JPH0751540A - Denitration apparatus - Google Patents

Denitration apparatus

Info

Publication number
JPH0751540A
JPH0751540A JP5204016A JP20401693A JPH0751540A JP H0751540 A JPH0751540 A JP H0751540A JP 5204016 A JP5204016 A JP 5204016A JP 20401693 A JP20401693 A JP 20401693A JP H0751540 A JPH0751540 A JP H0751540A
Authority
JP
Japan
Prior art keywords
catalyst
divided
denitration
vanadium
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5204016A
Other languages
Japanese (ja)
Other versions
JP3254055B2 (en
Inventor
Atsushi Morii
淳 守井
Osamu Naito
内藤  治
Masanori Idemoto
昌則 出本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20401693A priority Critical patent/JP3254055B2/en
Publication of JPH0751540A publication Critical patent/JPH0751540A/en
Application granted granted Critical
Publication of JP3254055B2 publication Critical patent/JP3254055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To prevent the rising of an SO2 oxidation rate due to the adhesion and accumulation of vanadium to a catalyst bed. CONSTITUTION:The catalyst bed 12 employed in a denitration apparatus is constituted of the catalyst elements 18 placed on a catalyst receiving material 16 and the divided catalyst elements 17 provided on the catalyst elements 18 so as to leave a definite interval 'B' and a catalyst packing frame 15 distributing exhaust gas and preventing the abrasion of the catalyst bed due to dust is provided in the uppermost part of the catalyst bed 12. The catalyst elements 18 and the divided catalyst elements 17 have a honeycomb structure with a pore size pitch of 7mm and the length 'A' of the divided catalyst elements 17 is set to 300mm or less and the interval 'B' from the catalyst elements 18 arranged on the downstream side from the catalyst elements 17 is set to 50mm or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、重・原油を主燃料とす
るボイラの乾式排煙脱硝装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry flue gas denitration device for a boiler which uses heavy and crude oil as a main fuel.

【0002】[0002]

【従来の技術】図2に、重・原油を主燃料とするボイラ
より排出される排ガス中の窒素酸化物を除去する脱硝装
置の系統図を、図3及び図5にそれぞれ、脱硝反応器の
構造及び触媒パックを示しており、これらの図を用いて
従来の脱硝装置を説明する。ボイラ1へは重・原油等の
燃料7と押込送風機4にて空気予熱器3を介して、予熱
空気9とが投入され燃焼する。ボイラ1で発生した排ガ
スは、ガスダクト8により乾式脱硝装置2に導かれて脱
硝された後、空気予熱器3にて熱交換され、電気集塵機
5にて徐塵され、図示しない脱硫装置、煙突へ送られ
る。なお、符号6は誘引通風機である。
2. Description of the Related Art FIG. 2 is a system diagram of a denitration device for removing nitrogen oxides in exhaust gas discharged from a boiler using heavy and crude oil as a main fuel, and FIGS. A structure and a catalyst pack are shown, and a conventional denitration device will be described with reference to these drawings. Fuel 7 such as heavy oil and crude oil and preheated air 9 are injected into the boiler 1 through the air preheater 3 by the forced draft blower 4 and burned. The exhaust gas generated in the boiler 1 is guided to the dry type denitration device 2 by the gas duct 8 to be denitrified, then heat-exchanged in the air preheater 3 and dust-removed in the electric precipitator 5 to a desulfurization device and a chimney (not shown). Sent. In addition, the code | symbol 6 is an induction fan.

【0003】また、乾式脱硝装置2の上流にNH3 を投
入することは言うまでもなく、図3に示すようにその下
流の脱硝装置2を構成する脱硝反応器13内には複数段
に触媒層12が配置されている。この触媒層12は、図
5に示すように触媒受け材16上に載置された触媒エレ
メント14と、その上部に配置された触媒パックフレー
ム15とより構成されている。
Needless to say, NH 3 is introduced upstream of the dry denitration device 2, and as shown in FIG. 3, the catalyst layers 12 are provided in multiple stages in the denitration reactor 13 constituting the denitration device 2 downstream thereof. Are arranged. As shown in FIG. 5, the catalyst layer 12 is composed of a catalyst element 14 placed on a catalyst receiving member 16 and a catalyst pack frame 15 placed above the catalyst element 14.

