JPH0362733B2 - - Google Patents

Info

Publication number
JPH0362733B2
JPH0362733B2 JP12917886A JP12917886A JPH0362733B2 JP H0362733 B2 JPH0362733 B2 JP H0362733B2 JP 12917886 A JP12917886 A JP 12917886A JP 12917886 A JP12917886 A JP 12917886A JP H0362733 B2 JPH0362733 B2 JP H0362733B2
Authority
JP
Japan
Prior art keywords
film
vinylidene chloride
plasticizer
resin
unstretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12917886A
Other languages
Japanese (ja)
Other versions
JPS62285928A (en
Inventor
Soichiro Hori
Akira Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12917886A priority Critical patent/JPS62285928A/en
Publication of JPS62285928A publication Critical patent/JPS62285928A/en
Publication of JPH0362733B2 publication Critical patent/JPH0362733B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、熱成形できる他の樹脂のシート・フ
イルムと貼り合わせ、ガス・水蒸気バリヤー性を
有した熱成形用積層シート・フイルムの、そのバ
リヤー層にする塩化ビニリデン系樹脂、ラミネー
ト用無延伸シート・フイルムの改良技術に関す
る。 〔従来の技術〕 熱成形用積層シート・フイルム(以下フイルム
と略す)のバリヤー層にする塩化ビニリデン系樹
脂・ラミネート用無延伸フイルムは、例えば「未
延伸サランフイルム(商品名、旭化成製)」とし
て市販され、公知である。このものは、塩化ビニ
ル成分が約10重量%の塩化ビニリデン・塩化ビニ
ル共重合樹脂で、約7重量%の液体可塑剤を変性
剤として含有していることから、厚み10ミクロン
当たりの酸素透過量が約30c.c.近傍のガスバリヤー
性を持つ、透明な(HAZE3%)無延伸フイルム
であることが知られている。 又このものは、例えばカナダ国特許第713477号
広告明細書第3図に示されているような製法、即
ち、塩化ビニリデン系樹脂と良く接合はしないポ
リエチレンの様な2枚の樹脂層の間に、塩化ビニ
リデン系樹脂層を挟むようにして伸展し共押出し
て、そのまま冷却して巻き取つておき、後日巻き
取つたフイルムを3枚に剥ぎとり、平坦な無延伸
の塩化ビニリデン系樹脂フイルムを取り出すとい
う製法が用いられる。 その理由は、熱分解し易く、伸展加工し難い樹
脂をより少ない可塑剤量のまま他の樹脂の押出伸
展性を利用して分解させずに薄肉化するための工
夫、及び結晶固化が遅くいつまでも柔らかく変形
し難い薄層を、外力から保護し成膜固化するため
の工夫であるとされている。又この製法には、塩
化ビニリデン系樹脂層内の可塑剤を、外層側に移
行吸収させ、塩化ビニリデン系樹脂層内の可塑剤
量を減じてガスバリヤー性を向上させる利点があ
ることも知られている。 この様な方法で慎重に作られた上記ラミネート
用無延伸フイルムは成形用積層フイルムの芯材と
して活用され、成形技術の進歩に助けられながら
種々の成形分野に多用されるに及んできた。 〔発明が解決しようとする問題点〕 しかしながらこのラミネート用無延伸フイルム
には、大別して次の3つの問題点がある。 1 ガスバリヤー性の水準が今一つ低く、せめて
厚み10ミクロン当たりの酸素透過率で、10c.c.以
下の値になるように要求されるが、現行は30c.c.
近傍に止まつてしまう問題点、尚このガスバリ
ヤー性改善には、液体可塑剤の添加量を下げ、
その不足分を可塑化樹脂類の添加で補うという
考え方のものがあるが〔例えば「未延伸サラン
フイルム」C5H、(商品名・旭化成製)〕、これ
等のものは膜質が白濁化して不透明で、この分
野には応用できない。 2 深絞り成形分野の特に局部的な絞り比が大き
くなつてしまう壁部で、塩化ビニリデン系樹脂
層が破断してしまう成形不良現象が生じるこ
と、尚この現象は塩化ビニリデン系樹脂層の可
塑性を高めれば直せることは予測できるが、バ
リヤー性がすでに目標水準を下回つているた
め、この対象はとれない問題点。 3 ラミネート積層体にしようとしたとき、無延
伸フイルム上にある積層樹脂の剥げ残り部、或
いは凹凸しわ部があり、このものは完全な積層
ができないため、不良品になつてしまう問題
点。 尚この原因は、無延伸フイルム製造時、塩化
ビニリデン系樹脂が程よく固化せず(現在は1
週間以上の経時で剥取る)、剥ぎとり作業時に
生じた不良現象が原因である。 従つて本発明の目的は上記問題点を解消するこ
と、即ち、上記問題点を改善できる塩化ビニリデ
ン系樹脂無延伸フイルムを提供することにある。 〔問題点を解決するための手段〕 本発明の構成の要件をその役割にそつて説明す
ると、問題点を解決するための主要部をなす部分
は、特許請求の範囲の記載にある「メチルアクリ
レート成分が4〜8重量%の塩化ビニリデン・メ
チルアクリレート共重合樹脂でらなり、液体可塑
剤の残存含量が4重量%以下の無延伸シート・フ
イルム」とした部分にある。 そしてこれに続く「透明性(HAZE値)が10%
以下、90℃における熱収縮率が5%以下、肉厚み
が10μ〜100μのラミネート用無延伸シート・フイ
ルム」の部分は、この対象のフイルムは製造工程
で、失透・白化現象のない、ラミネート積層しや
すい収縮率に調整した、しかも積層成形分野に利
用できる肉厚みの無延伸フイルムとして成膜され
たものであることを明確にしている。従つてこの
要件の部分は、積層成形品の基本的品質を保証す
る部分である。 即ち、例えば出来上がつた無延伸フイルムの特
性として結果的に、HAZE値が10%を越えて大き
いものは、得られる成形体は不透明でこの分野で
は実用的ではないし、90℃における熱収縮率が5
%を越えるものは、当然熱収縮力(ORS)も10
Kg/cm2以上に高いので積層時の加熱で層間ずれ、
不良が生じやすい、肉厚み10μ未満や100μを越え
ては、積層成形分野のものではなくなるという意
味のものである。 以下上記重要な要件について図面などを用いて
その意味するところを詳述する。 第1図は、本発明に用いる塩化ビニリデン系樹
脂の、含有可塑剤の逸散割合を示す実験図であ
る。横軸は、当初樹脂に含有させた可塑剤の量
(重量%)、縦軸は、最終無延伸フイルムに残存し
た可塑剤量から計算した可塑剤の逸散割合であ
る。 実線は本発明に用いる樹脂の場合(メチルアク
リレート成分5%)、破線は従来の市販品フイル
ムの樹脂(塩ビ成分10%)の場合を示す。 いずれも、塩化ビニリデン系樹脂層の両側にポ
リエチレン樹脂が配された状態に積層、ダイ内で
伸展して、塩化ビニリデン系樹脂層が約30μにな
るようにTダイから板状に押出し、冷却して巻取
り、3日後に剥ぎとつて塩化ビニリデン系樹脂、
無延伸フイルムとして取り出したものについて分
析したものである。 この第1図の結果は、本発明に用いる塩化ビニ
リデン系樹脂は、従来品に比べて加工処理時の可
塑剤の逸散割合が大きいことを示している。又、
本発明ではこの樹脂の現象傾向を利用して、押出
−成膜の加工時は可能な範囲で多量の可塑剤添加
の領域で不足しがちな樹脂の加工適正を補い、他
方、無延伸フイルムとして取り出す時点でガスバ
リヤー性に優れ、且つ成形性にも優れるという水
準の可塑剤量に至らしめる。そういう調和点の究
明に発明の完成をみているのである。 第2図は、当技術分野の成形で生じやすい成形
不良現象例で、イ、ロ、ハ図は順にその不良の程
度の大きさを示している。 第3図は、第2図のイ、ロ、ハで、成形容器に
黒い筋状に見える部分のその原因現象を示す拡大
スケツチ(約40倍)図で容器壁のカツト断面での
積層中の塩化ビニリデン系樹脂層が破断している
様子が描かれている。 本発明における深絞り成形での成形性の改良と
は、この様な現象を解消し、成形適性温度領域を
拡大することにある。 第4図は解析結果図で、縦軸は、無延伸フイル
ムであつたときのフイルム内残存可塑剤量(重量
%)、横軸はフイルム樹脂層内のメチルアクリレ
ート成分量(重量%)を示す。 第4図において、図中のプロツト点は、実施
例、比較例の結果のまとめに当たる第1表の総合
評価の項の記号を、その対象フイルムのメチルア
クリレート成分、及び残存可塑剤量との関係の座
標に、実験No.と共に描いた分析図である。そして
矢印は、樹脂に添加した当初の可塑剤量からの変
化を示している。尚、中間に位置するメチルアク
リレート量は、混合比からの計算に基ずくもので
ある。 第4図の結果によると、ガスバリヤー性の水準
を保ち、成形性も改善し、出来上がつた成形体の
外観品位を保ち、且つ成膜時の加工性、剥ぎ取る
までの保持時間の短縮、フイルムしわ不良剥ぎ取
り不良の解消等、そのすべてが揃つて高水準にな
るものは、メチルアクリレート量が4〜8重量%
で残存可塑剤量が4重量%以下にあり、矢印長さ
の長いもの、即ち、当初多くの可塑剤量下で加工
し、後それを逸散させたものであることが分る。 しかしながら、本発明の目的達成、即ち、ガス
バリヤー性の水準、成形性の改良水準、フイルム
しわ剥ぎとり不良を改善する上では、チルアクリ
レート量が4〜8重量%で残存可塑剤量が4重量
%以下であることが保証されれば、充分その目的
が達成されることも示されている。 本発明者等は成膜時の加工性、剥ぎ残り不良フ
イルムしわ不良の解消、剥ぎ取るまでの保持時間
の短縮に作用する可塑剤の逸散量について、次の
様な現象が生じているものと推察している。即
ち、まず樹脂を可塑化しその伸展性を容易にして
きた過剰の可塑剤は、進行する樹脂の結晶化、隣
接樹脂側の吸引作用で塩化ビニリデン系樹脂層か
ら押出されて滲みでるが、隣接樹脂もその全量を
短時間で吸収できないために、塩化ビニリデン系
樹脂層と隣接樹脂との間にたまつてしまう。一方
結晶化が進行した塩化ビニリデン系樹脂はメチル
アクリレート成分による樹脂特質も手伝つて、腰
があつて、変形に強い層になり、その双方で層間
の剥離は極めてやり易く、層間にそつて完全に剥
ぎとりができる現象がそこに生じるものと推察し
ている。 本発明でいう液体可塑剤とは塩化ビニル樹脂用
可塑剤として公知の液体可塑剤をいう。中でも、
食品安全衛生上の見地から脂肪族二塩基酸エステ
ル系、クエン酸エステル系、脂肪酸エステル系、
ポリエステル系等の液体可塑剤から厳選される。 可塑剤の定性、定量は分析に関する出版物例え
ば「高分子分析ハンドブツク」(日本分析化学会
編、1985年)に記載の溶剤抽出法によりガスクロ
マトグラフ、及び質量分析計を用いる方法で行う
ことができる。 可塑剤の逸散率とは、押出−積層製膜−剥ぎ取
り工程中に逸散する可塑剤量(B)の当初含有量(A)に
対する割合 (重量%)、即ち 可塑剤の逸散率(重量%)=B/A×100 =原料樹脂中の可塑剤量(重量%)−フイル
ム中の可塑剤量(重量%)/原料樹脂中の可塑剤量(重
量%)×100 である。 又塩化ビニリデン系樹脂を芯層として3層構造
で成膜した後、剥ぎとる両外側層に用いる熱可塑
性樹脂は、塩化ビニリデン系樹脂と熱接着性を十
分には示さず、押出加工温度が塩化ビニリデン系
樹脂の熱劣化を促進させない範囲のものであれ
ば、特に限定されないが、繰返し再使用或いは剥
ぎとり後のフイルムの利用性からポリオレフイン
系樹脂を用いるのが好ましい。より好適には低密
度ポリエチレンが用いられる。 本発明に用いた評価方法、評価尺度を下記に示
す。 〔〕 成膜加工適性 無延伸塩化ビニリデン系樹脂フイルムを含む
積層フイルムを成膜する際に、カーボン及び熱
分解による気泡等の発生を肉眼で観察し、発生
が認められるまでの所要時間を下記評価尺度で
評価した。 評価記号 評価尺度 ◎; 6時間以上 ○; 3時間以上6時間未満 △; 1時間以上3時間未満 ×; 1時間未満 〔〕 剥ぎ取り保持時間 無延伸塩化ビニリデン系樹脂フイルムを取り
出す前の積層フイルムを20℃で保管し、経時を
追つて順次100mm巾、2mの帯状に切り出し、
5m/分の剥ぎとり速度で取り出し、取り出し
たフイルム長さが積層状態での長さに対し3%
以下の増加に抑えられるまでに必要な経過時間
を下記評価尺度で評価した。 評価記号 評価尺度 ◎; 1日未満 ○; 1日以上3日未満 △; 3日以上7日未満 ×; 7日以上 〔〕 フイルムシワ 得られた無延伸塩化ビニリデン系樹脂フイル
ムを単体で巻返す際に、120℃に加熱した直径
250mmの熱ロールに抱き角90°で接触させて、60
m/分の速度で走行させながら、巻取部でのタ
テシワ、エツジ部のヨコシワ発生を肉眼で観察
し、100m当りのシワ発生回数を下記評価尺度
で評価した。 評価記号 評価尺度 ◎; 全く発生しないもの ○; 1〜2回のもの △; 3〜5回のもの ×; 5回以上のもの 〔〕 剥ぎ取り適性 得られた1000mm巾の無延伸塩化ビニリデン系
樹脂フイルムを100m巻き返し、この間にフイ
ルム表面を肉眼で観察して剥ぎとり欠点をカウ
ントし、下記評価尺度で評価した。 評価記号 評価尺度 ◎; 欠点の全く無いもの ○; 1〜5箇所あるもの △; 6〜10箇所あるもの ×; 11以上のもの 〔〕 ガスバリアー性 得られた評価用無延伸塩化ビニリデン系樹脂
フイルムをASTM D−3985に従つてMOCON
OXTRAN 100型で20℃、65%RHの条件で酸
素ガス透過度を測定し、下記評価尺度により評
価した。 評価記号 評価尺度 (単位c.c./m2.day.atm) ◎; 6以下 ○; 6を越えて10以下 △: 10を越えて15以下 ×; 15を越えて高いもの 〔〕 成形性 評価対象の無延伸塩化ビニリデン系樹脂フイ
ルムの両側に無延伸ポリプロピレンシート(三
井東圧社製)500μと無延伸ポリプロピレンフ
イルム(東セロ社製)50μとを接着剤を用いて
張り合わせ、合計3層のシートにした後、イー
リツヒ成形機を用いてプラグアシスト成形を行
い、外観品位型再現性耐成形戻り性の各
項目について評価した。 シートの加熱温度はシート端部に貼りつけた
ヒートラベルの変色により判断し、加熱水準は
150〜160℃、165〜175℃、180〜190℃、
195〜205℃の4水準とし、コーナー直角の円
筒系の成形型を用い絞り比(型深さ÷開口部
径)水準を0.3、0.6、0.9、1.2、1.5
の5水準とした。 外観品位 加熱温度、絞り比を変えて容器状に成形し
た成形品を底面から肉眼で観察し、外観上第
2図に例示するような欠点の有無を評価し
た。 この欠点が生じない加熱温度、絞り比の範
囲の広さを下記評価尺度により評価した。 評価記号 評価尺度 ◎;加熱ランク3水準以上 絞り比ランク以上 ○;加熱ランク3水準以上 絞り比ランク 或いは 加熱ランク2水準 絞り比ランク以上 △;加熱ランク3水準以下 絞り比ランク ×;加熱ランク3水準以下 絞り比ランク以下 型再現性 で得られた容器状の成形品の底部のコー
ナーの決まり具合を容器の外側からRゲージ
で測り、成形体の角の丸みが5mm以下になる
加熱温度、絞り比の範囲の広さを下記評価尺
度により評価した。 評価記号 評価尺度 ◎;加熱ランク3水準以上 絞り比ランク以上 ○;加熱ランク3水準以上 絞り比ランク 或いは 加熱ランク2水準 絞り比ランク以上 △;加熱ランク3水準以下 絞り比ランク ×;加熱ランク3水準以下 絞り比ランク以下 耐成形戻り性 で得られた容器状の成形品の底部外径を
測定し、この値を成形型の内径で除した値が
0.95以上になる加熱温度、絞り比の範囲の広
さが下記評価尺度により評価した。 評価記号 評価尺度 ◎;加熱ランクが3水準以上で絞り比ラ
ンクが以上のもの ○;加熱ランクが3水準以上で絞り比ラ
ンクのもの、又は加熱ランクが
2水準で絞り比ランクが以上の
もの △;加熱ランクが3水準以下で絞り比ラ
ンクがのもの ×;加熱
ランクが3水準以下で絞り比ラン
クが以下のもの 総合評価 上記8項目の評価項目について個々に評価した
評価記号の組合せにおいて、ガスバリヤー性、剥
ぎとり不良、フイルムしわ、成形性とその品位に
重点をおき、次の尺度でその充足度を評価した。 評価尺度 評価記号 その全項目が◎か○ で○の数が2個以下 ◎ その全項目が◎か○ で○の数が3個以上 ○ 1項でも△がある △ 1項でも×がある × 本発明の内容を以下に示す実施例、比較例で詳
述する。 実施例、比較例 評価に用いる基材樹脂である塩化ビニリデン系
樹脂は、塩化ビニリデンとメチルアクリレートと
の共重合樹脂であり、樹脂中各成分、塩化ビニリ
デン対メチルアクリレートが97対3(重量%、以
下同じ)乃至91対9の範囲に調整されたもので、
これらはいずれも、例えば特願昭59−240483号記
載の方法で得られるもので、予め樹脂成分に対し
1.0重量%のエポキシ化アマニ油を添加したもの
を使用した。 上記基材樹脂に対し、アジピン酸ジイソブチル
と、アセチルクエン酸トリブチルとを予め重量比
で60対40(重量%)に混合させた液状可塑剤を、
第4図の矢印の始まり部に相当する添加量になる
よう調整した塩化ビニリデン系樹脂組成物を準備
した。 これらの組成物を順次口径90mm、L/D:24の
押出機を用いて溶融押出しし、一方ASTM D−
1238に準じて190℃、2.16Kg荷重で測定したメル
トインデツクスが2.5の低密度ポリエチレンを口
径120mm、L/D:22の押出機を用いて溶融押出
しし、両溶融樹脂を例えば米国ダウケミカル社製
フイード・ポートブロツクの様な積層装置を用い
て、塩化ビニリデン系樹脂が芯層となる3層構造
に積層した後、通常Tダイキヤスト法により1200
mm巾の3層フイルムとして巻き取つた。 押出成膜時に併せて成膜加工性を本文に示す評
価方法、評価尺度で評価した。 得られた積層フイルムは20℃雰囲気中で保管
し、剥ぎ取り保持時間を本文に示す評価方法、評
価尺度で評価する一方、予備実験で求めた可塑剤
逸散速度データーに基づき経時を追いつつ、順次
1000mm巾の無延伸塩化ビニリデン系樹脂フイルム
を取り出した。 得られた無延伸フイルムはいずれも透明で
(ASTM D−1003で測つたHAZE値7%以下)
熱収縮を示さない(ASTM D−2732に準じ90℃
の収縮率3%以下)のものであつた。 これら無延伸フイルムの剥ぎとり不良、フイル
ムしわ、バリアー性について本文記載の評価方
法、評価尺度に従つて評価する一方、フイルムの
両表面をエチルアルコールで拭き取つた部分の残
留可塑剤を測定し、第1表に実験No.と共に示し
た。 更に上記フイルムの成形性については外観品
位、型再現性、耐成形戻り性の項目について、取
り得る条件範囲の広さの観点から本文記載の評価
方法・評価尺度に従つて評価した。 以上の塩化ビニリデン・メチルアクリレート共
重合樹脂フイルムの各成分比率及び残留可塑剤と
共に上記各評価結果を第1表に示した。 第1表の評価表のみでは、有用な要因が判り難
いため、メチルアクリレート成分含有量と残存可
塑剤量との関連をより明瞭とする解析図を第4図
に示した。 この評価・解析結果からメチルアクリレート成
分が4重量%未満の少量に過ぎると、成膜加工
性、成形品の外観品位、型再現性が損なわれ易く
なつてしまい、逆に8重量%を越えて多めに過ぎ
ると剥ぎとり保持時間、剥ぎとり不良、フイルム
しわ、型再現性の項目が悪くなることがわかる。 又、残留可塑剤が4重量%を越えて多めに過ぎ
ると成形戻りが悪化するばかりでなく目標とする
バリアー性をも損ないやすいことがわかる。 以上から、共重合樹脂中のメチルアクリレート
成分の量は4〜8重量%の範囲で、且つ残留可塑
剤量が4重量%以下の範囲にあれば、全ての評価
項目において高度な水準を保持できることがわか
る。 以上より明らかなように本発明の実施例は第1
表の実験No.5、6、7、10、11、14、16、17、18
であり、比較例は同実験No.1、2、3、4、8、
9、12、13、15、19、20、21、22である。
[Industrial Field of Application] The present invention is a thermoformable laminated sheet or film that is laminated with a thermoformable sheet or film of another resin and has gas/steam barrier properties. This article relates to improved technology for resins and unstretched sheets and films for lamination. [Prior art] Vinylidene chloride resin/unstretched film for lamination, which is used as a barrier layer for thermoforming laminated sheets/films (hereinafter referred to as films), is known as, for example, "unstretched Saran film (trade name, manufactured by Asahi Kasei)". It is commercially available and known. This material is a vinylidene chloride/vinyl chloride copolymer resin with a vinyl chloride component of about 10% by weight, and contains about 7% by weight of a liquid plasticizer as a modifier, so the amount of oxygen permeation per 10 micron thickness is It is known to be a transparent (HAZE 3%) unstretched film with a gas barrier property of approximately 30 c.c. In addition, this product can be manufactured using the manufacturing method shown in Figure 3 of the advertising specification of Canadian Patent No. 713477, that is, between two resin layers such as polyethylene, which does not bond well with vinylidene chloride resin. , a production method in which the vinylidene chloride resin layer is stretched and coextruded with the vinylidene chloride resin layer sandwiched between them, cooled and wound as is, and the wound film is later peeled off into three pieces to take out a flat, unstretched vinylidene chloride resin film. is used. The reason for this is that the resin, which is easy to thermally decompose and difficult to stretch, can be thinned without decomposition by using the extrusion extensibility of other resins with a smaller amount of plasticizer, and the crystal solidification is slow and can last forever. This is said to be a device to protect a thin layer that is soft and difficult to deform from external forces and to solidify the film. It is also known that this manufacturing method has the advantage of transferring and absorbing the plasticizer in the vinylidene chloride resin layer to the outer layer, reducing the amount of plasticizer in the vinylidene chloride resin layer and improving gas barrier properties. ing. The above-mentioned unstretched film for lamination, carefully produced by such a method, has been utilized as a core material for laminated films for molding, and has come to be widely used in various molding fields with the help of advances in molding technology. [Problems to be Solved by the Invention] However, this unstretched film for lamination has the following three problems. 1 The level of gas barrier properties is rather low, and at least the oxygen permeability per 10 micron thickness is required to be 10 c.c. or less, but the current value is 30 c.c.
In order to improve the gas barrier property, it is necessary to reduce the amount of liquid plasticizer added.
There are ways to make up for this deficiency by adding plasticized resins [for example, "Unstretched Saran Film" C5H (trade name, manufactured by Asahi Kasei)], but with these products, the film quality becomes cloudy and opaque. , cannot be applied to this field. 2 In the field of deep drawing, a molding failure phenomenon occurs in which the vinylidene chloride resin layer breaks, especially at the wall where the local drawing ratio becomes large.This phenomenon also affects the plasticity of the vinylidene chloride resin layer. It can be predicted that this can be corrected by raising the level, but since the barrier properties are already below the target level, this is a problem that cannot be addressed. 3. When trying to make a laminated product, there are unstretched parts of the laminated resin on the unstretched film, or uneven and wrinkled parts, which cannot be completely laminated, resulting in a defective product. The reason for this is that the vinylidene chloride resin does not solidify properly during the production of unstretched film (currently
This is due to a defective phenomenon that occurred during the peeling process. Therefore, an object of the present invention is to solve the above-mentioned problems, that is, to provide a non-stretched vinylidene chloride resin film that can improve the above-mentioned problems. [Means for Solving the Problems] Explaining the requirements of the structure of the present invention according to its role, the main part for solving the problems is the “methyl acrylate” described in the claims. The component is a non-stretched sheet/film consisting of 4 to 8% by weight of vinylidene chloride/methyl acrylate copolymer resin and having a residual content of liquid plasticizer of 4% by weight or less. And following this, “Transparency (HAZE value) is 10%
Below, the section "Unstretched sheets/films for lamination with a heat shrinkage rate of 5% or less at 90℃ and a wall thickness of 10μ to 100μ" refers to the films in question that have been manufactured during the manufacturing process for lamination without devitrification or whitening. It is clarified that the film has been formed as a non-stretched film with a shrinkage rate adjusted to facilitate lamination and thick enough to be used in the field of lamination molding. Therefore, this requirement is the part that guarantees the basic quality of the laminate molded product. That is, for example, if the finished unstretched film has a HAZE value of more than 10%, the resulting molded product will be opaque and not practical in this field, and the heat shrinkage rate at 90°C will be low. is 5
Of course, if it exceeds 10%, the heat shrinkage strength (ORS) will also be 10.
Since the weight is higher than Kg/ cm2 , the heating during lamination may cause interlayer displacement.
This means that if the wall thickness is less than 10μ or more than 100μ, where defects are likely to occur, it is no longer suitable for the layered molding field. The meaning of the above important requirements will be explained in detail below using drawings and the like. FIG. 1 is an experimental diagram showing the dissipation rate of the plasticizer contained in the vinylidene chloride resin used in the present invention. The horizontal axis is the amount (wt%) of the plasticizer initially contained in the resin, and the vertical axis is the plasticizer dissipation rate calculated from the amount of plasticizer remaining in the final unstretched film. The solid line shows the case of the resin used in the present invention (5% methyl acrylate component), and the broken line shows the case of the conventional commercially available film resin (10% vinyl chloride component). In both cases, the vinylidene chloride resin layer is laminated with polyethylene resin on both sides, stretched in a die, extruded from a T-die into a plate shape so that the vinylidene chloride resin layer has a thickness of approximately 30μ, and cooled. Roll it up, peel it off after 3 days and coat it with vinylidene chloride resin.
This is an analysis of the unstretched film taken out. The results shown in FIG. 1 indicate that the vinylidene chloride resin used in the present invention has a greater plasticizer escape rate during processing than conventional products. or,
In the present invention, by utilizing this phenomenon tendency of resin, we compensate for the processing suitability of resin that tends to be insufficient by adding a large amount of plasticizer to the extent possible during extrusion-film forming processing, and on the other hand, as an unstretched film. The amount of plasticizer is brought to a level that provides excellent gas barrier properties and excellent moldability at the time of removal. The completion of an invention lies in the investigation of such points of harmony. FIG. 2 shows examples of molding defects that tend to occur in molding in this technical field, and figures A, B, and C show the magnitude of the defects in order. Figure 3 is an enlarged sketch (approximately 40x) showing the causes of the black streaks on the molded container in A, B, and C of Figure 2. It depicts the vinylidene chloride resin layer being broken. The purpose of improving formability in deep drawing in the present invention is to eliminate such phenomena and expand the suitable temperature range for forming. Figure 4 shows the analysis results, where the vertical axis shows the amount of plasticizer remaining in the film (wt%) when the film was unstretched, and the horizontal axis shows the amount of methyl acrylate component in the film resin layer (wt%). . In Figure 4, the plot points in the figure represent the relationship between the symbols in the comprehensive evaluation section of Table 1, which summarizes the results of Examples and Comparative Examples, and the methyl acrylate component of the target film and the amount of residual plasticizer. This is an analysis diagram drawn at the coordinates of , together with the experiment number. The arrows indicate changes from the initial amount of plasticizer added to the resin. Note that the amount of methyl acrylate located in the middle is based on calculation from the mixing ratio. According to the results shown in Figure 4, the level of gas barrier properties is maintained, moldability is improved, the appearance quality of the finished molded product is maintained, and processability during film formation and holding time until peeling are shortened. , eliminating film wrinkles and peeling defects, etc., all of which can be achieved at a high level, have a methyl acrylate content of 4 to 8% by weight.
It can be seen that the amount of residual plasticizer is 4% by weight or less, and the length of the arrow is long, that is, the product was initially processed with a large amount of plasticizer, and then it was dissipated. However, in order to achieve the objectives of the present invention, that is, to improve the level of gas barrier properties, the level of improvement in moldability, and the defective removal of wrinkles from the film, the amount of thylacrylate is 4 to 8% by weight and the amount of residual plasticizer is 4% by weight. It has also been shown that the purpose can be fully achieved if it is guaranteed that the amount is less than %. The present inventors have discovered that the following phenomena occur regarding the amount of plasticizer dissipation that affects processability during film formation, elimination of film wrinkle defects due to unremovable film, and shortening of holding time until peeling off. I guess. In other words, the excess plasticizer that first plasticizes the resin and makes it easier to stretch is extruded from the vinylidene chloride resin layer and oozes out due to the progressing crystallization of the resin and the suction action of the adjacent resin, but it oozes out from the vinylidene chloride resin layer. Since the entire amount cannot be absorbed in a short time, it accumulates between the vinylidene chloride resin layer and the adjacent resin. On the other hand, vinylidene chloride resin that has undergone crystallization becomes a layer that is firm and resistant to deformation due to the resin properties of the methyl acrylate component. It is speculated that the phenomenon of peeling occurs there. The liquid plasticizer used in the present invention refers to a liquid plasticizer known as a plasticizer for vinyl chloride resin. Among them,
From the viewpoint of food safety and hygiene, aliphatic dibasic acid esters, citric acid esters, fatty acid esters,
Carefully selected from liquid plasticizers such as polyester. Qualitative and quantitative determination of plasticizers can be carried out using a gas chromatograph and a mass spectrometer using the solvent extraction method described in analytical publications such as "Polymer Analysis Handbook" (edited by the Japan Society for Analytical Chemistry, 1985). . The plasticizer dissipation rate is the ratio (wt%) of the amount of plasticizer (B) dissipated during the extrusion-laminated film-forming-stripping process to the initial content (A), i.e., the plasticizer dissipation rate. (% by weight)=B/A×100=Amount of plasticizer in raw resin (% by weight)−Amount of plasticizer in film (% by weight)/Amount of plasticizer in raw resin (% by weight)×100. In addition, the thermoplastic resin used for both outer layers, which is peeled off after forming a three-layer structure with vinylidene chloride resin as the core layer, does not exhibit sufficient thermal adhesion to the vinylidene chloride resin, and the extrusion temperature is too high for chloride. There is no particular limitation as long as it does not promote thermal deterioration of the vinylidene resin, but it is preferable to use a polyolefin resin from the viewpoint of repeated reuse or the usability of the film after peeling off. More preferably, low density polyethylene is used. The evaluation method and evaluation scale used in the present invention are shown below. [] Suitability for film forming processing When forming a laminated film containing an unstretched vinylidene chloride resin film, the generation of bubbles due to carbon and thermal decomposition was observed with the naked eye, and the time required until generation was recognized was evaluated as follows. It was evaluated using a scale. Evaluation symbol Evaluation scale ◎; 6 hours or more ○; 3 hours or more and less than 6 hours △; 1 hour or more and less than 3 hours ×; less than 1 hour Store it at 20℃ and cut it out into 100mm wide, 2m strips over time.
The length of the film taken out at a peeling speed of 5 m/min is 3% of the length in the laminated state.
The elapsed time required until the increase was suppressed to the following was evaluated using the following evaluation scale. Evaluation symbol Evaluation scale ◎; Less than 1 day ○; 1 day or more and less than 3 days △; 3 days or more and less than 7 days ×; 7 days or more [] Film wrinkles When rewinding the obtained unstretched vinylidene chloride resin film alone Diameter heated to 120℃
60 by contacting a 250mm heat roll at a holding angle of 90°.
While running at a speed of m/min, vertical wrinkles at the winding section and horizontal wrinkles at the edges were observed with the naked eye, and the number of wrinkles occurring per 100 m was evaluated using the following evaluation scale. Evaluation symbol Evaluation scale ◎; No occurrence ○; 1 to 2 occurrences △; 3 to 5 occurrences ×; 5 or more occurrences [] Strippability Obtained unstretched vinylidene chloride resin with a width of 1000 mm The film was rewound 100 m, and during this time the film surface was observed with the naked eye, peeling defects were counted, and evaluation was made using the following evaluation scale. Evaluation symbol Evaluation scale ◎; No defects at all ○; 1 to 5 defects △; 6 to 10 defects ×; 11 or more [] Gas barrier property Obtained unstretched vinylidene chloride resin film for evaluation MOCON according to ASTM D-3985
Oxygen gas permeability was measured using an OXTRAN 100 model at 20°C and 65% RH, and evaluated using the following evaluation scale. Evaluation symbol Evaluation scale (unit cc/ m2.day.atm ) ◎; 6 or less ○; More than 6 and less than 10 △: More than 10 and less than 15 ×; More than 15 and high [] Formability Evaluation target After laminating a 500μ unstretched polypropylene sheet (manufactured by Mitsui Toatsu Co., Ltd.) and a 50μ unstretched polypropylene film (manufactured by Tocello Co., Ltd.) on both sides of the unstretched vinylidene chloride resin film using adhesive to make a total of three layers. Plug assist molding was performed using an Erich molding machine, and each item of appearance quality type reproducibility and molding reversion resistance was evaluated. The heating temperature of the sheet is determined by the discoloration of the heat label attached to the edge of the sheet, and the heating level is determined by
150~160℃, 165~175℃, 180~190℃,
Using a cylindrical mold with right angle corners, the drawing ratio (mold depth ÷ opening diameter) was set to 4 levels of 195 to 205℃, 0.3, 0.6, 0.9, 1.2, and 1.5.
5 levels. Appearance Quality The molded articles molded into container shapes by varying the heating temperature and drawing ratio were visually observed from the bottom to evaluate the presence or absence of defects in appearance as illustrated in FIG. 2. The breadth of the range of heating temperature and drawing ratio in which this defect does not occur was evaluated using the following evaluation scale. Evaluation symbol Evaluation scale ◎; Heating rank level 3 or higher Drawing ratio rank or higher ○; Heating rank level 3 or higher Drawing ratio rank or heating rank 2 level Drawing ratio rank or higher △; Heating rank level 3 or lower Drawing ratio rank ×; Heating rank level 3 Below drawing ratio rank: Mold reproducibility Measure the degree of determination of the bottom corners of the container-shaped molded product obtained from the outside of the container using an R gauge, and find the heating temperature and drawing ratio that will make the corners of the molded product have a roundness of 5 mm or less. The breadth of the range was evaluated using the following evaluation scale. Evaluation symbol Evaluation scale ◎; Heating rank level 3 or higher Drawing ratio rank or higher ○; Heating rank level 3 or higher Drawing ratio rank or heating rank 2 level Drawing ratio rank or higher △; Heating rank level 3 or lower Drawing ratio rank ×; Heating rank level 3 The outside diameter of the bottom of the container-shaped molded product obtained is measured, and this value is divided by the inside diameter of the mold.
The breadth of the range of heating temperature and drawing ratio of 0.95 or more was evaluated using the following evaluation scale. Evaluation symbol Evaluation scale ◎: Heating rank is level 3 or above and drawing ratio rank is above ○; Heating rank is level 3 or above and drawing ratio rank is above, or heating rank is level 2 and drawing ratio rank is above △ ; Heating rank is level 3 or below and the drawing ratio rank is below ×; Heating rank is level 3 or below and the drawing ratio rank is below Emphasis was placed on barrier properties, poor peeling, film wrinkles, moldability, and quality, and the degree of sufficiency was evaluated using the following scale. Evaluation scale Evaluation symbol All items are ◎ or ○, and the number of ○ is 2 or less ◎ All the items are ◎ or ○, and the number of ○ is 3 or more ○ △ in 1 item △ × in 1 item × The content of the present invention will be explained in detail in the following Examples and Comparative Examples. Examples and Comparative Examples Vinylidene chloride resin, which is the base resin used for evaluation, is a copolymer resin of vinylidene chloride and methyl acrylate, and each component in the resin, vinylidene chloride to methyl acrylate, is 97:3 (wt%, The same applies hereafter) to 91:9,
All of these can be obtained, for example, by the method described in Japanese Patent Application No. 59-240483.
1.0% by weight of epoxidized linseed oil was used. A liquid plasticizer prepared by mixing diisobutyl adipate and tributyl acetyl citrate in a weight ratio of 60:40 (wt%) to the above base resin,
A vinylidene chloride resin composition was prepared in which the amount added corresponded to the starting point of the arrow in FIG. 4. These compositions were sequentially melt-extruded using an extruder with a diameter of 90 mm and L/D: 24, while ASTM D-
1238, low-density polyethylene with a melt index of 2.5 measured at 190°C and a load of 2.16 kg is melt-extruded using an extruder with a diameter of 120 mm and L/D: 22, and both molten resins are manufactured by, for example, the Dow Chemical Company in the United States. Using a laminating device such as a feed port block, vinylidene chloride resin is laminated into a three-layer structure with a core layer, and then the T-die casting method is used to form a 1200 mm
It was rolled up as a 3-layer film with a width of mm. At the time of extrusion film formation, film forming processability was evaluated using the evaluation method and evaluation scale described in the text. The obtained laminated film was stored in an atmosphere of 20℃, and the peeling retention time was evaluated using the evaluation method and evaluation scale described in the text, while keeping up with the aging based on the plasticizer dissipation rate data obtained in preliminary experiments. sequentially
An unstretched vinylidene chloride resin film with a width of 1000 mm was taken out. All of the obtained unstretched films were transparent (HAZE value 7% or less as measured by ASTM D-1003).
No heat shrinkage (90℃ according to ASTM D-2732)
The shrinkage rate was 3% or less). The peeling defects, film wrinkles, and barrier properties of these unstretched films were evaluated according to the evaluation method and evaluation scale described in the text, while the residual plasticizer was measured on the parts where both surfaces of the film were wiped with ethyl alcohol. It is shown in Table 1 along with the experiment number. Furthermore, regarding the moldability of the film, the items of appearance quality, mold reproducibility, and mold reversion resistance were evaluated in accordance with the evaluation method and evaluation scale described in the text from the viewpoint of a wide range of possible conditions. Table 1 shows the above evaluation results along with the ratio of each component and residual plasticizer of the vinylidene chloride/methyl acrylate copolymer resin film. Since it is difficult to understand useful factors using only the evaluation table in Table 1, an analytical diagram is shown in FIG. 4 to clarify the relationship between the content of the methyl acrylate component and the amount of residual plasticizer. The results of this evaluation and analysis show that if the methyl acrylate component is too small (less than 4% by weight), the film forming processability, the appearance quality of the molded product, and the mold reproducibility are likely to be impaired, whereas if it exceeds 8% by weight, It can be seen that if the amount is too large, the peeling retention time, peeling defects, film wrinkles, and mold reproducibility become worse. Furthermore, it can be seen that if the residual plasticizer is too large, exceeding 4% by weight, not only the molding reversion is deteriorated but also the target barrier properties are likely to be impaired. From the above, if the amount of methyl acrylate component in the copolymer resin is in the range of 4 to 8% by weight, and the amount of residual plasticizer is in the range of 4% by weight or less, high standards can be maintained in all evaluation items. I understand. As is clear from the above, the embodiment of the present invention is the first embodiment.
Experiment No. 5, 6, 7, 10, 11, 14, 16, 17, 18 in the table
The comparative examples are the same experiment Nos. 1, 2, 3, 4, 8,
9, 12, 13, 15, 19, 20, 21, 22.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明は、上述の構成を取ることにより、市販
フイルム例えば「未延伸サランフイルム」C2M、
C5H(商品名、旭化成社製)等が達成できなかつ
た、透明であり得て、高度なバリアー性、深絞り
成形適性範囲の拡大を実現し、同時に成膜加工で
の作業性をも大巾に改善するという成形用無延伸
塩化ビニリデン系樹脂フイルムとして産業上極め
て有用な発明である。
By adopting the above-described structure, the present invention can be applied to commercially available films such as "unstretched Saran film" C2M,
It can be transparent, which C5H (product name, manufactured by Asahi Kasei Corporation) etc. could not achieve, and realizes advanced barrier properties and an expanded range of suitability for deep drawing, and at the same time greatly improves workability in film forming processing. This invention is extremely useful industrially as an unstretched vinylidene chloride resin film for molding, which improves the properties of the film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は可塑剤の逸散率を示す実験図である。
第2図は成形不良の状態を示す成形品の斜視図で
ある。第3図は第2図に示す不良部の断面拡大
(約40倍)図である。第4図は実験結果の解析図
である。
FIG. 1 is an experimental diagram showing the dissipation rate of plasticizer.
FIG. 2 is a perspective view of a molded product showing a state of defective molding. FIG. 3 is an enlarged cross-sectional view (approximately 40 times) of the defective portion shown in FIG. 2. FIG. 4 is an analytical diagram of the experimental results.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニリデン系樹脂でできたラミネート用
無延伸フイルムにおいて、メチルアクリレート成
分が4〜8重量%の塩化ビニリデン・メチルアク
リレート共重合樹脂からなり、該フイルム層に残
存する液体可塑剤が4重量%以下、透明性
(HAZE値)が10%以下、90℃における熱収縮率
が5%以下、肉厚みが10μ〜100μの範囲にあるこ
とを特徴とする塩化ビニリデン系樹脂でできたラ
ミネート用無延伸シート・フイルム。
1. An unstretched film for lamination made of vinylidene chloride resin, consisting of a vinylidene chloride/methyl acrylate copolymer resin with a methyl acrylate component of 4 to 8% by weight, and a liquid plasticizer remaining in the film layer of 4% by weight or less. An unstretched sheet for lamination made of vinylidene chloride resin, which has a transparency (HAZE value) of 10% or less, a heat shrinkage rate at 90°C of 5% or less, and a wall thickness in the range of 10μ to 100μ.・Film.
JP12917886A 1986-06-05 1986-06-05 Laminable non-oriented sheet or film made of vinylidene chloride resin Granted JPS62285928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12917886A JPS62285928A (en) 1986-06-05 1986-06-05 Laminable non-oriented sheet or film made of vinylidene chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12917886A JPS62285928A (en) 1986-06-05 1986-06-05 Laminable non-oriented sheet or film made of vinylidene chloride resin

Publications (2)

Publication Number Publication Date
JPS62285928A JPS62285928A (en) 1987-12-11
JPH0362733B2 true JPH0362733B2 (en) 1991-09-26

Family

ID=15003067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12917886A Granted JPS62285928A (en) 1986-06-05 1986-06-05 Laminable non-oriented sheet or film made of vinylidene chloride resin

Country Status (1)

Country Link
JP (1) JPS62285928A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435792A3 (en) * 1989-12-28 1991-11-06 American National Can Company Vinylidene chloride copolymer films
US5187369A (en) * 1990-10-01 1993-02-16 General Electric Company High sensitivity, high resolution, solid state x-ray imaging device with barrier layer
CA2104625A1 (en) * 1992-12-17 1994-06-18 Cryovac, Inc. Extrudable vinylidene chloride polymeric film
JP4940683B2 (en) * 2006-02-10 2012-05-30 三菱瓦斯化学株式会社 Gas barrier container
WO2015075780A1 (en) 2013-11-19 2015-05-28 旭化成ケミカルズ株式会社 Molded product and process for producing same
KR101578320B1 (en) 2013-11-19 2015-12-16 아사히 가세이 케미칼즈 가부시키가이샤 Molded article and production method thereof

Also Published As

Publication number Publication date
JPS62285928A (en) 1987-12-11

Similar Documents

Publication Publication Date Title
JP5888860B2 (en) Biaxially stretched polybutylene terephthalate film and battery case packaging material for cold forming using the same
WO2011143570A1 (en) Method to reprocess polyactic acid resin and articles
JP7175138B2 (en) Wrap film and wrap film roll
JPH0450905B2 (en)
DE3110247A1 (en) PACKING FILM OF FIVE LAYERS
JPS6410182B2 (en)
JPH09254346A (en) Multilayered polyester sheet and packaging container produced by working it
US6159616A (en) Multilayer plastic film
JP2016104565A (en) Biaxial oriented polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JP6050574B2 (en) Press-through pack packaging material for cold forming containing biaxially stretched polybutylene terephthalate film
JPH0362733B2 (en)
US20200079064A1 (en) Heat-sealable polyester film for production of ready-meal trays, process for its production, and use of the film
US10618260B2 (en) Thermoformable transparent packing made of polyester with a lower foil and an upper foil, process for production thereof and use thereof
JP2010064369A (en) Polypropylene-based multilayered shrink film
JPH05508814A (en) Barrier film of coextruded oriented polyvinylidene chloride copolymer and method for producing the same
JP7380721B2 (en) Solvent composition for heat-shrinkable labels and method for producing heat-shrinkable labels
JP2006346868A (en) Three-layered crosslinked film
EP1189750B1 (en) Polymeric film structures useful as shrink bags
JP2016053167A (en) Biaxially stretched polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JPS6225101B2 (en)
JP3444976B2 (en) Laminated film
JP5153463B2 (en) Stretched polyester film for molding
JP2008302697A (en) Heat-shrinking polystyrenic resin laminated film roll
JPS6320691B2 (en)
US20190390002A1 (en) Transparent, thermoformable, biaxially oriented polyester film, process for production thereof and use thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term