JPH0752342A - Laminated sheet for molding - Google Patents

Laminated sheet for molding

Info

Publication number
JPH0752342A
JPH0752342A JP20083593A JP20083593A JPH0752342A JP H0752342 A JPH0752342 A JP H0752342A JP 20083593 A JP20083593 A JP 20083593A JP 20083593 A JP20083593 A JP 20083593A JP H0752342 A JPH0752342 A JP H0752342A
Authority
JP
Japan
Prior art keywords
resin
laminated sheet
sheet
molding
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20083593A
Other languages
Japanese (ja)
Inventor
Teiichi Sato
禎一 佐藤
Tsutomu Matsuoka
勉 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20083593A priority Critical patent/JPH0752342A/en
Publication of JPH0752342A publication Critical patent/JPH0752342A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molding laminated sheet based on a polypropylene resin not generating the wrinkles or thickness irregularity in a molded product due to sagging, excellent in thermal moldability and improved in gas barrier properties to a large extent. CONSTITUTION:In a molding laminated sheet wherein a polypropylene resin layer is laminated to at least the single surface of a gas barrier resin layer, the thermal shrinkage stress measured according to ASTM-D-1504 of the molding laminated sheet shows the max. value of 100-300g/cm<2> within the temp. range of the m.p. of a polypropylene resin - the m.p. +20 deg.C and the thickness ratio of the polypropylene resin layer with respect to the total thickness of the molding laminated sheet is 70% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空成形や圧空成形と
いった熱成形により容器等に成形して、食品等の包装に
利用される、ポリプロピレン系樹脂を主体としたガスバ
リヤー性成形用積層シートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated sheet for gas barrier molding, which is mainly composed of polypropylene resin and is used for packaging of food etc. by molding it into a container by thermoforming such as vacuum forming or pressure forming. Regarding

【0002】[0002]

【従来の技術】塩化ビニリデン系共重合体やエチレンー
ビニルアルコール共重合体等のガスバリヤー性樹脂層の
少なくとも片面に、接着層を介してポリプロピレン系樹
脂層を積層した成形用積層シートは、真空成形や圧空成
形といった熱成形により容器等に成形し、ガスバリヤー
性の必要な食品等の包装に広く用いられている。
2. Description of the Related Art A laminated sheet for molding in which a polypropylene resin layer is laminated on at least one surface of a gas barrier resin layer such as a vinylidene chloride copolymer or an ethylene-vinyl alcohol copolymer with an adhesive layer, Molded into containers and the like by thermoforming such as molding and pressure molding, it is widely used for packaging foods and the like that require gas barrier properties.

【0003】このような積層シートは、一般的に共押出
法もしくは熱ラミネート法により製造される。共押出法
とは、複数の押出機より樹脂を同時に押出し、積層用T
ダイにより積層しシート状として、キャストローラーで
固化させる方法である。熱ラミネート法とは、予め成形
しておいたガスバリヤー性フィルムに接着剤を塗布し、
その上にTダイより押出した溶融したポリプロピレン系
樹脂層を重ね合わせる方法である。
Such a laminated sheet is generally produced by a coextrusion method or a heat laminating method. The co-extrusion method is a method in which resins are simultaneously extruded from a plurality of extruders and used for laminating T.
This is a method of stacking with a die to form a sheet and solidifying with a cast roller. The heat lamination method is to apply an adhesive to a gas barrier film that has been formed in advance,
In this method, a molten polypropylene resin layer extruded from a T-die is superposed on it.

【0004】この積層シートは実質的に無配向状態で、
熱成形加工時の熱による寸法変化がなく、型に添った大
きな伸び変形が得られる点で、延伸配向された積層シー
トとは異なる性質を有している。反面、この成形用積層
シートの熱成形における課題は、成形のための加熱時に
シートが自重により垂れ下がってしまう不良現象で、こ
の不良現象は一般にsagと呼ばれている。このsag
が発生すると、成形品に皺が寄ったり、成形品の厚みが
偏肉する不良品の原因となる。この現象はポリプロピレ
ン系の成形用シートに総じて見られるが、特にガスバリ
ヤー性樹脂との積層シートにおいては、ガスバリヤー性
樹脂の溶融張力が低いため顕著となる。しかも、昨今で
は食品の長期保存化等により、より一層のガスバリヤー
性向上が要求されており、このためガスバリヤー性樹脂
層の厚みを増そうとするが、これによりsagは大きく
なってしまうので、sagに対する有効な対策が切望さ
れている。このsagを未然に防ぐための方策として、
高い溶融粘度を持つポリプロピレン系樹脂を用いる方法
が特開昭61−79650号公報に提案されている。
This laminated sheet is in a substantially non-oriented state,
The laminated sheet has properties different from those of the stretch-oriented laminated sheet in that there is no dimensional change due to heat during thermoforming and a large elongation deformation along with the mold can be obtained. On the other hand, a problem in thermoforming the laminated sheet for molding is a defective phenomenon in which the sheet hangs down by its own weight during heating for molding, and this defective phenomenon is generally called sag. This sag
When this occurs, the molded product is wrinkled or the thickness of the molded product becomes uneven, which causes defective products. This phenomenon is generally observed in polypropylene-based molding sheets, but it is particularly noticeable in a laminated sheet with a gas barrier resin because the melt tension of the gas barrier resin is low. Moreover, in recent years, further improvement in gas barrier property is required due to long-term storage of foods and the like, and therefore, it is attempted to increase the thickness of the gas barrier resin layer, but as a result, sag becomes large. , Sag has been earnestly desired. As a measure to prevent this sag,
A method using a polypropylene resin having a high melt viscosity is proposed in Japanese Patent Laid-Open No. 61-79650.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、高い溶
融粘度例えばメルトフローレート(MFR)が0.2g
/10分(ASTM−D−1238,230℃)の値を
持つポリプロピレン樹脂を用いた積層シートを実際に熱
成形してみると、必ずしもsagを充分防ぎ切れず、そ
のため成形品に皺が寄ったり、成形品の厚みが偏肉して
良品が取れないことになる。このように、上記特開昭6
1−79650号公報の提案は、高溶融粘度樹脂の持つ
低い熱流動性をsag防止対策に利用しようとしたもの
と考えられるが、低い熱流動性はsagの大きさの抑制
にはなり得てもsag発生防止の根本対策にはならず、
熱成形時にあっては型に添って伸びる伸び変形を悪化さ
せる原因になるものと推察される。また、高い溶融粘度
を持つポリプロピレン系樹脂は高い押出加工温度を必要
とするので、これに隣接するガスバリヤー性樹脂の熱変
色・劣化を伴わせる問題点もある。
However, the high melt viscosity, for example, the melt flow rate (MFR) is 0.2 g.
When actually thermoforming a laminated sheet using a polypropylene resin having a value of / 10 minutes (ASTM-D-1238, 230 ° C), it is not always possible to sufficiently prevent sag, and therefore the molded product may be wrinkled. However, the thickness of the molded product is uneven and it is impossible to obtain a good product. Thus, the above-mentioned JP-A-6
It is considered that the proposal of Japanese Patent Laid-Open No. 1-79650 tries to utilize the low heat fluidity of the high melt viscosity resin for the sag prevention measure, but the low heat fluidity can suppress the size of sag. Is not a fundamental measure to prevent sag,
It is presumed that at the time of thermoforming, it becomes a cause of exacerbating the elongation deformation along the mold. In addition, since polypropylene resins having a high melt viscosity require a high extrusion processing temperature, there is a problem in that the gas barrier resin adjacent thereto has a thermal discoloration / deterioration.

【0006】本発明者らは、上記従来技術のもつ課題を
解決するため鋭意検討した結果、ガスバリヤー性樹脂を
劣化・変色させることなく、熱成形において、sagに
よる成形不良が無く、且つ型再現性に優れ、ガスバリヤ
ー性を改善した成形用積層シートを提供することを見出
したのである。
The inventors of the present invention have conducted extensive studies to solve the above problems of the prior art, and as a result, did not cause deterioration or discoloration of the gas barrier resin, did not have molding defects due to sag in thermoforming, and reproduced the mold. It has been found that a laminated sheet for molding having excellent properties and improved gas barrier property is provided.

【0007】[0007]

【課題を解決するための手段】本発明は上記の課題を解
決するためのものである。すなわち、本発明は、ガスバ
リヤー性樹脂層の少なくとも片面に、接着層を介してポ
リプロピレン系樹脂層を積層した成形用積層シートにお
いて、該成形用積層シートのASTM−D−1504で
測定した熱収縮応力がポリプロピレン系樹脂の融点〜融
点+20℃の温度領域で最大値の100g/cm2 〜3
00g/cm2 の値を示し、上記成形用積層シートの全
厚みに占めるポリプロピレン系樹脂層の厚み割合が70
%以上であることを特徴とする成形用積層シートであ
る。
The present invention is to solve the above problems. That is, the present invention relates to a molding laminated sheet in which a polypropylene resin layer is laminated on at least one side of a gas barrier resin layer via an adhesive layer, and the heat shrinkage measured by ASTM-D-1504 of the molding laminated sheet. The maximum stress is 100 g / cm 2 to 3 in the temperature range of the melting point of polypropylene-based resin to the melting point + 20 ° C.
A value of 00 g / cm 2 is shown, and the thickness ratio of the polypropylene resin layer to the total thickness of the molding laminated sheet is 70.
%, Which is a laminated sheet for molding.

【0008】以下、本発明の内容を図面等を用いて詳述
する。本発明の積層シートが従来品と相違する所は、 積層シートのASTM−D−1504で測定した熱収
縮応力がポリプロピレン系樹脂の融点〜融点+20℃の
温度領域で最大値の100g/cm2 〜300g/cm
2 の値を示すこと。
The contents of the present invention will be described in detail below with reference to the drawings. The difference between the laminated sheet of the present invention and the conventional product is that the thermal shrinkage stress of the laminated sheet measured by ASTM-D-1504 is 100 g / cm 2 of the maximum value in the temperature range of the melting point of the polypropylene resin to the melting point + 20 ° C. 300 g / cm
Indicate a value of 2 .

【0009】積層シートの全厚みに占めるポリプロピ
レン系樹脂層の厚み割合が70%以上であることの2つ
である。 の必要性は、熱成形時に樹脂が流動状態に達しても、
緊張状態を維持してシートの自重による垂れ下がりを防
ぐためである。熱収縮応力が100g/cm2〜300
g/cm2 の値を示す必要性は、100g/cm2 より
小さいと緊張状態を維持できずシートの自重により垂れ
下がってしまい、300g/cm2 より大きいと型に添
って伸びる伸び変形が悪化する不良が発生するからであ
る。また、熱収縮応力がポリプロピレン系樹脂の融点〜
融点+20℃の温度領域で最大値を示す必要性は、最大
値がポリプロピレン系樹脂の融点より低いと成形時の熱
による寸法変化が大きく実質上成形が不可能になり、融
点+20℃より高いと成形時に緊張状態を維持できない
からである。
The thickness ratio of the polypropylene resin layer to the total thickness of the laminated sheet is 70% or more. The need for is that even if the resin reaches a fluidized state during thermoforming,
This is to maintain tension and prevent the seat from hanging down due to its own weight. Heat shrinkage stress is 100 g / cm 2 to 300
The need to show a value of g / cm 2 is that if it is less than 100 g / cm 2 , the tension cannot be maintained and the sheet hangs down due to its own weight, and if it is more than 300 g / cm 2 , the elongation deformation along with the mold deteriorates. This is because a defect will occur. In addition, the thermal shrinkage stress is
The need to show the maximum value in the temperature range of melting point + 20 ° C is that if the maximum value is lower than the melting point of polypropylene resin, dimensional change due to heat during molding is large and molding becomes substantially impossible, and if it is higher than melting point + 20 ° C. This is because the tension state cannot be maintained during molding.

【0010】そして、の条件を満たし且つの条件を
満足すれば、sagの無い良好な成形が可能となる。す
なわち、ポリプロピレン系樹脂以外の熱可塑性樹脂、例
えばガスバリヤー性樹脂等の熱成形性が悪い樹脂でも、
その厚みの合計がシートの全厚みの30%未満であれば
良い。従来の積層シートでは、ガスバリヤー性樹脂層を
増すとsagが増大するので、その厚み割合はせいぜい
3%を越えることはできなかったが、本発明のシートで
は、ガスバリヤー性樹脂層の厚み割合は接着層の介在を
考慮して最大25%にすることが可能となる。これによ
り積層シートのガスバリヤー性を大幅に向上できる。
When the condition (1) is satisfied and the condition (2) is satisfied, good molding without sag becomes possible. That is, even a thermoplastic resin other than polypropylene resin, for example, a resin having poor thermoformability such as a gas barrier resin,
The total thickness may be less than 30% of the total thickness of the sheet. In the conventional laminated sheet, when the gas barrier resin layer is increased, the sag increases, so the thickness ratio could not exceed 3% at most, but in the sheet of the present invention, the gas barrier resin layer thickness ratio. Can be made 25% at maximum considering the interposition of the adhesive layer. This can significantly improve the gas barrier properties of the laminated sheet.

【0011】図1は本発明の積層シートを得るに有益な
製造工程の概念図である。図1において本発明の積層シ
ートを製造方法(共押出法)は、押出機1からはポリプ
ロピレン系樹脂を、押出機2からは接着剤樹脂を、押出
機3からはガスバリヤー性樹脂をそれぞれ溶融供給し、
多層用Tダイ4で合流させ、層構成がポリプロピレン系
樹脂/接着剤樹脂/ガスバリヤー性樹脂/接着剤樹脂/
ポリプロピレン系樹脂となるよう積層シートにする。T
ダイ4によりシート状となった積層溶融樹脂はキャスト
ローラー5により冷却固化され、積層シート9となる。
積層シート9は引取ローラー6を通り、トリムカッター
7によりトリム部をカットされ、巻取機8により円筒状
に巻き取られる。
FIG. 1 is a conceptual diagram of a manufacturing process useful for obtaining the laminated sheet of the present invention. In FIG. 1, a method for producing a laminated sheet of the present invention (coextrusion method) is performed by melting a polypropylene resin from an extruder 1, an adhesive resin from an extruder 2, and a gas barrier resin from an extruder 3. Supply,
Combined with multi-layer T-die 4 and the layer structure is polypropylene resin / adhesive resin / gas barrier resin / adhesive resin /
The laminated sheet is made of polypropylene resin. T
The laminated molten resin that has been formed into a sheet by the die 4 is cooled and solidified by the cast roller 5 to form the laminated sheet 9.
The laminated sheet 9 passes through the take-up roller 6, the trim portion is cut by the trim cutter 7, and is wound into a cylindrical shape by the winder 8.

【0012】この際に重要な条件は、第1に、Tダイ4
のリップ部分を通過する樹脂流の流動速度とキャストロ
ーラー5の樹脂流と最初に接触するローラーの表面速度
との比を1.5〜3、さらに好適には2〜2.5とする
ことである。これにより、樹脂分子を伸長配向させ、無
延伸シートでも熱収縮応力を発現するようになる。速度
比が1.5より小さいと樹脂分子が充分に伸長配向され
ずシートの熱収縮応力が100g/cm2 以上とならな
い。速度比が3より大きくしてももはや熱収縮応力は大
きくならず、反面、ネックインによるシートの幅方向の
厚み斑および層を構成する各樹脂の幅方向の厚み斑を生
ずることになる。
The important conditions in this case are, firstly, the T-die 4
By setting the ratio of the flow velocity of the resin flow passing through the lip portion of the cast roller 5 to the surface velocity of the roller first contacting the resin flow of the cast roller 5 to 1.5 to 3, and more preferably 2 to 2.5. is there. As a result, the resin molecules are stretched and oriented, and even the non-stretched sheet develops heat shrinkage stress. If the speed ratio is less than 1.5, the resin molecules are not sufficiently stretch-oriented, and the heat shrinkage stress of the sheet does not exceed 100 g / cm 2 . Even if the speed ratio is larger than 3, the heat shrinkage stress is no longer large, but on the other hand, uneven thickness in the width direction of the sheet due to neck-in and uneven thickness in the width direction of each resin constituting the layer are generated.

【0013】第2に、Tダイ4のダイ出口からキャスト
ローラー5における溶融樹脂の伸長速度を5以上とす
る。伸長速度が5より小さいと樹脂分子が充分に伸長配
向されずシートの熱収縮応力が100g/cm2 以上に
はなり難い。尚、ここで言う伸長速度とは、Tダイ4の
ダイリップ部分を通過する樹脂流の流動速度と最初に接
触するローラーの表面速度との比をTダイ4の出口から
キャストローラー5までの距離(m)で除した値であ
る。
Secondly, the elongation rate of the molten resin from the die exit of the T die 4 to the cast roller 5 is set to 5 or more. If the elongation rate is less than 5, the resin molecules are not sufficiently elongated and oriented, and it is difficult for the heat shrinkage stress of the sheet to reach 100 g / cm 2 or more. The extension speed here means the ratio of the flow speed of the resin flow passing through the die lip portion of the T die 4 to the surface speed of the roller that comes into contact first with the distance from the outlet of the T die 4 to the cast roller 5 ( It is the value divided by m).

【0014】第3に、樹脂流がキャストローラー5と最
初に接触する点より10mmTダイ4寄りの位置する樹
脂流の表面温度と、その位置より10秒下流側に移動し
た位置における冷却固化されたシートの表面温度との差
を100℃以上とする。100℃より小さいと冷却速度
が不十分なので応力緩和が起こり、シートの熱収縮応力
が100g/cm2 以上にはなり難い。尚、樹脂流なら
びにシートの表面温度は赤外線を利用した非接触型の温
度計により測定する。
Thirdly, the surface temperature of the resin flow located 10 mmT from the point where the resin flow first contacts the cast roller 5 and the surface temperature of the resin flow, and cooling and solidification at a position moved 10 seconds downstream from that position. The difference from the surface temperature of the sheet is 100 ° C. or higher. If the temperature is lower than 100 ° C., the cooling rate is insufficient and stress relaxation occurs, so that the heat shrinkage stress of the sheet is hard to reach 100 g / cm 2 or more. The resin flow and the surface temperature of the sheet are measured by a non-contact type thermometer using infrared rays.

【0015】本発明のガスバリヤー性樹脂には公知の樹
脂を使用できるが、好適には塩化ビニリデン系共重合
体、乃至エチレン−ビニルアルコール共重合体である。
本発明で言う塩化ビニリデン系共重合体とは、塩化ビニ
リデンを主成分とし、これと共重合しうる単量体との共
重合体であり、好適には塩化ビニリデン/塩化ビニル共
重合体乃至塩化ビニリデン/メチルアクリレート共重合
体が使用される。また、本発明で言うエチレン−ビニル
アルコール共重合体とは、エチレン或いはエチレンを主
体とし、他にプロピレン等のオレフィンを少量含む単位
と酢酸ビニル等のビニルエステル単位の鹸化で得られた
ビニルアルコール単位を有する共重合体である。
As the gas barrier resin of the present invention, known resins can be used, but vinylidene chloride copolymers or ethylene-vinyl alcohol copolymers are preferred.
The vinylidene chloride copolymer referred to in the present invention is a copolymer containing vinylidene chloride as a main component and a monomer copolymerizable therewith, preferably vinylidene chloride / vinyl chloride copolymer or chloride. Vinylidene / methyl acrylate copolymer is used. The ethylene-vinyl alcohol copolymer referred to in the present invention is a vinyl alcohol unit obtained by saponification of a unit containing ethylene or ethylene as a main component and a small amount of an olefin such as propylene and a vinyl ester unit such as vinyl acetate. Is a copolymer having

【0016】本発明に使用するポリプロピレン系樹脂
(ブレンド品を含む)のMFR(ASTM−D−123
8、230℃)は0.3g/10分〜3g/10分、好
ましくは0.5g/10分〜2g/10分が適してい
る。0.3g/10分より小さいと押出成形が困難とな
り、3g/10分を越えると、シートの持つ熱収縮応力
の値を100g/cm2 以上にすることが難しくなるか
らである。
MFR (ASTM-D-123) of polypropylene resins (including blended products) used in the present invention
8, 230 ° C.) is 0.3 g / 10 minutes to 3 g / 10 minutes, preferably 0.5 g / 10 minutes to 2 g / 10 minutes. This is because if it is less than 0.3 g / 10 minutes, extrusion molding becomes difficult, and if it exceeds 3 g / 10 minutes, it becomes difficult to make the value of the heat shrinkage stress of the sheet 100 g / cm 2 or more.

【0017】本発明において接着層には、ポリプロピレ
ン系樹脂とガスバリヤー性樹脂に接着性のある公知の樹
脂を使用すれば良く、好適にはエチレン酢酸ビニル共重
合体、不飽和カルボン酸変性ポリオレフィンなどがあ
る。本発明のシートは、ガスバリヤー性樹脂層の少なく
とも片面に、接着層を介してポリプロピレン系樹脂層を
積層したものを最小構成とする。必要に応じて、他の樹
脂層を設けても構わない。積層方法は必ずしも前述した
共押出法である必要は無く、熱ラミネート法でも構わな
い。その際には、ポリプロピレン系樹脂層をラミネート
するときの条件が共押出法で前述した条件に当てはまれ
ば良い。
In the present invention, the adhesive layer may be made of a known resin having adhesiveness to polypropylene resin and gas barrier resin, preferably ethylene vinyl acetate copolymer, unsaturated carboxylic acid modified polyolefin and the like. There is. The sheet of the present invention has a minimum structure in which a polypropylene resin layer is laminated on at least one surface of a gas barrier resin layer via an adhesive layer. Other resin layers may be provided as necessary. The laminating method is not necessarily the coextrusion method described above, and may be the thermal laminating method. In that case, the conditions for laminating the polypropylene resin layer may be the same as those described above in the coextrusion method.

【0018】本発明の積層シートの厚みは特に制限はな
いが、0.1mm〜2mmが好適である。
The thickness of the laminated sheet of the present invention is not particularly limited, but 0.1 mm to 2 mm is preferable.

【0019】[0019]

【実施例】以下、本発明を実施例に基づき説明する。ま
た、本発明で使用している評価方法、評価尺度を下記に
示す。 (A)シートの熱収縮応力測定:ASTM−D−150
4に準拠して測定した。測定条件を以下に記す。
EXAMPLES The present invention will be described below based on examples. The evaluation method and evaluation scale used in the present invention are shown below. (A) Sheet heat shrinkage stress measurement: ASTM-D-150
It measured based on 4. The measurement conditions are described below.

【0020】○サンプル チャック間距離…100mm サンプル幅 …20mm シートの流れ方向をサンプルの長さ方向となるようにサ
ンプリングした。 ○加熱方法…シリコンオイルバス ○測定回数…10回行い平均をとった。
Sample distance between chucks: 100 mm Sample width: 20 mm The samples were sampled so that the sheet flow direction was the sample length direction. ○ Heating method: Silicone oil bath ○ Number of measurements: 10 times and averaged.

【0021】(B)シートの成形性評価: ○成形機…FLV341型成形機〔(株)浅野研究所
製〕 ○成形方法…プラグアシスト真空成形 ○成形容器の形状…口径70mmの円形容器,高さ:2
0、40、60mm ○一度に成形した容器数…7×7=49個 ○成形性評価法…7×7=49個のうち四隅の成形容器
の厚み分布を評価(容器のこの位置が最も厚み斑を生じ
やすいため) ○厚み分布の評価法…容器側壁の中間すなわち容器高さ
の半分の位置の厚みを、容器底面の円の中心の厚みで除
した値で評価(熱成形容器では側壁の中間が最も薄く、
底面の円の中心が最も厚くなるため) 1に近いほど厚み斑の小さい良好な成形性を表わす。
(B) Evaluation of sheet formability: Molding machine: FLV341 type molding machine [manufactured by Asano Laboratory Co., Ltd.] Molding method: Plug-assist vacuum molding ○ Shape of molding container: circular container with 70 mm diameter, high S: 2
0, 40, 60 mm ○ Number of containers molded at one time: 7 × 7 = 49 ○ Moldability evaluation method: 7 × 7 = 49 evaluation of the thickness distribution of the molded containers at the four corners (this position of the container is the thickest) Evaluation method for thickness distribution: The thickness at the middle of the container side wall, that is, at half the container height, is divided by the thickness of the center of the circle on the bottom surface of the container. The middle is the thinnest,
Since the center of the circle on the bottom is thickest, the closer it is to 1, the better the formability with less thickness unevenness.

【0022】以下容器の厚み比と表1、2で表記 ○良好な範囲…容器の厚み比が0.5以上The thickness ratio of the container is shown below and shown in Tables 1 and 2. Good range ... The thickness ratio of the container is 0.5 or more.

【0023】[0023]

【実施例1】図1に示した押出成膜装置でポリプロピレ
ン/ポリ塩化ビニリデン積層シートを押出成膜した。す
なわち、押出機1〔径65mm,L/D32〕にはポリ
プロピレン樹脂〔C樹脂=融点:165℃,MFR:1
g/10分(230℃)〕を、押出機2〔径30mm,
L/D28〕にはエチレン−酢酸ビニル共重合体樹脂
〔B樹脂=酢酸ビニル含有量:26%,MFR4g/1
0分(190℃)〕を、押出機3〔径30mm,L/D
24〕にはポリ塩化ビニリデン系樹脂〔A樹脂=塩化ビ
ニリデン成分/塩化ビニル成分:90/10〕をそれぞ
れ供給し押出して、多層用Tダイ4〔幅800mm〕で
合流させて、樹脂の構成並びに構成比がC/B/A/B
/C=45/2/6/2/45のシート状の溶融体を
得、キャストローラー5〔径300mm、幅1000m
m〕で冷却固化して、全厚み1.0mmの5層シートを
得た。
Example 1 A polypropylene / polyvinylidene chloride laminated sheet was extruded into a film by the extrusion film forming apparatus shown in FIG. That is, in the extruder 1 [diameter 65 mm, L / D32], polypropylene resin [C resin = melting point: 165 ° C., MFR: 1
g / 10 minutes (230 ° C.)], extruder 2 [diameter 30 mm,
L / D28] is an ethylene-vinyl acetate copolymer resin [B resin = vinyl acetate content: 26%, MFR 4 g / 1.
0 minutes (190 ° C)], extruder 3 [diameter 30 mm, L / D
24], polyvinylidene chloride-based resin [A resin = vinylidene chloride component / vinyl chloride component: 90/10] is supplied and extruded, and they are merged by a multi-layer T die 4 [width 800 mm], and the resin composition and Composition ratio is C / B / A / B
/ C = 45/2/6/2/45 sheet-shaped melt was obtained, and cast roller 5 [diameter 300 mm, width 1000 m
m] to solidify by cooling to obtain a 5-layer sheet having a total thickness of 1.0 mm.

【0024】この際の押出成膜条件は、全押出量50K
g/時間、樹脂温度220℃、Tダイ4のリップ間隔を
2.0mm、Tダイ4の出口とキャストローラー5の第
1ピンチ部、すなわち樹脂流が最初に上記キャストロー
ラー5に接触する部分との間の距離は200mm、キャ
ストローラーの表面速度を1.13m/分、キャストロ
ーラーの表面温度を50℃とした。
The extrusion film forming conditions at this time are as follows: total extrusion amount 50K
g / hour, resin temperature 220 ° C., lip interval of T die 4 is 2.0 mm, outlet of T die 4 and first pinch portion of cast roller 5, that is, a portion where the resin flow first contacts the cast roller 5. The distance was 200 mm, the surface speed of the cast roller was 1.13 m / min, and the surface temperature of the cast roller was 50 ° C.

【0025】基本条件は、Tダイ4のリップ部分を通過
する樹脂流の流動速度とこの樹脂流が最初に接触するキ
ャストローラー5での樹脂流の表面速度との比を2.0
とし、この表面速度との比をTダイ4の出口からキャス
トローラ5までの距離で除した値、すなわち樹脂流の伸
張速度が10になるように設定した。また、キャストロ
ーラー5の第1ピンチ部より10mmTダイ4寄りに位
置する樹脂流の表面温度は200℃、その位置より10
秒下流側に移動した位置におけるシートの表面温度は7
0℃であり、その差を130℃とした。
The basic condition is that the ratio of the flow velocity of the resin flow passing through the lip portion of the T die 4 to the surface velocity of the resin flow on the cast roller 5 with which the resin flow first contacts is 2.0.
The value obtained by dividing the ratio with the surface speed by the distance from the outlet of the T die 4 to the cast roller 5, that is, the extension speed of the resin flow was set to 10. Further, the surface temperature of the resin flow located closer to the 10 mmT die 4 than the first pinch portion of the cast roller 5 is 200 ° C.
The surface temperature of the sheet at the position moved to the downstream side is 7 seconds.
It was 0 ° C, and the difference was 130 ° C.

【0026】シート幅が650mmとなるようシートの
両側をトリムカッター6によりカットし、巻取機8によ
り円筒状に巻き取って目的とするシートを得た。AST
M−D−1504に準拠して測定したシートの熱収縮応
力は175℃で最大となり、その値は160g/cm2
であった。また積層シートの全厚みに占めるポリプロピ
レン系樹脂層の厚み割合は90%である。
Both sides of the sheet were cut by the trim cutter 6 so that the sheet width became 650 mm, and the sheet was wound into a cylindrical shape by the winder 8 to obtain the target sheet. AST
The heat shrinkage stress of the sheet measured according to MD-1504 reaches a maximum at 175 ° C., and the value is 160 g / cm 2.
Met. The thickness ratio of the polypropylene resin layer to the total thickness of the laminated sheet is 90%.

【0027】[0027]

【実施例2】Tダイ4のリップ間隔を1.5mmとし、
Tダイ4のリップ部分を通過する樹脂流の流動速度とこ
の樹脂流が最初に接触するキャストローラー5での樹脂
流の表面速度との比を1.5とし、樹脂流の伸張速度を
7.5になるように設定した他は、実施例1と全く同様
の構成並びに製造方法で全厚み1.0mmの5層シート
を得た。
[Embodiment 2] The T die 4 has a lip interval of 1.5 mm,
The ratio of the flow velocity of the resin flow passing through the lip portion of the T die 4 to the surface velocity of the resin flow on the cast roller 5 with which the resin flow first contacts is set to 1.5, and the extension speed of the resin flow is set to 7. A five-layer sheet having a total thickness of 1.0 mm was obtained by the same configuration and manufacturing method as in Example 1 except that the thickness was set to 5.

【0028】ASTM−D−1504に準拠して測定し
たシートの熱収縮応力は175℃で最大となり、その値
は110g/cm2 であった。
The heat shrinkage stress of the sheet measured in accordance with ASTM-D-1504 reached its maximum at 175 ° C., and its value was 110 g / cm 2 .

【0029】[0029]

【実施例3】MFR0.5g/10分(230℃)、融
点165℃のポリプロピレンを使用し、Tダイ4のリッ
プ間隔を3.0mmとし、Tダイ4のリップ部分を通過
する樹脂流の流動速度とこの樹脂流が最初に接触するキ
ャストローラー5での樹脂流の表面速度との比を3.0
とし、樹脂流の伸張速度を15になるように設定した他
は、実施例1と全く同様の構成並びに製造方法で全厚み
1.0mmの5層シートを得た。
Example 3 MFR 0.5 g / 10 min (230 ° C.), polypropylene having a melting point of 165 ° C. was used, the lip interval of the T die 4 was 3.0 mm, and the flow of the resin flow passing through the lip portion of the T die 4 The ratio of the speed to the surface speed of the resin flow on the cast roller 5 with which this resin flow first contacts is 3.0.
Then, a five-layer sheet having a total thickness of 1.0 mm was obtained by the same configuration and manufacturing method as in Example 1 except that the extension rate of the resin flow was set to 15.

【0030】ASTM−D−1504に準拠して測定し
たシートの熱収縮応力は170℃で最大となり、その値
は290g/cm2 であった。
The heat shrinkage stress of the sheet measured in accordance with ASTM-D-1504 reached its maximum at 170 ° C., and its value was 290 g / cm 2 .

【0031】[0031]

【比較例1】Tダイ4のリップ間隔を1.4mmとし、
Tダイ4のリップ部分を通過する樹脂流の流動速度とこ
の樹脂流が最初に接触するキャストローラー5での樹脂
流の表面速度との比を1.4とし、樹脂流の伸張速度を
7になるように設定した他は、実施例1と全く同様の構
成並びに製造方法で全厚み1.0mmの5層シートを得
た。
[Comparative Example 1] The T die 4 has a lip interval of 1.4 mm,
The ratio of the flow velocity of the resin flow passing through the lip portion of the T die 4 to the surface velocity of the resin flow on the cast roller 5 with which the resin flow first contacts is set to 1.4, and the extension speed of the resin flow is set to 7. A 5-layer sheet having a total thickness of 1.0 mm was obtained with the same configuration and manufacturing method as in Example 1 except that the above-mentioned settings were made.

【0032】ASTM−D−1504に準拠して測定し
たシートの熱収縮応力は175℃で最大となり、その値
は90g/cm2 であった。
The heat shrinkage stress of the sheet measured in accordance with ASTM-D-1504 reached its maximum at 175 ° C., and the value was 90 g / cm 2 .

【0033】[0033]

【比較例2】MFR0.4g/10分(230℃)、融
点165℃のポリプロピレンを使用し、Tダイ4のリッ
プ間隔を3.0mmとし、Tダイ4のリップ部分を通過
する樹脂流のこの流動速度が樹脂流と最初に接触するキ
ャストローラー5での樹脂流の表面速度との比を3.0
とし、樹脂流の伸張速度を15になるように設定した他
は、実施例1と全く同様の構成並びに製造方法で全厚み
1.0mmの5層シートを得た。
[Comparative Example 2] MFR 0.4 g / 10 min (230 ° C), polypropylene having a melting point of 165 ° C was used, and the lip interval of the T die 4 was set to 3.0 mm. The ratio of the flow velocity to the surface velocity of the resin flow on the cast roller 5 which first contacts the resin flow is 3.0.
Then, a five-layer sheet having a total thickness of 1.0 mm was obtained by the same configuration and manufacturing method as in Example 1 except that the extension rate of the resin flow was set to 15.

【0034】ASTM−D−1504に準拠して測定し
たシートの熱収縮応力は175℃で最大となり、その値
は310g/cm2 であった。
The heat shrinkage stress of the sheet measured in accordance with ASTM-D-1504 reached its maximum at 175 ° C., and its value was 310 g / cm 2 .

【0035】[0035]

【比較例3】ポリ塩化ビニリデン系樹脂〔塩化ビニリデ
ン成分/塩化ビニル成分:90/10〕を、縦延伸倍率
3、横延伸倍率3.5、延伸温度35℃で延伸成膜した
フィルム(厚み60μm)の両面にウレタン系接着剤を
20μm塗布し、ポリプロピレン樹脂〔融点:165
℃、MFR:1g/10分(230℃)〕を縦延伸倍率
3、横延伸倍率4、延伸温度150℃で延伸成膜したフ
ィルム(厚み450μm)を両外側にラミネート(90
℃で圧着)して全厚み1.0mmの5層シートを得た。
ASTM−D−1504に準拠して測定したシートの
熱収縮応力は160℃で最大となり、その値は15kg
/cm2 であった。また積層シートの全厚みに占めるポ
リプロピレン系樹脂層の厚み割合は90%である。
Comparative Example 3 A film (thickness 60 μm) formed by stretching a polyvinylidene chloride resin [vinylidene chloride component / vinyl chloride component: 90/10] at a longitudinal draw ratio of 3, a lateral draw ratio of 3.5, and a draw temperature of 35 ° C. ) Is coated with urethane adhesive of 20 μm on both sides, and polypropylene resin [melting point: 165
C, MFR: 1 g / 10 min (230 ° C.)] at a longitudinal stretching ratio of 3, a lateral stretching ratio of 4 and a stretching temperature of 150 ° C. A film (thickness 450 μm) laminated on both outer sides (90
It pressure-bonded at (degreeC) and obtained the 5-layer sheet of 1.0 mm in total thickness.
The heat shrinkage stress of the sheet measured according to ASTM-D-1504 reaches its maximum at 160 ° C, and the value is 15 kg.
Was / cm 2 . The thickness ratio of the polypropylene resin layer to the total thickness of the laminated sheet is 90%.

【0036】(熱収縮応力が成形性に及ぼす影響の評
価):実施例1〜3、比較例1〜3の積層シートについ
て本文記載の評価方法で成形性を評価し、その結果を表
1にまとめて記載した。表1の結果によると、ASTM
−D−1504に準拠して測定したシートの熱収縮応力
がポリプロピレン樹脂の融点〜融点+20℃の温度領域
で最大値の100g/cm2 〜300g/cm 2 の値を
示す実施例1〜3の積層シートは、容器の厚み比(容器
側壁の中間すなわち容器高さの半分の位置の厚みを、容
器底面の円の中心の厚みで除した値)が0.7以上と良
好な成形性を示す。
(Evaluation of Effect of Heat Shrinkage Stress on Formability)
Value): for the laminated sheets of Examples 1 to 3 and Comparative Examples 1 to 3
Evaluate the formability by the evaluation method described in the text and display the results.
They are collectively described in 1. According to the results in Table 1, ASTM
-The heat shrinkage stress of the sheet measured according to D-1504
Is the melting point of polypropylene resin to the melting point + 20 ° C temperature range
Maximum of 100 g / cm2~ 300g / cm 2The value of
The laminated sheets of Examples 1 to 3 shown in the table have thickness ratios of containers (containers
The thickness at the middle of the side wall, that is, at the half height of the container,
The value obtained by dividing by the thickness of the center of the circle on the bottom of the vessel is 0.7 or more
Shows good moldability.

【0037】これに対し熱収縮応力が100g/cm2
より小さい比較例1では、容器の高さが40、60mm
と高いすなわち絞り比の大きい容器において、容器の厚
み比が0.4以下となり、実用に耐えない成形容器しか
得られない。また、熱収縮応力が300g/cm2 より
大きい比較例2では、容器の高さが40、60mmと高
い。すなわち、絞り比の大きい容器において、型に添っ
て伸びる伸び変形性が低下し、型通りの形状の容器が得
られない。
On the other hand, the heat shrinkage stress is 100 g / cm 2
In the smaller comparative example 1, the height of the container is 40, 60 mm.
In the case of a container having a high drawing ratio, that is, a large drawing ratio, the thickness ratio of the container becomes 0.4 or less, and only a molded container that cannot be practically used can be obtained. Further, in Comparative Example 2 in which the heat shrinkage stress is larger than 300 g / cm 2 , the height of the container is as high as 40 and 60 mm. That is, in a container having a large drawing ratio, the elongation deformability that extends along with the mold is reduced, and a container having a shape as the mold cannot be obtained.

【0038】また、熱収縮応力の最大となる温度がポリ
プロピレン樹脂の融点より5℃低い比較例3では、成形
温度まで加熱するとシートが収縮してしまい成形できな
くなってくる。以上の結果を総合すると、良好な成形性
を維持する上では、積層シートの熱収縮応力はポリプロ
ピレン樹脂の融点〜融点+20℃の温度領域で最大値の
100g/cm2 〜300g/cm2 の値であることが
必要であることが分かる。
Further, in Comparative Example 3 in which the temperature at which the heat shrinkage stress is maximum is 5 ° C. lower than the melting point of the polypropylene resin, the sheet shrinks when heated to the molding temperature and cannot be molded. Taken together these results, good in maintaining moldability, heat shrinkage stress of the laminate sheet 100g / cm 2 ~300g / cm 2 of the maximum value in the temperature range of the melting point - mp + 20 ° C. of the polypropylene resin It turns out that it is necessary to be.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【実施例4】積層シートの樹脂の構成比をC/B/A/
B/C=40/2/16/2/40とした他は実施例1
と全く同様の構成並びに製造方法で全厚み1.0mmの
5層シートを得た。ASTM−D−1504に準拠して
測定したシートの熱収縮応力は175℃で最大となり、
その値は140g/cm2 であった。また積層シートの
全厚みに占めるポリプロピレン樹脂層の厚み割合は80
%である。
[Embodiment 4] The resin composition ratio of the laminated sheet is C / B / A /
Example 1 except that B / C = 40/2/16/2/40
A 5-layer sheet having a total thickness of 1.0 mm was obtained with the same configuration and manufacturing method as described above. The heat shrinkage stress of the sheet measured according to ASTM-D-1504 becomes maximum at 175 ° C.,
The value was 140 g / cm 2 . The thickness ratio of the polypropylene resin layer to the total thickness of the laminated sheet is 80.
%.

【0041】[0041]

【実施例5】積層シートの樹脂の構成比をC/B/A/
B/C=35/3/24/3/35とし、Tダイ4のリ
ップ間隔を2.2mmとし、Tダイ4のリップ部分を通
過する樹脂流の流動速度とこの樹脂流が最初に接触する
キャストローラー5での樹脂流の表面速度との比を2.
2とし、樹脂流の伸張速度を11になるよう設定した他
は実施例1と全く同様の構成並びに製造方法で全厚み
1.0mmの5層シートを得た。
[Embodiment 5] The resin composition ratio of the laminated sheet is C / B / A /
B / C = 35/3/24/3/35, the lip interval of the T die 4 is 2.2 mm, and the resin flow rate passing through the lip portion of the T die 4 and this resin flow come into contact first. The ratio of the surface velocity of the resin flow on the cast roller 5 to 2.
A 5-layer sheet having a total thickness of 1.0 mm was obtained with the same configuration and manufacturing method as in Example 1 except that the stretching speed of the resin flow was set to 11.

【0042】ASTM−D−1504に準拠して測定し
たシートの熱収縮応力は175℃で最大となり、その値
は140g/cm2 であった。また積層シートの全厚み
に占めるポリプロピレン樹脂層の厚み割合は70%であ
る。
The heat shrinkage stress of the sheet measured in accordance with ASTM-D-1504 reached its maximum at 175 ° C., and its value was 140 g / cm 2 . The thickness ratio of the polypropylene resin layer to the total thickness of the laminated sheet is 70%.

【0043】[0043]

【比較例4】積層シートの樹脂構成比をC/B/A/B
/C=33/4/26/4/33とし、Tダイ4のリッ
プ間隔を2.4mmとし、Tダイ4のリップ部分を通過
する樹脂流の流動速度とこの樹脂流が最初に接触するキ
ャストローラー5での樹脂流の表面速度との比を2.2
とし、樹脂流の伸張速度を11になるよう設定した他は
実施例1と全く同様の構成並びに製造方法で全厚み1.
0mmの5層シートを得た。
Comparative Example 4 The resin composition ratio of the laminated sheet is C / B / A / B.
/ C = 33/4/26/4/33, the lip spacing of the T die 4 is 2.4 mm, the flow velocity of the resin flow passing through the lip portion of the T die 4 and the cast at which this resin flow first comes into contact. The ratio of the resin flow on the roller 5 to the surface velocity is 2.2.
And the total thickness of 1. was obtained by the same configuration and manufacturing method as in Example 1 except that the extension rate of the resin flow was set to 11.
A 0 mm 5-layer sheet was obtained.

【0044】ASTM−D−1504に準拠して測定し
たシートの熱収縮応力は175℃で最大となり、その値
は140g/cm2 であった。また積層シートの全厚み
に占めるポリプロピレン樹脂層の厚み割合は66%であ
る。 (ポリプロピレン樹脂層の厚み割合が成形性に及ぼす影
響の評価):実施例4、5、比較例4の積層シートにつ
いて本文記載の評価方法で成形性を評価し、その結果を
表2にまとめて記載した。表2の結果によると、ポリプ
ロピレン樹脂層の厚み割合が70%以上である実施例
4、5の積層シートは、容器の厚み比が0.6以上と良
好な成形性を示す。
The heat shrinkage stress of the sheet measured in accordance with ASTM-D-1504 reached its maximum at 175 ° C., and the value was 140 g / cm 2 . The thickness ratio of the polypropylene resin layer to the total thickness of the laminated sheet is 66%. (Evaluation of influence of thickness ratio of polypropylene resin layer on moldability): Moldability of the laminated sheets of Examples 4 and 5 and Comparative Example 4 was evaluated by the evaluation method described in the text, and the results are summarized in Table 2. Described. According to the results of Table 2, the laminated sheets of Examples 4 and 5 in which the polypropylene resin layer has a thickness ratio of 70% or more, the container has a thickness ratio of 0.6 or more, which indicates good moldability.

【0045】これに対し、ポリプロピレン樹脂層の厚み
割合が70%より小さい比較例4の積層シートは容器の
高さが60mmと高い。すなわち、絞り比の大きい容器
において、容器の厚み比が0.4となり実用に耐えない
成形容器しか得られない。以上の結果を総合すると、良
好な成形性を維持する上では、積層シートの全厚みに占
めるポリプロピレン樹脂層の厚み割合は70%以上であ
ることが必要であることが分かる。
On the other hand, in the laminated sheet of Comparative Example 4 in which the thickness ratio of the polypropylene resin layer is less than 70%, the height of the container is as high as 60 mm. That is, in a container having a large drawing ratio, the thickness ratio of the container is 0.4, and only a molded container that cannot be used practically can be obtained. From the above results, it can be seen that in order to maintain good moldability, the thickness ratio of the polypropylene resin layer to the total thickness of the laminated sheet needs to be 70% or more.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】本発明は上記の構成を持つことにより、
sagによる成形品の皺や厚みの偏肉の発生が無く、熱
成形性に優れる効果がある。その結果としてガスバリヤ
ー性を大幅に改善した成形用積層シートを供給できる利
点があり産業上有益な発明である。
The present invention has the above configuration,
There is no wrinkling or uneven thickness of the molded product due to the sag, and the thermoformability is excellent. As a result, there is an advantage that it is possible to supply a molding laminated sheet having a significantly improved gas barrier property, which is an industrially useful invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の成形用積層シートを得る製造工程の1
例を示す概念図である。
FIG. 1 is a manufacturing process 1 for obtaining a molding laminated sheet of the present invention.
It is a conceptual diagram which shows an example.

【符号の説明】[Explanation of symbols]

1 押出機1 2 押出機2 3 押出機3 4 多層用Tダイ 5 キャストローラー 6 引取ローラー 7 トリムカッター 8 巻取機 9 積層シート 1 Extruder 1 2 Extruder 2 3 Extruder 3 4 Multi-layer T-die 5 Cast roller 6 Take-off roller 7 Trim cutter 8 Winder 9 Laminated sheet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスバリヤー性樹脂層の少なくとも片面
に接着層を介してポリプロピレン系樹脂層を積層した成
形用積層シートにおいて、該成形用積層シートのAST
M−D−1504で測定した熱収縮応力がポリプロピレ
ン系樹脂の融点〜融点+20℃の温度領域で最大値の1
00g/cm2 〜300g/cm2 の値を示し、上記成
形用積層シートの全厚みに占めるポリプロピレン系樹脂
層の厚み割合が70%以上であることを特徴とする成形
用積層シート。
1. A molding laminated sheet in which a polypropylene-based resin layer is laminated on at least one surface of a gas barrier resin layer with an adhesive layer interposed between the gas barrier resin layer and the AST of the molding laminated sheet.
The heat shrinkage stress measured by MD-1504 has a maximum value of 1 in the temperature range of the melting point of the polypropylene resin to the melting point + 20 ° C.
200 g / cm 2 represents the value of to 300 g / cm 2, forming laminated sheet, wherein the thickness ratio of the polypropylene-based resin layer in the total thickness of the laminated sheet for the molding of at least 70%.
JP20083593A 1993-08-12 1993-08-12 Laminated sheet for molding Withdrawn JPH0752342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20083593A JPH0752342A (en) 1993-08-12 1993-08-12 Laminated sheet for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20083593A JPH0752342A (en) 1993-08-12 1993-08-12 Laminated sheet for molding

Publications (1)

Publication Number Publication Date
JPH0752342A true JPH0752342A (en) 1995-02-28

Family

ID=16431004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20083593A Withdrawn JPH0752342A (en) 1993-08-12 1993-08-12 Laminated sheet for molding

Country Status (1)

Country Link
JP (1) JPH0752342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995591A1 (en) * 1998-10-21 2000-04-26 Showa Denko Kabushiki Kaisha Adhesive resin-silicate composite and multi-layer product thereof
US6320111B1 (en) 1999-06-30 2001-11-20 Yamaha Corporation Musical playback apparatus and method which stores music and performance property data and utilizes the data to generate tones with timed pitches and defined properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995591A1 (en) * 1998-10-21 2000-04-26 Showa Denko Kabushiki Kaisha Adhesive resin-silicate composite and multi-layer product thereof
US6320111B1 (en) 1999-06-30 2001-11-20 Yamaha Corporation Musical playback apparatus and method which stores music and performance property data and utilizes the data to generate tones with timed pitches and defined properties

Similar Documents

Publication Publication Date Title
US6218024B1 (en) Multilayer plastic film
EP2222730B1 (en) Copolymers of propylene with hexene-1 and blown films obtained from them
KR960008301B1 (en) Biaxially oriented multilayer barrier films
US4112181A (en) Method for preparing a film of vinylidene chloride polymer
US6844077B2 (en) High barrier metallized film with mirror-like appearance
JP2004501799A (en) High moisture proof film
JP5130495B2 (en) Polypropylene-based laminated film and package using the same
JP4650019B2 (en) Polypropylene-based laminated film and package using the same
JPS6410182B2 (en)
US6159616A (en) Multilayer plastic film
US4460631A (en) Sealable, biaxially stretched polypropylene film having high scratch resistance, and process for its manufacture
JP2008062524A (en) Film for laminating thermoforming sheet
JP5009768B2 (en) Polypropylene-based laminated film and package using the same
JPS59143616A (en) Stretching method of laminated plastics body
JP5599637B2 (en) Film, sheet, production method thereof, and blister molded product, laminate
JPH0752342A (en) Laminated sheet for molding
US20230087287A1 (en) Biaxially-oriented polyethylene films for thermoforming, process for the production thereof, their use, a process for thermoforming and its products
EP2902192B1 (en) Molded product and process for producing same
JP4017275B2 (en) Resin composition and use thereof
JPH0362733B2 (en)
JPS6320691B2 (en)
JPS62113526A (en) Manufacture of multi-layer molded product and multi-layer orientated film
JP6208445B2 (en) Polypropylene film for thermoforming sheet lamination
JP2929679B2 (en) Packaging film
EP3621808B1 (en) Barrier film with enhanced formability and a method for making thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031