【0004】前述した構成により、重・原油、特に高硫
黄重油をボイラ1にて燃焼した排ガスを、乾式脱硝装置
2で処理する場合、燃料7に含まれるバナジウム分が触
媒層12へ到達し触媒に付着することで、脱硝装置のS
2 酸化率が上昇し、脱硝装置出口のSO3 濃度が増加
する。脱硝装置出口のSO3 濃度が増加すると、それ以
後に配置された空気予熱器3の腐食、電気集塵機5入口
の煤塵量が増加し障害となる。この対策としては、触媒
を取り替える以外、現状では方策がなく莫大な出費を伴
う。
With the above-described structure, when the exhaust gas produced by burning heavy and crude oil, especially high-sulfur heavy oil in the boiler 1 is processed by the dry denitration device 2, the vanadium component contained in the fuel 7 reaches the catalyst layer 12 and the catalyst S of the denitration equipment by adhering to
The O 2 oxidation rate increases, and the SO 3 concentration at the denitration device outlet increases. If the SO 3 concentration at the outlet of the denitration device increases, the air preheater 3 arranged thereafter will be corroded and the amount of soot and dust at the inlet of the electrostatic precipitator 5 will increase, which will be an obstacle. As a countermeasure for this, other than replacing the catalyst, there is currently no policy and enormous expense is involved.

【0005】なお、「SO2 酸化」とは、二酸化硫黄
(SO2 )と酸素(O2 )とが反応(酸化)すること
で、反応式は、SO2 +1/2O2 →SO3 となる。ま
た、「SO2 酸化率」とは、脱硝触媒の入口と出口部分
のSO3 濃度の比を示すもので、(出口SO3 −入口S
3 )/入口SO2 ×100の式で算出する。
The "SO 2 oxidation" is the reaction (oxidation) of sulfur dioxide (SO 2 ) and oxygen (O 2 ), and the reaction formula is SO 2 + 1 / 2O 2 → SO 3. . The “SO 2 oxidation rate” indicates the ratio of the SO 3 concentration at the inlet and outlet of the denitration catalyst, which is (outlet SO 3 −inlet S
O 3 ) / inlet SO 2 × 100.

【0006】[0006]

【発明が解決しようとする課題】ボイラの主燃料である
重・原油には、硫黄、バナジウム分が含まれているが、
このバナジウムは排ガス中にもそのまま含まれて排出さ
れるので、脱硝触媒の入口部に集中して付着し、この部
分でのSO2 酸化率が上昇し、脱硝装置全体のSO2
化率上昇の主要因となっている。
[Problems to be Solved by the Invention] Heavy and crude oil, which is the main fuel of a boiler, contains sulfur and vanadium.
Since this vanadium is also contained in the exhaust gas and discharged as it is, it is concentrated and adheres to the entrance of the denitration catalyst, and the SO 2 oxidation rate in this part increases, which increases the SO 2 oxidation rate of the entire denitration device. It is the main factor.

【0007】現状の脱硝装置は、触媒エレメント長さ5
00〜1000mmを一単位としているが、入口側に集中
的にバナジウムが付着しても取り除く手段がないため、
SO 2 酸化率の上昇に対しては触媒を取り替えるか、一
旦触媒を取り出し触媒入口部を切断して再利用する方法
が考えられるが、前者は取替えに莫大な費用を要し、
又、後者は費用の面では前者に勝つが切断/再充填に期
間を要し、何れも現実的ではない。
The current denitration equipment has a catalyst element length of 5
One unit is 00 to 1000 mm, but concentrated on the entrance side
Even if vanadium adheres, there is no way to remove it, so
SO 2If the oxidation rate rises, replace the catalyst or
How to take out the catalyst and cut the catalyst inlet to reuse it
However, the former requires huge cost for replacement,
Also, the latter is better than the former in terms of cost, but is better for cutting / refilling.
It takes time and neither is realistic.

【0008】[0008]

【課題を解決するための手段】前項に記載した課題を解
決するため、本発明では予めバナジウムの付着しやすい
触媒のガス入口側部分のみまたは触媒に代えガス入口側
にセラミック体を取替え可能となるよう分割しておく構
成を採用するものである。
In order to solve the problems described in the preceding paragraph, in the present invention, it becomes possible to replace the catalyst only with the gas inlet side portion of the catalyst to which vanadium easily adheres, or replace the catalyst and replace the ceramic body with the gas inlet side. It adopts a configuration in which it is divided as follows.

【0009】すなわち、第1の本発明では、重・原油を
主燃料とする燃焼設備より排出される排ガス中の窒素酸
化物を、ガス流れ方向に多数の孔を有する触媒を使用し
除去する乾式脱硝装置において、脱硝すべき排ガスの流
路に充填する触媒を、ガス流れ方向に入口側より300
mm以内の部分で分割し、分割した触媒間の間隔を50mm
以内となるように触媒を配置した構成の脱硝装置を採用
する。
That is, according to the first aspect of the present invention, a dry method is used in which nitrogen oxides in exhaust gas discharged from a combustion facility using heavy and crude oil as a main fuel are removed by using a catalyst having a large number of holes in the gas flow direction. In the denitration device, the catalyst to be filled in the exhaust gas flow path to be denitrated should be 300
Divide into parts within mm, and the space between the divided catalysts is 50 mm
A denitration device with a catalyst arranged so that it is within the range is adopted.

【0010】また第2の本発明では、触媒の分割に変え
て、触媒入口側に比表面積10m2/g以上のセラミック成
分を触媒と類似の断面形状で長さ300mm以内に形成
し、このように形成したセラミック体を触媒の上流側に
触媒との間隔を50mm以内となるように配置した構成の
脱硝装置を採用する。
In the second aspect of the present invention, instead of dividing the catalyst, a ceramic component having a specific surface area of 10 m 2 / g or more is formed on the catalyst inlet side within a cross-sectional shape similar to that of the catalyst within a length of 300 mm. A denitration device having a structure in which the formed ceramic body is arranged on the upstream side of the catalyst so that the distance between the ceramic body and the catalyst is within 50 mm is adopted.

【0011】[0011]

【作用】前記したように、本発明によってガス流路に充
填する触媒を、ガス流れ方向に入口側より300mm以内
の部分で分割し、分割した触媒間の間隔を50mm以内と
なるように触媒を配置したこと、また、触媒の分割に替
えて、触媒入口側に比表面積10m2/g以上のセラミック
体を、触媒と類似の断面形状で長さ300mm以内に形成
し触媒の上流側に触媒との間隔を50mm以内となるよう
にセラミック体を配置したことによって、ボイラより排
出される排ガス中のバナジウムを入口側触媒の入口部又
は、模擬触媒(セラミック体)に集中して付着させてお
き、この部分のみをSO2 酸化率が上昇したとき、取り
替えることができる。
As described above, according to the present invention, the catalyst to be filled in the gas flow path is divided into portions within 300 mm from the inlet side in the gas flow direction, and the catalyst is divided so that the distance between the divided catalysts is within 50 mm. In addition to the arrangement of the catalyst, instead of dividing the catalyst, a ceramic body having a specific surface area of 10 m 2 / g or more is formed at the catalyst inlet side within a length of 300 mm with a cross-sectional shape similar to that of the catalyst, and By arranging the ceramic bodies so that the distance between them is within 50 mm, vanadium in the exhaust gas discharged from the boiler is concentrated and attached to the inlet portion of the inlet side catalyst or the simulated catalyst (ceramic body), Only this part can be replaced when the SO 2 oxidation rate rises.

【0012】[0012]

【実施例】本発明では、前述のように、図2,3に示す
脱硝装置2の反応器13内に設置されている触媒層12
を予め排ガス内のバナジウムが付着しやすい触媒のガス
入口側のみを分割し、取替え可能とする。分割する長さ
は、バナジウムの付着しやすい300mm以内とするのが
よい。その理由は300mm以上とするとバナジウムの付
着が比較的少ない300mm以降の部分の触媒の利用が難
しくなるためである。
EXAMPLE In the present invention, as described above, the catalyst layer 12 installed in the reactor 13 of the denitration device 2 shown in FIGS.
In advance, only the gas inlet side of the catalyst to which vanadium in the exhaust gas is likely to adhere is divided and replaceable. The dividing length is preferably within 300 mm where vanadium is easily attached. The reason is that if the thickness is 300 mm or more, it becomes difficult to use the catalyst after 300 mm where the adhesion of vanadium is relatively small.

【0013】更に、該分割部とその後流の触媒層との間
隔を50mm以内とする。その理由は、バナジウムが触媒
入口側に付着しやすいのは排ガスが触媒細孔内に入る際
のガスの乱れによる触媒壁面へのガスの衝突が大きく作
用していることがテスト結果から明らかになっており、
触媒と触媒の分割部の間隔を大きくとりすぎると、触媒
細孔内で整流されたガス流れが乱され、再び後流の触媒
細孔内入口側にガスの乱れ部分を形成させ、バナジウム
分の付着を促進するため好ましくないからである。
Further, the distance between the divided portion and the catalyst layer in the subsequent flow is set to 50 mm or less. The reason is that vanadium tends to adhere to the catalyst inlet side because the test results show that the gas collision with the catalyst wall due to the turbulence of the gas when the exhaust gas enters the catalyst pores has a large effect. And
If the distance between the catalyst and the catalyst divided portion is set too large, the rectified gas flow is disturbed in the catalyst pores, and the turbulent portion of the gas is again formed on the inlet side of the catalyst pores in the downstream flow, and the vanadium content is reduced. It is not preferable because it promotes adhesion.

【0014】本発明による脱硝装置で採用する脱硝反応
器13内に複数段に設けられた触媒層12の例を図1に
示してあり、これを説明する。触媒層12は触媒受け材
16上に載置された触媒エレメント18と、その上部に
一定間隔“B”をおいて分割触媒エレメント17があり
最上部に排ガス11の整流と塵による磨耗防止を兼ねた
触媒パックフレーム15が備えられている。この触媒エ
レメント18、分割触媒エレメント17は孔径7mmピッ
チのハニカム構造のものであり、分割エレメント17の
長さ“A”は300mm以内とし、その下流に設置した触
媒エレメント18との間隔“B”は50mm以内とする。
これは分割触媒エレメント17を出た排ガスが乱流を起
こさない間隔“B”とすればよく、少なければ少ない程
良く当接して配置することが最も良い。
An example of the catalyst layers 12 provided in a plurality of stages in the denitration reactor 13 used in the denitration apparatus according to the present invention is shown in FIG. 1, which will be described. The catalyst layer 12 has a catalyst element 18 placed on a catalyst receiving material 16 and a divided catalyst element 17 above the catalyst element 18 with a constant interval "B". The catalyst layer 12 serves to rectify the exhaust gas 11 and prevent abrasion due to dust. A catalyst pack frame 15 is provided. The catalytic element 18 and the divided catalytic element 17 have a honeycomb structure with a hole diameter of 7 mm pitch, the length "A" of the divided element 17 is within 300 mm, and the distance "B" between the catalytic element 18 and the catalytic element 18 installed downstream thereof is Within 50 mm.
This may be set at an interval "B" at which the exhaust gas exiting the split catalytic element 17 does not cause turbulent flow, and the smaller the number, the better the contact.

【0015】この分割触媒エレメント17に排ガス11
中のバナジウムが付着しやすく多量に付着し、後流の触
媒エレメント18に付着しなくなる。この為に、分割触
媒エレメント17に替えて、これと類似の断面形状であ
って比表面積10m2/g以上のセラミック体とし、バナジ
ウムが付着しやすいようにすれば、この部分は安価に製
作することができる。
Exhaust gas 11 is supplied to the divided catalytic element 17.
Vanadium in the inside tends to adhere, and a large amount adheres, so that it does not adhere to the catalytic element 18 in the downstream. For this reason, the divided catalyst element 17 is replaced with a ceramic body having a similar cross-sectional shape and a specific surface area of 10 m 2 / g or more so that vanadium can be easily attached, and this portion can be manufactured at low cost. be able to.

【0016】〔実験例1〕図2に示す系統の脱硝装置に
図5に示す触媒層を持つ装置において、2〜3wt%の硫
黄分を含む燃料7を燃焼するボイラ1に孔径7mmピッチ
のハニカム構造を持つ触媒を充填した脱硝触媒2を設置
し、約2年間運転した後、触媒サンプルを取り出し脱硝
性能、SO2 酸化率並びにバナジウムの付着状態を確認
した。
[Experimental Example 1] In the denitration apparatus of the system shown in FIG. 2 having the catalyst layer shown in FIG. 5, a boiler 1 burning a fuel 7 containing a sulfur content of 2 to 3 wt% has a honeycomb having a hole diameter of 7 mm. A denitration catalyst 2 filled with a structured catalyst was installed and operated for about 2 years, and then a catalyst sample was taken out and the denitration performance, the SO 2 oxidation rate and the state of vanadium adhesion were confirmed.

【0017】この結果、脱硝率、SO2 酸化率について
は表1に示す通り、脱硝率はフレッシュ時96%、2年
後95.8%となっていて、ほとんど変化せず、また、
SO 2 酸化率についてはフレッシュ時0.5%、2年後
1.5%となり上昇していることが判明した。触媒のガ
ス流れ方向のバナジウムの付着濃度を確認の結果、表2
に示すように触媒のガス入口側300mm以内の部分に、
ベース値(初期値を示す)+2〜1wt%、それ以後はベ
ース値+0.1〜0.2wt%となっていることから、よ
り多くのバナジウム分が触媒のガス入口側に付着してい
ることが確認された。
As a result, the denitration rate, SO2About oxidation rate
As shown in Table 1, the denitrification rate is 96% when fresh and 2 years
It was 95.8% after that, almost unchanged,
SO 2About 0.5% freshness after 2 years
It turned out to have risen to 1.5%. Catalyst moth
As a result of confirming the adhesion concentration of vanadium in the flow direction, Table 2
As shown in, in the part within 300 mm of the gas inlet side of the catalyst,
Base value (indicating initial value) + 2 to 1 wt%, after that
Since the base value is +0.1 to 0.2 wt%,
More vanadium is deposited on the gas inlet side of the catalyst.
It was confirmed that

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】〔実験例2〕上記触媒のガス入口側約20
0mm(全長さは1本当たり800mm)を切り出し、この
部分のみの脱硝率及びSO2 酸化率を測定した。その結
果表3に示すように特にSO2 酸化率がフレッシュ時
0.5%、2年後4%となり、大幅に高い値を示してい
ることが判明した。但し、脱硝率は96%と殆ど変化し
ていないことが判明した。
[Experimental Example 2] Approximately 20 gas inlet side of the above catalyst
0 mm (total length of 800 mm per piece) was cut out, and the denitration rate and SO 2 oxidation rate of only this portion were measured. As a result, as shown in Table 3, it was found that the SO 2 oxidation rate was 0.5% when fresh and 4% after 2 years, showing a significantly high value. However, it was found that the denitration rate was 96%, which was almost unchanged.

【0021】[0021]

【表3】 [Table 3]

【0022】〔実験例3〕触媒(1本当たり800mm)
を入口側から200mmの箇所にて分割し、分割部分の間
隔“B”を10mm,30mm,50mm,80mm,100m
m,200mmとし配置しておき(図4参照)、実験例1
と同じ反応器に約1年間充填し、運転した後取り出して
各部分のバナジウム分の付着状況を確認した。その結
果、表4に示すように分割部分の間隔“B”が50mmを
越えると、後流側触媒18の入口側にバナジウムが顕著
に蓄積し始めることが確認された。この分割触媒17の
長さを200mmとしたのは、実験例1,2においても判
明しているようにバナジウムが300mm以内に付着し、
後流には少々付着するのみとなることから、この実験例
にては後流側にバナジウムが流れ、どのように付着する
かを確認する為に、200mmとしたのである。
[Experimental Example 3] Catalyst (800 mm per unit)
Is divided at a position of 200 mm from the entrance side, and the distance "B" between the divided portions is 10 mm, 30 mm, 50 mm, 80 mm, 100 m
m, 200 mm and arranged (see FIG. 4), Experimental Example 1
The same reactor was charged for about 1 year, and after operating, it was taken out and the adhering condition of the vanadium component on each part was confirmed. As a result, as shown in Table 4, it was confirmed that when the interval "B" between the divided portions exceeds 50 mm, vanadium begins to significantly accumulate on the inlet side of the downstream catalyst 18. The reason why the length of the divided catalyst 17 is 200 mm is that vanadium adheres within 300 mm, as is clear in Experimental Examples 1 and 2.
Since only a little adheres to the wake, in this experimental example, 200 mm was used in order to confirm how vanadium flows on the wake side and how it adheres.

【0023】[0023]

【表4】 [Table 4]

【0024】〔実験例4〕分割触媒の代わりに、比表面
積2m2/g,5m2/g,10m2/g,50m2/g,100m2/gの
シリカ−アルミナからなるセラミックスを触媒と同じ断
面形状にて長さを200mmとなるように成形し、後流側
に触媒600mmを該セラミックスと触媒との距離が25
mmとなるように配置し、実験例1と同一のボイラ排ガス
中にて、約1年間運転後セラミックス部分及び触媒入口
部のバナジウムの付着状況を確認した。その結果、表5
に示すように比表面積が10m2/g以下ではセラミックス
部分へのバナジウムの付着が充分でなく、触媒入口部へ
のバナジウムの蓄積が認められた。
[Experimental Example 4] Instead of a split catalyst, a ceramic made of silica-alumina having a specific surface area of 2 m 2 / g, 5 m 2 / g, 10 m 2 / g, 50 m 2 / g, 100 m 2 / g was used as a catalyst. The same cross-sectional shape was formed to a length of 200 mm, and a catalyst of 600 mm was placed on the downstream side with a distance of 25 mm between the ceramic and the catalyst.
After being operated for about 1 year in the same boiler exhaust gas as in Experimental Example 1, the adhesion state of vanadium in the ceramics portion and the catalyst inlet portion was confirmed. As a result, Table 5
As shown in (1), when the specific surface area was 10 m 2 / g or less, the adhesion of vanadium to the ceramic portion was not sufficient, and the accumulation of vanadium at the catalyst inlet was confirmed.

【0025】[0025]

【表5】 [Table 5]

【0026】また、比表面積が10m2/g以上のセラミッ
クス部分には触媒とほぼ同じようにバナジウムが付着す
ることが判明し、その後流へはバナジウムの流出があま
り見受けられない。これによって、図4に示す分割触媒
17に替えてセラミックスを使用することも可能である
ことが判明した。
Further, it was found that vanadium adheres to the ceramic portion having a specific surface area of 10 m 2 / g or more in the same manner as the catalyst, and vanadium is hardly seen to flow into the subsequent flow. As a result, it was found that ceramics could be used instead of the split catalyst 17 shown in FIG.

【0027】[0027]

【発明の効果】本発明の脱硝装置においては、排ガス中
のバナジウムが付着しやすい触媒のガス入口部のみを分
割して、取り替え可能としたことによって、このバナジ
ウム付着蓄積によりSO2 酸化率が上昇した時に分割し
た触媒のみを容易に取替えることができる。この為、触
媒の無駄が無くなると共に、費用がわずかで良くなる。
In the denitration apparatus of the present invention, only the gas inlet portion of the catalyst to which vanadium in the exhaust gas is likely to adhere is divided and replaced, so that the SO 2 oxidation rate increases due to the accumulation and accumulation of vanadium. Only the divided catalyst can be easily replaced at the time. Therefore, the catalyst is not wasted and the cost is low.

【0028】また、本発明の脱硝装置において、分割触
媒に替えてセラミックス体を触媒層の前に配置したもの
では、脱硝率が多少低くなるが、触媒と比較して安価な
セラミックス製品であり、全体的な費用の節減となる。
Further, in the denitration apparatus of the present invention, in which the ceramic body is placed in front of the catalyst layer instead of the split catalyst, the denitration rate is somewhat lower, but it is a cheaper ceramic product than the catalyst, Overall cost savings.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による脱硝装置における脱硝反応器内に
収納された触媒層の構造図。
FIG. 1 is a structural diagram of a catalyst layer housed in a denitration reactor in a denitration device according to the present invention.

【図2】重・原油を主燃料とするボイラの脱硝装置の系
統図。
FIG. 2 is a system diagram of a denitration device for a boiler that uses heavy and crude oil as a main fuel.

【図3】脱硝反応器の構造図。FIG. 3 is a structural diagram of a denitration reactor.

【図4】実験例3における触媒の配置図。FIG. 4 is a layout diagram of catalysts in Experimental Example 3.

【図5】脱硝反応器内に収納された従来の触媒層の構造
図。
FIG. 5 is a structural diagram of a conventional catalyst layer housed in a denitration reactor.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 乾式排煙脱硝装置 3 空気予熱器 4 押込送風機 5 電気集塵機 6 誘引通風機 7 燃料 8 ガスダクト 9 空気 11 排ガス 12 触媒層 13 脱硝反応器 14,17,18 触媒エレメント 15 触媒パックフレーム 16 触媒受け材 1 Boiler 2 Dry flue gas denitration device 3 Air preheater 4 Push blower 5 Electric dust collector 6 Induction draft fan 7 Fuel 8 Gas duct 9 Air 11 Exhaust gas 12 Catalyst layer 13 Denitration reactor 14, 17, 18 Catalytic element 15 Catalyst pack frame 16 Catalyst Receiving material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 7704−3K F23J 15/00 ZAB A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location 7704-3K F23J 15/00 ZAB A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重・原油を主燃料とする燃焼設備より排
出される排ガス中の窒素酸化物を、ガス流れ方向に多数
の孔を有する触媒を使用し除去する乾式脱硝装置におい
て、脱硝すべき排ガスの流路に充填する前記触媒を、ガ
ス流れ方向に入口側より300mm以内の部分で分割し、
分割した触媒間の間隔を50mm以内となるように触媒を
配置したことを特徴とする脱硝装置。
1. A dry denitration apparatus for removing nitrogen oxides in exhaust gas discharged from a combustion facility using heavy and crude oil as a main fuel by using a catalyst having a large number of holes in the gas flow direction, and denitrification should be performed. The catalyst to be filled in the flow path of the exhaust gas is divided in a portion within 300 mm from the inlet side in the gas flow direction,
A denitration device characterized in that the catalysts are arranged so that the distance between the divided catalysts is within 50 mm.
【請求項2】 重・原油を主燃料とする燃焼設備より排
出される排ガス中の窒素酸化物を、ガス流れ方向に多数
の孔を有する触媒を使用し除去する乾式脱硝装置に於い
て、前記触媒と類似の断面形状で長さ300mm以内に形
成した、比表面積10m2/g以上のセラミック体を前記触
媒の上流側に同触媒との間隔を50mm以内となるように
配置したことを特徴とする脱硝装置。
2. A dry denitration device for removing nitrogen oxides in exhaust gas discharged from a combustion facility using heavy and crude oil as a main fuel by using a catalyst having a large number of holes in the gas flow direction. A ceramic body having a cross-sectional shape similar to that of the catalyst and having a length of 300 mm or less and having a specific surface area of 10 m 2 / g or more is arranged on the upstream side of the catalyst so that the distance from the catalyst is 50 mm or less. Denitration equipment.
JP20401693A 1993-08-18 1993-08-18 Denitration equipment Expired - Fee Related JP3254055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20401693A JP3254055B2 (en) 1993-08-18 1993-08-18 Denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20401693A JP3254055B2 (en) 1993-08-18 1993-08-18 Denitration equipment

Publications (2)

Publication Number Publication Date
JPH0751540A true JPH0751540A (en) 1995-02-28
JP3254055B2 JP3254055B2 (en) 2002-02-04

Family

ID=16483379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20401693A Expired - Fee Related JP3254055B2 (en) 1993-08-18 1993-08-18 Denitration equipment

Country Status (1)

Country Link
JP (1) JP3254055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504314B1 (en) * 2017-12-28 2019-04-24 中国電力株式会社 NOx removal equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504314B1 (en) * 2017-12-28 2019-04-24 中国電力株式会社 NOx removal equipment
WO2019130572A1 (en) * 2017-12-28 2019-07-04 中国電力株式会社 Denitrification device

Also Published As

Publication number Publication date
JP3254055B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
JP3051142B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
CN101796276B (en) Prevention of face-plugging on aftertreatment devices in exhaust
EP0341832B1 (en) Treatment of diesel exhaust gas
US5300270A (en) Hot-side electrostatic precipitator
EP1979585A1 (en) Exhaust gas-purifying apparatus and exhaust gas-purifying method
CN105854537A (en) Industrial furnace sulfur trioxide pre-removing and denitration device and method
JPH0751540A (en) Denitration apparatus
JP2006077576A (en) Denitration reactor
JP2006002713A (en) Diesel exhaust gas-cleaning filter
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
CN210584496U (en) SCR reaction system
JP5198744B2 (en) Catalyst structure
JPH04118028A (en) Waste gas purifying device
JP2003159532A (en) Catalyst element containing metal and/or oxide and method for oxidizing and decomposing cyclic organic compound in exhaust gas from incineration plant using the same
JPWO2004060561A1 (en) Honeycomb catalyst, denitration catalyst for denitration device, and flue gas denitration device
JPH1089056A (en) Exhaust emission control catalyst for diesel engine
JPS56141819A (en) Treatment of waste gas
CN108671752A (en) A kind of equipment for denitrifying flue gas and method of charged spray ammonia and ammonolysis craft combination
JPS6022988Y2 (en) gas treatment equipment
JPH08173769A (en) Dry type denitrification apparatus
CN107081049B (en) Coal fired power plant flue gas near zero discharge system
JPH10286469A (en) Plate-like catalyst structural body and catalytic reaction device using the catalyst structural body
JPS59173119A (en) Nozzle for removing deposited dust
JP2695666B2 (en) Reactor with catalyst pack
CN112337294A (en) SCR reaction system and method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees