common branch return flow paths 14a and 14b
After flowing through the flow path 20 of 9, it is finally returned to the tank upper chamber 7a and the tank lower chamber 7b. The air-cooled heat exchanger 19 is arranged side by side with the condenser 2 so that the fan 6 can be used in common. As shown in the figure, by mounting the bypass pipe 21 provided with the resistor 22 in the pipe, the flow rate of the cooling liquid passing through the air-cooled heat exchanger 19, that is, the heat exchange heat amount can be adjusted.

また、第1図の場合は、室温検知用の温度センサ23を
設け、制御回路17には、温度センサ16で検知した液温と
温度センサ23で検知した室温との差により、ファン6の
回転数を制御する自動制御装置17aを包含している。第
2図にはその自動制御回路例を示している。第2図にお
いて、電源トランスTの一次側に設けたスイッチSWをオ
ンとすると、冷媒圧縮機1のモータCMと循環ポンプ8の
モータPMの電気回路は閉回路となるが、ファン6のモー
タFMについては、つぎに説明するとおりである。すなわ
ち、電源トランスTの二次側に整流回路SD1,平滑コンデ
ンサC1,抵抗R1とツェナダイオードZD1および制御トラン
ジスタQ1を設けることで入力電圧が変化しても出力電圧
を一定に保持し、冷却液用の感温体TH1(第1図の符号1
6)と室温用の感温体TH2(第1図の23)を接続すると、
TH1とTH2は温度によって電気抵抗が変るから、TH1とTH2
の出力信号を入力信号とする差動増幅器OP1を設け、そ
の温度差に比例した出力信号を得るようにする。この出
力信号は比較器COM1の(−)入力ピン側に与え、一方、
(+)入力ピン側は全波整流電圧を入力させる。比較器
COM1の出力はフォトトライアックPC1に送り位相制御さ
せる。これにより液温と室温との差が大きいときは位相
が遅れてファンモータFMの回転数が少なくなり、逆に差
が小さいときは位相が進んでファンモータFMの回転数が
多くなる。
Further, in the case of FIG. 1, a temperature sensor 23 for detecting room temperature is provided, and the control circuit 17 rotates the fan 6 due to the difference between the liquid temperature detected by the temperature sensor 16 and the room temperature detected by the temperature sensor 23. It includes an automatic controller 17a for controlling the number. FIG. 2 shows an example of the automatic control circuit. In FIG. 2, when the switch SW provided on the primary side of the power transformer T is turned on, the electric circuits of the motor CM of the refrigerant compressor 1 and the motor PM of the circulation pump 8 are closed circuits, but the motor FM of the fan 6 is closed. Is as described below. That is, by providing the rectifier circuit SD 1 , the smoothing capacitor C 1 , the resistor R 1 , the Zener diode ZD 1 and the control transistor Q 1 on the secondary side of the power transformer T, the output voltage is kept constant even if the input voltage changes. Temperature sensor TH 1 for cooling liquid (1 in Fig. 1
When 6) is connected to the temperature sensor TH 2 (23 in Fig. 1) for room temperature,
Since TH 1 and TH 2 is electrical resistance varies with temperature, TH 1 and TH 2
A differential amplifier OP 1 having the output signal of 1 as an input signal is provided, and an output signal proportional to the temperature difference is obtained. This output signal is given to the (-) input pin side of the comparator COM 1 , while
The full-wave rectified voltage is input to the (+) input pin side. Comparator
The output of COM 1 is sent to Phototriac PC 1 for phase control. As a result, when the difference between the liquid temperature and the room temperature is large, the phase is delayed and the rotation speed of the fan motor FM decreases. Conversely, when the difference is small, the phase advances and the rotation speed of the fan motor FM increases.

ヒータHの制御はつぎのようにして行なわれる。TH1
の抵抗変化は温度に対して負性抵抗特性を示すものと
し、TH1の出力信号は比較器COM2の(−)入力ピン側に
与え、一方、(+)入力ピン側は可変抵抗VR1で設定す
る。液温が高くなって(−)入力ピン側の電位が上がる
と、COM2の出力は“L"となり、リレーX1の励磁をオフと
し、ヒータHの接点をオフとする。反対に液温が低くな
って(−)入力ピン側の電位が下がると、COM2の出力は
“H"となり、リレーX1の励磁をオンとし、ヒータHの接
点をオンとさせる。このようなオン−オフ動作で液温は
制御され、VR1による設定値を変えることで基準液温は
任意に変更可能である。
The heater H is controlled as follows. TH 1
The change in resistance of the comparator shows a negative resistance characteristic with respect to temperature. The output signal of TH 1 is applied to the (−) input pin side of the comparator COM 2 , while the (+) input pin side is connected to the variable resistor VR 1 Set with. When the liquid temperature rises and the potential on the (−) input pin side rises, the output of COM 2 becomes “L”, the excitation of relay X 1 is turned off, and the contact of heater H is turned off. On the contrary, when the liquid temperature becomes low and the potential on the (−) input pin side decreases, the output of COM 2 becomes “H”, the excitation of relay X 1 is turned on, and the contact of heater H is turned on. The liquid temperature is controlled by such an on-off operation, and the reference liquid temperature can be arbitrarily changed by changing the set value by VR 1 .

〈発明の効果〉 以上の説明から明らかなように、この発明になる金型
冷却装置は、冷媒圧縮機を運転不可能とする高温の冷却
液温度の場合は空冷式熱交換器による冷却を行なうこと
ができ、その空冷式熱交換器のようなチラーや水道等の
設備を必要としない簡便性を具備するだけでなく、冷凍
装置の凝縮器と平行に配設することで、一台のファンで
共用できるという利点があるため、装置全体として簡易
化が容易である。また、空冷式熱交換器使用時の冷却液
温度は、冷媒圧縮機の運転が不可能となるような高温で
あるため、室温との温度差は充分であるので、液温制御
に必要な冷却能力は確保される。
<Effects of the Invention> As is clear from the above description, the mold cooling device according to the present invention performs cooling by the air-cooling type heat exchanger when the temperature of the coolant is high enough to render the refrigerant compressor inoperable. In addition to having the convenience of not requiring equipment such as a chiller such as an air-cooled heat exchanger or water supply, it can be installed in parallel with the condenser of the refrigeration system to provide a single fan. Since there is an advantage that it can be shared with, it is easy to simplify the entire device. In addition, the temperature of the cooling liquid when using the air-cooled heat exchanger is so high as to make the refrigerant compressor inoperable, so there is a sufficient temperature difference from room temperature. Ability is secured.

更に液温と室温の温度差でファンの回転数を制御する
ようにしたから、空冷式熱交換器の冷却能力は温度差と
はかかわりなく一定に保持できる。
Further, since the rotation speed of the fan is controlled by the temperature difference between the liquid temperature and the room temperature, the cooling capacity of the air-cooling type heat exchanger can be kept constant regardless of the temperature difference.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す金型冷却装置の概略
構成図、第2図はその電気回路例、第3図はこの発明に
依らない金型冷却装置の概略構成図である。 2……冷凍装置の凝縮器、4……冷凍装置の蒸発器、6
……ファン、7……タンク、7a……タンク上室、7b……
タンク下室、9……金型、10……仕切板、11……通液
孔、12……ヒータ、14a,14b……分岐戻り流路、17a……
自動制御装置、18……切換装置、19……空冷式熱交換
器、20……空冷式熱交換器用流路。
FIG. 1 is a schematic configuration diagram of a mold cooling device showing an embodiment of the present invention, FIG. 2 is an example of its electric circuit, and FIG. 3 is a schematic configuration diagram of a mold cooling device not according to the present invention. 2 ... Refrigerator condenser, 4 ... Refrigerator evaporator, 6
…… Fan, 7 …… Tank, 7a …… Tank upper chamber, 7b ……
Tank lower chamber, 9 ... Mold, 10 ... Partition plate, 11 ... Liquid passage hole, 12 ... Heater, 14a, 14b ... Branch return flow path, 17a ...
Automatic control device, 18 ... Switching device, 19 ... Air-cooling heat exchanger, 20 ... Flow path for air-cooling heat exchanger.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金型冷却用の冷却液が入っているタンクの
内部に通液孔を設けた仕切板を取付け、その仕切板を介
してタンク上室は冷凍装置の蒸発器が浸漬する冷却部と
し、タンク下室から金型に送って熱交換した冷却液は分
岐戻り流路を経てタンク上室とタンク下室とに戻すよう
にした金型冷却装置において、金型から分岐戻り流路に
至る流路中に切換装置を設け、その切換装置と前記分岐
戻り流路との間に空冷式熱交換器を有する空冷式熱交換
器用流路を併設し、その空冷式熱交換器は前記冷凍装置
の凝縮器と平行に配設し、その空冷式熱交換器と凝縮器
のファンを共通にしたことを特徴とする金型冷却装置。
1. A cooling system in which a partition plate having liquid passage holes is attached to the inside of a tank containing a cooling liquid for cooling a mold, and the tank upper chamber is immersed in an evaporator of a refrigerating apparatus through the partition plate. In the mold cooling device in which the cooling liquid sent from the lower chamber of the tank to the mold for heat exchange is returned to the upper chamber of the tank and the lower chamber of the tank through the branch return flow channel, the branch return flow channel from the mold A switching device is provided in the flow path leading to, and an air-cooling heat exchanger flow path having an air-cooling heat exchanger is provided between the switching device and the branch return flow path, and the air-cooling heat exchanger is A mold cooling device, which is arranged in parallel with a condenser of a refrigeration system and has a common fan for the air-cooling type heat exchanger and the condenser.
【請求項2】金型冷却用の冷却液が入っているタンクの
内部に通液孔を設けた仕切板を取付け、その仕切板を介
してタンク上室は冷凍装置の蒸発器が浸漬する冷却部と
し、タンク下室から金型に送って熱交換した冷却液は分
岐戻り流路を経てタンク上室とタンク下室とに戻すよう
にした金型冷却装置において、金型から分岐戻り流路に
至る流路中に切換装置を設け、その切換装置と前記分岐
戻り流路との間に空冷式熱交換器を有する空冷式熱交換
器用流路を併設し、その空冷式熱交換器は前記冷凍装置
の凝縮器と平行に配設し、その空冷式熱交換器と凝縮器
のファンを共通にし、冷却液温度と室温の温度差が小さ
いときにはファンの回転数を上げ、また冷却液温度と室
温の温度差が大きいときにはファンの回転数を下げる自
動制御装置を設けたことを特徴とする金型冷却装置。
2. A cooling system in which a partition plate having liquid passage holes is attached to the inside of a tank containing a cooling liquid for cooling a die, and the tank upper chamber is immersed in the evaporator of the refrigerating apparatus through the partition plate. In the mold cooling device in which the cooling liquid sent from the lower chamber of the tank to the mold for heat exchange is returned to the upper chamber of the tank and the lower chamber of the tank through the branch return flow channel, the branch return flow channel from the mold A switching device is provided in the flow path leading to, and an air-cooling heat exchanger flow path having an air-cooling heat exchanger is provided between the switching device and the branch return flow path, and the air-cooling heat exchanger is It is arranged in parallel with the condenser of the refrigeration system, the air-cooling type heat exchanger and the condenser fan are shared, and when the temperature difference between the cooling liquid temperature and room temperature is small, the fan rotation speed is increased and the cooling liquid temperature Provided with an automatic control device that lowers the rotation speed of the fan when the temperature difference between room temperatures is large Mold cooling device, characterized in that.
JP29323987A 1987-11-20 1987-11-20 Mold cooling device Expired - Fee Related JP2522974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29323987A JP2522974B2 (en) 1987-11-20 1987-11-20 Mold cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29323987A JP2522974B2 (en) 1987-11-20 1987-11-20 Mold cooling device

Publications (2)

Publication Number Publication Date
JPH01135603A JPH01135603A (en) 1989-05-29
JP2522974B2 true JP2522974B2 (en) 1996-08-07

Family

ID=17792235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29323987A Expired - Fee Related JP2522974B2 (en) 1987-11-20 1987-11-20 Mold cooling device

Country Status (1)

Country Link
JP (1) JP2522974B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632535B2 (en) * 1988-02-23 1997-07-23 株式会社松井製作所 Mold temperature controller
JP4848780B2 (en) 2006-01-27 2011-12-28 トヨタ自動車株式会社 Control device for cooling fan
JP2008075988A (en) * 2006-09-22 2008-04-03 Hitachi Metals Ltd Composite heat radiating member, cooling unit, cooling system and cooling system assembly
CN105268954B (en) * 2015-10-09 2017-12-12 盐城市高跃机械有限公司 A kind of air-cooled equipment of energy-saving mould
CN112277206A (en) * 2020-10-10 2021-01-29 滁州恒锐科技发展有限公司 Mould for aviation packing box

Also Published As

Publication number Publication date
JPH01135603A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
US4003729A (en) Air conditioning system having improved dehumidification capabilities
US9207001B1 (en) Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation
US4549404A (en) Dual pump down cycle for protecting a compressor in a refrigeration system
US3238737A (en) Heated receiver winter control for refrigeration systems
US4120173A (en) Head pressure control system for refrigeration apparatus
US2071178A (en) Air conditioning system
JPS6325458A (en) Method and device for controlling surge of refrigeration system
US3324672A (en) Electrically controlled conditioning system
CN112066521B (en) Control system and method for low-load dehumidification precise air conditioner
US3159981A (en) Heat pump including frost control means
JP2522974B2 (en) Mold cooling device
US3123986A (en) Combined refrigerator
US6321548B1 (en) Apparatus for automatically closing a cooling system expansion valve in response to power loss
GB2134237A (en) Air conditioning apparatus
US4324288A (en) Level supply air temperature multi-zone heat pump system and method
JPH0753376B2 (en) Mold cooling device
US3267994A (en) Household conditioning system
JP2522975B2 (en) Mold cooling device
US3279206A (en) Absorption refrigeration systems
EP3312425B1 (en) System and method for feeding and controlling a variable capacity compressor and a cooler comprising a variable capacity compressor
JPH0534578B2 (en)
JP2504997Y2 (en) Air conditioner
US3675438A (en) Refrigerator with fluid amplifier means
GB2148553A (en) Heat pump system
CN217274980U (en) Intelligent temperature adjusting equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees