JPH075147A - Taste sensor and organic film therefor - Google Patents

Taste sensor and organic film therefor

Info

Publication number
JPH075147A
JPH075147A JP4269541A JP26954192A JPH075147A JP H075147 A JPH075147 A JP H075147A JP 4269541 A JP4269541 A JP 4269541A JP 26954192 A JP26954192 A JP 26954192A JP H075147 A JPH075147 A JP H075147A
Authority
JP
Japan
Prior art keywords
taste
substance
sensor
electrode
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4269541A
Other languages
Japanese (ja)
Other versions
JP3355412B2 (en
Inventor
Kaoru Santo
馨 山藤
Kiyoshi Toko
潔 都甲
Kenji Hayashi
健司 林
Hidekazu Ikezaki
秀和 池崎
Rieko Higashikubo
理江子 東久保
Katsushi Sato
勝史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP26954192A priority Critical patent/JP3355412B2/en
Publication of JPH075147A publication Critical patent/JPH075147A/en
Application granted granted Critical
Publication of JP3355412B2 publication Critical patent/JP3355412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain taste information, especially of sweet taste, in which measurement error is suppressed by arranging a molecule group of bitter taste substance while covering the entire surface of an electrode on the side coming into contact with a liquid to be measured so that sum of charges at the hydrophilic part directing toward the contacting part will be zero. CONSTITUTION:Molecule groups 61, 62 of a bitter taste substance are arranged on a base film 9 formed on a substrate 1 while directing the hydrophilic part outward over the entire surface of an electrode 2 on the side coming into contact with a liquid to be measured thus forming a single molecule film. In this regard, the molecule group 61 to be charged positive in an aqueous solution is mixed with the molecule group 62 to be charged negative at such ratio as the total charge will be zero thus substantially nullifying the reaction of an electrolyte, for detecting the acid and salty tastes, on the anion and cation. Since a taste sensor having conditioned surface charge is employed, taste information is increased and the sensor can be employed effectively even in case of sweet taste. For example, the weight of sweet taste term is increased in the simultaneous equations of taste in order to suppress measurement error of sweet taste.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、人間の五感を代行で
きる人工的なセンサに係り、とくに味覚という、従来は
人工的なセンサでは代行できないとされた、ヒトの感覚
に代わるセンサあるいはトランスデューサと呼ばれる電
子素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial sensor capable of substituting the five senses of a human being, and in particular to a sensor or a transducer, which substitutes for the human sense, which has not been possible by the conventional artificial sensor. Regarding electronic devices called.

【0002】[0002]

【用語の意味】味の基本要素として、塩味、甘味、苦
味、酸味、うま味があると言われていて、それぞれに程
度の大小があるものとされている。人間の感覚で評価で
きるこれらの味の違いは、あるいは、塩味なら塩味につ
いての(同種の)味の違いは、物理的に計測可能な量と
して把握できるものとし、計測可能な味または味の違い
(比較又は対比的な味)をここでは「アジ」と称するこ
ととする。
[Meaning of terms] It is said that there are salt, sweetness, bitterness, sourness, and umami as basic elements of taste, and it is said that each has a different degree. These taste differences that can be evaluated by the human sense, or saltiness (similar kind) differences in saltiness, can be grasped as a physically measurable amount, and the measurable taste or taste difference. (Comparative or contrasting taste) is referred to herein as "horse mackerel".

【0003】[0003]

【従来の技術】従来は、例えば特開昭62−187252号公報
にあるように複数の味覚センサの出力値から測定対象物
における各原味(基本味)成分すなわち選択された呈味
物質の濃度を算出し、各濃度値を人の味覚に合った各原
味の強さを表す値に補正することでアジを測定してい
た。しかし、前記公報にいう味覚センサとは各基本味を
呈する物質を選択的に検出する化学センサまたは物理セ
ンサであり、具体的には塩味は食塩濃度計で、酸味は水
素イオン指数計で、甘味は測定対象物の液体の屈折率を
利用した糖度計であった。これらのセンサは選択的であ
るから例えば塩味の強さを測定しようとしている食塩濃
度計は食塩の濃度の測定はできるが、塩味を呈する他の
物質の濃度は測定できず、人の味覚に合うように補正す
るといっても限界があり、正しく感覚量で示すことは不
可能であった。色に例えてこれをいえば、単一の色しか
検知しないセンサを用いてカラーの結果を得ようとする
ようなものであった。
2. Description of the Related Art Conventionally, for example, as disclosed in Japanese Unexamined Patent Publication No. 62-187252, the original taste (basic taste) component in a measurement object, that is, the concentration of a selected taste substance is determined from the output values of a plurality of taste sensors. The horse mackerel was measured by calculating and correcting each concentration value to a value representing the strength of each original taste that matches the taste of a person. However, the taste sensor referred to in the above publication is a chemical sensor or a physical sensor that selectively detects a substance exhibiting each basic taste. Specifically, saltiness is a salt concentration meter, acidity is a hydrogen ion index meter, and sweetness is sweetness. Was a sugar meter utilizing the refractive index of the liquid to be measured. Since these sensors are selective, for example, a salt concentration meter that is trying to measure the strength of saltiness can measure the concentration of salt, but it cannot measure the concentration of other substances that have a salty taste and is suitable for human taste. However, there was a limit to the correction, and it was impossible to show the correct amount of feeling. By analogy with color, it was like trying to obtain color results using a sensor that senses only a single color.

【0004】同一出願人は、さきに「味覚センサ及びそ
の製造方法」について特許出願をすませた(特願平1−
190819号)。この出願の明細書及び図面には、疎水性の
部分と、親水性の部分とをもつ分子で成る脂質性物質
を、高分子のマトリックス内に定着させ、その表面に脂
質性分子の親水性部分が整列するような構造をもつ脂質
性分子膜が、アジのセンサ、すなわち、人間の味覚に代
わりうる味覚センサとなることを示した。
The same applicant previously filed a patent application for "Taste sensor and its manufacturing method" (Japanese Patent Application No.
No. 190819). In the specification and drawings of this application, a lipid substance composed of a molecule having a hydrophobic portion and a hydrophilic portion is fixed in a polymer matrix, and the hydrophilic portion of the lipid molecule is attached to the surface of the substance. It was shown that the lipidic molecular film with such a structure that they are aligned becomes a taste sensor, that is, a taste sensor that can replace the human taste.

【0005】前記脂質性分子膜の膜式図を、化学物の設
計法で使われている表現方法で表わしたものが図3であ
る。脂質性分子のうち円で示した球状部は親水基aすな
わち親水性部位aであり、それから原子配列が長く延び
る炭化水素の鎖構造b(例えばアルキル基)がある。図
ではいずれの場合も2本の鎖が延びて一つの分子を表わ
しており、全体で分子群を構成している。この炭化水素
の鎖の部分は、疎水性部位bである。このような脂質性
分子群6が、膜部材7の表面のマトリックス8(表面の
構造、平面的なひろがりをもったミクロな構造)の中
に、一部はマトリックス内部に溶け込ませた形(例えば
図3の6′)で収容されている。その収容のされ方は、
親水性部位が表面に配列するようなものとなっている。
FIG. 3 is a diagram showing the membrane formula of the lipidic molecular membrane by the expression method used in the method of designing chemical substances. The spherical portion indicated by a circle in the lipidic molecule is a hydrophilic group a, that is, a hydrophilic portion a, and has a hydrocarbon chain structure b (for example, an alkyl group) from which the atomic arrangement extends long. In each figure, two chains extend in each case to represent one molecule, and the whole constitutes a molecule group. The portion of this hydrocarbon chain is the hydrophobic site b. Such a lipid molecule group 6 is partly dissolved in the matrix 8 (surface structure, microscopic structure having a planar spread) on the surface of the membrane member 7 (for example, a form). It is accommodated at 6 ') in FIG. The way it is stored is
The hydrophilic parts are arranged on the surface.

【0006】この脂質性分子膜を用いて、マルチチャン
ネルの味覚センサとしたものが図5(a),(b) である。本
図ではマルチチャンネルのアレイ電極のうち三つの感応
部が示されている。図示の例では、基材1に 0.5mmφの
孔を貫通して、それに銀の丸棒を差し込み電極2とし
た。脂質性分子膜3は緩衝層4を介して電極2に接触す
るように基材1に張りつけている。
FIGS. 5 (a) and 5 (b) show a multi-channel taste sensor using this lipidic molecular film. In this figure, three sensitive parts of the multi-channel array electrode are shown. In the example shown in the drawing, a 0.5 mmφ hole is penetrated through the base material 1, and a silver round bar is inserted therein to form the electrode 2. The lipidic molecular film 3 is attached to the substrate 1 so as to contact the electrode 2 via the buffer layer 4.

【0007】前記マルチチャンネルの味覚センサを用い
たアジの測定系を図6に示す。呈味物質の水溶液を作
り、それを被測定溶液11とし、ビーカーのような容器12
に入れる。被測定溶液中に、前に述べたような、アクリ
ル板(基材)上に脂質膜と電極とを配置して作った味覚
センサアレイ13を入れた。使用前に、塩化カリウム 1m
mole/l 水溶液で電極電位を安定化した。図中、14−
1,……14−8は各々の脂質膜を黒点で示したものであ
る。測定の基準となる電位を発生する電極として参照電
極15を用意し、それを被測定溶液に入れる。味覚センサ
アレイ13と参照電極15とは所定の距離を隔てて設置す
る。参照電極15の表面には、緩衝層16として、塩化カリ
ウム 100m mole/l を寒天で固化したもので覆ってある
から、結局、電極系は銀2|塩化銀|脂質膜3(14)|被
測定溶液12|緩衝層(塩化カリウム 100m mole/l )16
|塩化銀|銀2という構成となっている。
FIG. 6 shows a horse mackerel measuring system using the multi-channel taste sensor. Make an aqueous solution of the taste substance, use it as the solution to be measured 11, and put it in a container 12 such as a beaker.
Put in. The taste sensor array 13 prepared by arranging the lipid film and the electrode on the acrylic plate (base material) as described above was put in the solution to be measured. 1m potassium chloride before use
The electrode potential was stabilized with a mole / l aqueous solution. 14- in the figure
1, ... 14-8 are the lipid membranes shown by black dots. A reference electrode 15 is prepared as an electrode that generates an electric potential that serves as a reference for measurement, and the reference electrode 15 is placed in the solution to be measured. The taste sensor array 13 and the reference electrode 15 are installed at a predetermined distance. The surface of the reference electrode 15 is covered with 100 m mole / l of potassium chloride solidified with agar as the buffer layer 16, so that the electrode system is eventually silver 2 | silver chloride | lipid membrane 3 (14) | Measurement solution 12 | Buffer layer (potassium chloride 100m mole / l) 16
| Silver chloride | Silver 2

【0008】脂質膜からの電気信号は、図では8チャン
ネルの信号となり、リード線17−1,……,17−8によ
ってそれぞれバッファ増幅器19−1,……,19−8に導
かれる。バッファ増幅器19の各出力は、アナログスイッ
チ(8チャンネル)20で選択されてA/D変換器21に加
えられる。参照電極15からの電気信号もリード線18を介
してA/D変換器21に加えられ、膜からの電位との差を
ディジタル信号に変換する。このディジタル信号はマイ
クロコンピュータ22で適当に処理され、またX−Yレコ
ーダ23で表示される。この例では、8チャンネルの味覚
センサが用いられ、各チャンネルは、人間の味覚を再現
できるような多くの味覚情報を得るために、それぞれア
ジに対して異なる応答特性を持つ表3に示すような脂質
を混入した脂質性分子膜で構成されている。
The electric signal from the lipid membrane becomes a signal of 8 channels in the figure and is led to the buffer amplifiers 19-1, ..., 19-8 by the lead wires 17-1 ,. Each output of the buffer amplifier 19 is selected by the analog switch (8 channels) 20 and added to the A / D converter 21. The electric signal from the reference electrode 15 is also applied to the A / D converter 21 via the lead wire 18, and the difference from the potential from the membrane is converted into a digital signal. This digital signal is appropriately processed by the microcomputer 22 and displayed by the XY recorder 23. In this example, an eight-channel taste sensor is used, and each channel has different response characteristics to horse mackerel in order to obtain a large amount of taste information capable of reproducing human taste, as shown in Table 3. It is composed of a lipidic molecular film mixed with lipids.

【0009】[0009]

【表3】 [Table 3]

【0010】また、同一出願人は、「味覚センサおよび
その製造方法」(特願平3−020450号)及び「センサ」
(特願平3−122636号)の特許出願も済ませた。これら
の出願の明細書及び図面で先の出願(特願平1−190819
号)よりさらに人の味覚器官に近い分子膜を示した。前
記「味覚センサおよびその製造方法」(特願平3−0204
50号)では、この分子膜の材料として親水基と疎水基と
を有する両親媒性物質(脂質も含まれる)と呼ばれるも
のあるいはアルカロイド等の苦味物質を利用可能な分子
膜の構造を示した。この構造は、図4に示すように基板
1に設けられたベース膜9に両親媒性分子群6あるいは
苦味物質の分子群6が円で示される親水性の部位を外に
向けて整列し、単分子膜を構成している。そして、「セ
ンサ」(特願平3−122636号)では、基板電極に疎水基
等を直に化学結合した構成を示し、耐久性の向上した、
蔗糖等の非電解質に対する感度の向上したセンサを示し
た。
[0010] Further, the same applicant has filed on "Taste sensor and its manufacturing method" (Japanese Patent Application No. 3-020450) and "Sensor".
We have also filed a patent application for Japanese Patent Application No. 3-122636. In the specification and drawings of these applications, the previous application (Japanese Patent Application No. 1-190819)
No.) showed a molecular film closer to the human taste organs. "Taste sensor and its manufacturing method" (Japanese Patent Application No. 3-0204)
No. 50) has shown the structure of a molecular film that can use, as a material for this molecular film, an amphipathic substance having a hydrophilic group and a hydrophobic group (including a lipid) or a bitter substance such as an alkaloid. In this structure, as shown in FIG. 4, the amphipathic molecule group 6 or the bitter substance molecule group 6 is aligned on the base film 9 provided on the substrate 1 with the hydrophilic portion indicated by a circle facing outward, It constitutes a monolayer. Then, in the "sensor" (Japanese Patent Application No. 3-122636), a structure in which a hydrophobic group or the like is directly chemically bonded to the substrate electrode is shown, and durability is improved.
A sensor with improved sensitivity to non-electrolytes such as sucrose was shown.

【0011】同一出願人のこれらの明細書にいう味覚セ
ンサは正に味覚センサであって、人の味覚器官である舌
に近い物理化学的性質を持ち、呈味物質が異なっても同
様なアジであれば同様な出力が得られるし、異なるアジ
に対してもなんらかの出力が得られる。色に例えてこれ
をいえば、カラーで検出できるセンサである。
The taste sensor described in these specifications of the same applicant is a taste sensor, and has a physicochemical property close to that of the tongue, which is the taste organ of human being, and the same taste difference substance even if the taste substances are different. If so, the same output can be obtained, and some output can be obtained for different horse mackerels. For example, this is a sensor that can detect color.

【0012】前項で述べたように、例えば特開昭62−18
7252号公報にあるような、呈味物質を選択的に検出する
化学センサまたは物理センサを複数種類用いたアジの測
定では、被測定液に含まれる呈味物質を残らず検出する
のは困難であり、アジの検出がしきれないので、いかに
補正しても人の味覚に合うような測定結果は得られなか
った。
As described in the preceding paragraph, for example, Japanese Patent Laid-Open No. 62-18
In Japanese Patent No. 7252, it is difficult to detect all the taste substances contained in the liquid to be measured in the measurement of horse mackerel using a plurality of chemical or physical sensors that selectively detect the taste substances. However, because the horse mackerel could not be detected completely, no measurement results that match the taste of humans were obtained no matter how corrected.

【0013】一方、被測定液に含まれる呈味物質の種類
にかかわらず、アジを検出できる味覚センサを用いれ
ば、アジ検出の漏れはずっと少ないが、前記味覚センサ
の出力特性が非線形であるから、ある程度信号処理が複
雑で、学習データ数が膨大となり、ときに精度が悪い等
の問題があった。
On the other hand, if a taste sensor capable of detecting horse mackerel is used regardless of the type of taste substance contained in the liquid to be measured, the leakage of horse mackerel detection is much less, but the output characteristics of the taste sensor are non-linear. However, the signal processing is complicated to some extent, the number of learning data becomes enormous, and sometimes the accuracy is low.

【0014】そこで、同一出願人は、さきに「アジ測定
方法」について特許出願をすませた(特願平3― 87598
号)。この出願の明細書及び図面では、前記味覚センサ
を用いたものでありながら、信号処理が簡単な、学習デ
ータ数が少なくて済む、精度の良いアジ測定方法を示
し、測定対象物に含まれる各基本味の強さを各基本味を
呈する物質を代表する代表呈味物質の濃度に換算した値
として求まることを示した。両親媒性物質または苦味物
質の分子膜を用いた味覚センサの出力は非線形であり、
それがために信号処理が複雑になるとされていたが、発
明者等は実験によりある限られた範囲内においては、各
基本味について味覚センサの出力が線形とみなせること
を発見した。この事実に基づいて下記の方法により前述
の課題を解決した。
Therefore, the same applicant previously filed a patent application for the "horse mackerel measuring method" (Japanese Patent Application No. 3-87598).
issue). In the specification and drawings of this application, although the taste sensor is used, a signal processing is simple, a small amount of learning data is required, and an accurate horse mackerel measuring method is shown. It has been shown that the strength of the basic taste can be obtained as a value converted into the concentration of a representative taste substance representing a substance exhibiting each basic taste. The output of a taste sensor using a molecular film of an amphipathic substance or a bitter substance is non-linear,
Although it was said that the signal processing would be complicated due to that, the inventors have found by experiments that the output of the taste sensor can be regarded as linear for each basic taste within a limited range. Based on this fact, the above-mentioned problems were solved by the following method.

【0015】 両親媒性物質または苦味物質の分子膜
を用いた味覚センサを複数使用し、 まず始めに、測定範囲内における各味覚センサの各
基本味に対する感度を求め、 次にで求めた感度を使って、各味覚センサの出力
からアジの強さを演算することとした。アジの強さは測
定対象物に含まれる各基本味について代表となる呈味物
質を決めて、その呈味物質の濃度に換算した値で求め
た。
A plurality of taste sensors using a molecular film of an amphipathic substance or a bitter substance are used. First, the sensitivity of each taste sensor in the measurement range to each basic taste is obtained, and then the sensitivity obtained in We decided to calculate the strength of horse mackerel from the output of each taste sensor. The strength of horse mackerel was determined by determining a representative taste substance for each basic taste contained in the object to be measured and converting it into a concentration of the taste substance.

【0016】ある限られた範囲内においては、各基本味
について味覚センサの出力が線形とみなせるので、基準
液E0 と基準液E0 にある量の基本味Ai を呈する物質
Biを加えた感度測定用液を味覚センサSj で測定すれ
ば、それらの出力から加えた基本味(を呈する物質の濃
度)に対する味覚センサSj の感度Wijが求まる。
Within a limited range, the output of the taste sensor can be regarded as linear for each basic taste, and therefore, for the sensitivity measurement with addition of the reference liquid E0 and the substance Bi exhibiting a certain amount of the basic taste Ai to the reference liquid E0. When the liquid is measured by the taste sensor Sj, the sensitivity Wij of the taste sensor Sj to the basic taste (concentration of the substance exhibiting the added taste) Wij can be obtained from the outputs thereof.

【0017】そして、前記味覚センサSj で基準液E0
及び被測定サンプル液Es を測定し、味覚センサSj の
出力Vj0及びVjsと前記感度Wijを式(1) に代入して、
連立方程式を解けば各基本味(を呈する物質の濃度xi
)が求まる。 Vjs−Vj0=ΣWij・log ( xi /ri ) ………(1) (Σの範囲は i=1 から mまで) ここでri は基準液E0 中の基本味Ai を呈する物質B
i の濃度である。
Then, the reference liquid E0 is applied by the taste sensor Sj.
And the sample liquid Es to be measured is measured, and the outputs Vj0 and Vjs of the taste sensor Sj and the sensitivity Wij are substituted into the equation (1),
If the simultaneous equations are solved, the concentration of the substance exhibiting each basic taste (
) Is required. Vjs-Vj0 = ΣWij · log (xi / ri) (1) (The range of Σ is from i = 1 to m) where ri is the substance B having the basic taste Ai in the reference solution E0.
is the concentration of i.

【0018】例えば、基本味Ai を4種類( i=1,2,3,
4 )、味覚センサSj を8種類( j=1,2,3,4,5,6,7,8
)とすると、下記のような連立方程式が各被測定サン
プル液毎にたてられる。ここで、式(1)のlog ( xi
/ri )はXi と置く。 V1s−V10=W11X1 +W21X2 +W31X3 +W41X4 V2s−V20=W12X1 +W22X2 +W32X3 +W42X4 V3s−V30=W13X1 +W23X2 +W33X3 +W43X4 V4s−V40=W14X1 +W24X2 +W34X3 +W44X4 V5s−V50=W15X1 +W25X2 +W35X3 +W45X4 V6s−V60=W16X1 +W26X2 +W36X3 +W46X4 V7s−V70=W17X1 +W27X2 +W37X3 +W47X4 V8s−V80=W18X1 +W28X2 +W38X3 +W48X4 この連立方程式を最小二乗法で解いて各基本味を呈する
物質の濃度xi が求まる。
For example, four kinds of basic taste Ai (i = 1,2,3,
4), eight taste sensors Sj (j = 1,2,3,4,5,6,7,8
), The following simultaneous equations are established for each sample liquid to be measured. Here, log (x i of equation (1)
/ Ri) is set as Xi. V1s-V10 = W11X1 + W21X2 + W31X3 + W41X4 V2s-V20 = W12X1 + W22X2 + W32X3 + W42X4 V3s-V30 = W13X1 + W23X2 + W33X3 + W43X4 V4s-V40 = W14X1 + W24X2 + W34X3 + W44X4 V5s-V50 = W15X1 + W25X2 + W35X3 + W45X4 V6s-V60 = W16X1 + W26X2 + W36X3 + W46X4 V7s- V70 = W17X1 + W27X2 + W37X3 + W47X4 V8s-V80 = W18X1 + W28X2 + W38X3 + W48X4 This simultaneous equation is solved by the least squares method to find the concentration xi of the substance having each basic taste.

【0019】[0019]

【発明が解決しようとする課題】これまでに述べたよう
な味覚センサや測定方法を用いることで、アジの測定が
比較的簡単に、かつ、精度よくできるようになったもの
の、まだ次のような問題があった。すなわち、前記味覚
センサの甘味に対する感度は塩味や酸味、苦味に対する
感度に比べて低く、前記連立方程式中の甘味の項が占め
るウエイトが小さいため、前記連立方程式を解いて得ら
れる甘味を呈する物質の濃度の誤差が大きくなってしま
うことである。この発明の目的は、前記問題を解決し、
測定誤差の少ないアジ情報(特に甘味に対する)の得ら
れる味覚センサ及び味覚センサ用有機膜を実現すること
である。
Although the taste sensor and the measuring method as described above have been used, the horse mackerel can be measured relatively easily and accurately, but it is still as follows. There was a problem. That is, the sensitivity of the taste sensor to sweetness is lower than the sensitivity to saltiness, sourness, and bitterness, and since the weight occupied by the term of sweetness in the simultaneous equations is small, the substance exhibiting the sweetness obtained by solving the simultaneous equations is expressed. That is, the error of the density becomes large. The object of the present invention is to solve the above problems,
The object is to realize a taste sensor and an organic film for a taste sensor that can obtain horse mackerel information (especially for sweetness) with less measurement error.

【0020】[0020]

【課題を解決するための手段】前記課題を解決するため
に、酸味と塩味は電解質によって呈される味であり、味
覚センサはそれら電解質の陽イオンや陰イオンに反応す
ることで酸味や塩味を検出しているということを利用
し、電解質の陽イオンや陰イオンに対する反応が実質的
に零となるようにした。
[Means for Solving the Problems] In order to solve the above-mentioned problems, sourness and salty taste are tastes exhibited by electrolytes, and a taste sensor reacts with cations or anions of those electrolytes to detect sourness and salty taste. By utilizing the fact that it is detected, the reaction of the electrolyte with respect to cations and anions was made substantially zero.

【0021】すなわち、味覚センサを、電極と、該電極
の被測定溶液に接する側の面全体を覆って該電極に固定
され、かつ、被測定溶液に接する側に親水性部位を向け
た複数種類の両親媒性物質又は苦味物質の分子群とを備
えたものとし、前記複数種類の両親媒性物質又は苦味物
質の組合せと混合割合とを選ぶことにより、前記被測定
溶液に接する側に向けられた親水性部位の全電荷の和が
実質的に零となるように構成した。
That is, a plurality of types of the taste sensor are fixed to the electrode, covering the entire surface of the electrode and the side of the electrode in contact with the solution to be measured, and having a hydrophilic portion facing the side in contact with the solution to be measured. Of the amphipathic substance or the bitter substance molecule group, and by selecting a combination and a mixing ratio of the plurality of types of amphipathic substances or bitter substances, and is directed to the side in contact with the measured solution. In addition, the sum of the total charges of the hydrophilic portion was set to be substantially zero.

【0022】また、味覚センサ用有機膜を、親水性部位
と疎水性部位とを有する複数種類の両親媒性物質又は苦
味物質の分子群と、該両親媒性物質又は苦味物質の分子
群を収容し得るマトリックスを表面に有する膜とから構
成し、前記両親媒性物質又は苦味物質の分子群の少なく
とも一部は前記膜のマトリックス内にその親水性部位が
表面に配列するように収容され、かつ、前記複数種類の
両親媒性物質又は苦味物質の組合せと混合割合とを選ぶ
ことにより表面に配列した親水性部位の全電荷の和が実
質的に零となるように構成した。
Further, the taste sensor organic film contains a plurality of kinds of amphipathic substances or bittering substance molecules having a hydrophilic portion and a hydrophobic portion and the amphiphilic substance or bittering substance molecules group. And a membrane having a matrix capable of being on the surface, at least a part of the group of molecules of the amphipathic substance or bitter substance is contained in the matrix of the membrane so that its hydrophilic sites are arranged on the surface, and The combination of the plurality of kinds of amphipathic substances or bitter substances and the mixing ratio were selected so that the sum of all charges of the hydrophilic sites arranged on the surface becomes substantially zero.

【0023】[0023]

【作用】酸味と塩味は電解質によって呈される味であ
り、味覚センサはそれら電解質の陽イオンや陰イオンに
反応することで酸味や塩味を検出している。従って、味
覚センサ用膜の表面の全電荷の和が零であれば、見掛け
上イオンには反応しない。つまり出力は零となる。
[Function] The sourness and the salty taste are tastes exhibited by the electrolyte, and the taste sensor detects the sourness and the salty taste by reacting with the cations and anions of the electrolytes. Therefore, if the sum of all charges on the surface of the taste sensor film is zero, it apparently does not react with ions. That is, the output becomes zero.

【0024】[0024]

【実施例】この発明の味覚センサ及び味覚センサ用有機
膜を図1及び図2に示す。先に挙げた図3、図4に示す
従来の味覚センサ及び味覚センサ用膜との違いは、水溶
液中で正に帯電する苦味物質または両親媒性物質の分子
群61(図1及び図2において親水性部位aを白丸で示
す)と負に帯電する苦味物質または両親媒性物質の分子
群62(図1及び図2において親水性部位aを黒丸で示
す)とが味覚センサまたは味覚センサ用有機膜全体とし
て電荷が実質的に零となるような割合で含まれているこ
とである。この発明に用いられる苦味物質及び両親媒性
物質の例を水溶液中での帯電の極性と共に表1にまとめ
た。
EXAMPLES A taste sensor and an organic film for a taste sensor according to the present invention are shown in FIGS. The difference from the conventional taste sensor and the film for taste sensor shown in FIG. 3 and FIG. 4 described above is that the molecule group 61 of the bitter substance or amphipathic substance that is positively charged in the aqueous solution (in FIG. 1 and FIG. 2). The hydrophilic portion a is indicated by a white circle) and the negatively charged molecule group 62 of a bitter substance or amphipathic substance (the hydrophilic portion a is indicated by a black circle in FIGS. 1 and 2) is a taste sensor or an organic substance for a taste sensor. That is, the charge is contained in the film as a whole so that the charge becomes substantially zero. Examples of bitter substances and amphipathic substances used in the present invention are summarized in Table 1 together with the polarity of charging in an aqueous solution.

【0025】[0025]

【表1】 [Table 1]

【0026】これらの両親媒性物質の分子構造上の特徴
は、図1〜図4の模式図に示したように、原子配列が長
手方向に延びる疎水性部位と、その長く延びた原子群の
一端部またはその近くに、親水性部位がある点を指摘で
きる。しかも、親水性部位として、リン酸基、アミノ
基、アンモニウム基、カルボキシル基、水酸基などが存
在する。
As shown in the schematic diagrams of FIGS. 1 to 4, the characteristics of the molecular structure of these amphipathic substances are as follows: a hydrophobic site in which the atomic arrangement extends in the longitudinal direction and a long-running atomic group. It can be pointed out that there is a hydrophilic site at or near one end. Moreover, as the hydrophilic portion, there are a phosphoric acid group, an amino group, an ammonium group, a carboxyl group, a hydroxyl group and the like.

【0027】前記苦味物質及び両親媒性物質の中から、
水溶液中で負に帯電するジオクチルフォスフェート(2
8 POOH)と水溶液中で正に帯電するトリオクチル
メチルアンモニウムクロライド(TOMA)とを用いて
実験を行った。2C8 POOHとTOMAの混合比は
100:0、90:10、70:30、50:5
0、45:55、40:60、35:65、3
0:70とした。
From the bitter substances and amphipathic substances,
Dioctyl phosphate (2 which is negatively charged in aqueous solution)
Experiments were carried out with C 8 POOH) and trioctylmethylammonium chloride (TOMA), which is positively charged in aqueous solution. The mixing ratio of 2C 8 POOH and TOMA is 100: 0, 90:10, 70:30, 50: 5.
0, 45:55, 40:60, 35:65, 3
It was set to 0:70.

【0028】両親媒性物質を支持するマトリックスは、
容易に入手でき、取扱いも簡単な、熱可塑性のポリ塩化
ビニル(PVC)を用いた。PVCは、テトラヒドロフ
ラン(THF)、ニトロベンゼン、シクロヘキサノン等
に溶け、可塑剤との混合比を変えることにより、軟質に
も、硬質にもすることができるから、用途に応じて使い
分けができる便利さがある上に、品質の安定性、成形の
容易さも特徴とされる。
The matrix supporting the amphiphile is
Thermoplastic polyvinyl chloride (PVC) was used, which is easily available and easy to handle. PVC dissolves in tetrahydrofuran (THF), nitrobenzene, cyclohexanone, etc. and can be made soft or hard by changing the mixing ratio with a plasticizer, so it has the convenience of being able to use properly depending on the application. In addition, it is characterized by stable quality and ease of molding.

【0029】PVC、可塑剤、両親媒性物質を概ね2:
3:1の重量比で混合する。可塑剤を添加しないと出来
上がりの有機膜が白濁していたり、不均一になったりし
て好ましくない。また、両親媒性物質・可塑剤の選び
方、混合する比率、混合の仕方によっても、出来上がっ
た有機膜に白濁や不均一を生ずることがある。可塑剤と
してフタル酸ジオクチル(DOP)、ジオクチルフェニ
ルフォスフォネート(DOPP)あるいはリン酸トリク
レシル(TCP)を用い、前記混合比の両親媒性物質
(2C8 POOHとTOMA)とPVCとを混合したも
の約400mgを、THF10ccに溶解し、それを均
一な加熱された板上で約30°Cに保つこと約2時間、
THFを揮散させて、有機膜を形成した。こうして得ら
れた有機膜の厚さはほぼ200μmであった。THFを
揮散させるには、室温で減圧しても目的を達成すること
はできるが、多少の加熱をするほうが、良い膜が得られ
るようである。
PVC, a plasticizer and an amphipathic substance are generally used as follows:
Mix in a 3: 1 weight ratio. If a plasticizer is not added, the finished organic film becomes cloudy or non-uniform, which is not preferable. Further, depending on how to select the amphipathic substance / plasticizer, the mixing ratio, and the mixing method, white turbidity or nonuniformity may occur in the finished organic film. Dioctyl phthalate (DOP), dioctyl phenyl phosphonate (DOPP) or tricresyl phosphate (TCP) is used as a plasticizer, and an amphipathic substance (2C 8 POOH and TOMA) and PVC are mixed in the above mixing ratio. Dissolve about 400 mg in 10 cc of THF and keep it at about 30 ° C on a uniform heated plate for about 2 hours,
The organic film was formed by evaporating THF. The thickness of the organic film thus obtained was about 200 μm. In order to volatilize THF, the object can be achieved even if the pressure is reduced at room temperature, but it seems that better heating can be obtained by heating a little.

【0030】この有機膜を約10mmole/lの食塩
水、あるいは塩化カリウム水溶液などの電解質溶液に1
分間ほど浸すと、両親媒性物質の持つ親水基が表面に整
列した分子配列が安定した状態で得られ、味覚センサと
しての機能を果たすものとなる。なお、苦味物質及び両
親媒性物質を固定するマトリックスを作る材料として
は、前記PVCの他に表2に掲げる物質がある。
This organic film was immersed in an electrolyte solution such as a saline solution of about 10 mmole / l or an aqueous potassium chloride solution.
After soaking for about a minute, the hydrophilic group of the amphipathic substance is obtained in a stable state in which the molecular arrangement in which the hydrophilic groups are aligned on the surface is obtained, and it functions as a taste sensor. In addition to PVC mentioned above, there are substances listed in Table 2 as materials for forming a matrix for fixing a bitter substance and an amphipathic substance.

【0031】[0031]

【表2】 [Table 2]

【0032】前記方法で作製した有機膜を用いてマルチ
チャンネル型の味覚センサとした。マルチチャンネル型
の味覚センサは図5(a) 、(b) のようなものであり、ま
た、このマルチチャンネル型の味覚センサを用いたアジ
の測定系は図6に示すものである。いずれも〔従来の技
術〕の欄に述べた通りである。
A multi-channel type taste sensor was prepared by using the organic film produced by the above method. The multi-channel type taste sensor is as shown in FIGS. 5 (a) and 5 (b), and the horse mackerel measuring system using this multi-channel type taste sensor is shown in FIG. Both are as described in the section of [Prior Art].

【0033】マルチチャンネル型の味覚センサは8チャ
ンネルであり、1〜8チャンネルにはそれぞれ前記2C
8 POOHとTOMAの混合比100:0、90:
10、70:30、50:50、45:55、
40:60、35:65、30:70の有機膜を用
いている。被測定溶液としては、酸味を呈する物質とし
て酒石酸、塩味を呈する物質として塩化ナトリウムを選
び、それらの水溶液を用いた。
The multi-channel type taste sensor has 8 channels, and each of 1 to 8 channels has the above-mentioned 2C.
8 Mixing ratio of POOH and TOMA 100: 0, 90:
10, 70:30, 50:50, 45:55,
40:60, 35:65, 30:70 organic films are used. As the solution to be measured, tartaric acid was selected as the substance exhibiting sourness, and sodium chloride was selected as the substance exhibiting salty taste, and their aqueous solutions were used.

【0034】この実験から得られた結果を図7(a) 、
(b) に示す。図7(a) は酒石酸に対する応答パターンで
あり、図7(b) は塩化ナトリウムに対する応答パターン
である。これらは、濃度によるパターンの変化を示した
もので上方にあるパターンが高濃度のときのものであ
る。混合した両親媒性物質は前述のように、リン酸基を
親水基として持つジオクチルフォスフェート(2C8
OOH)とアンモニウム基を親水基として持つトリオク
チルメチルアンモニウムクロライド(TOMA)であ
る。水溶液中では2C8 POOHは負に帯電し、TOM
Aは正に帯電する。
The results obtained from this experiment are shown in FIG.
Shown in (b). FIG. 7 (a) is a response pattern to tartaric acid, and FIG. 7 (b) is a response pattern to sodium chloride. These show changes in the pattern depending on the density, and the upper pattern has a high density. As described above, the mixed amphipathic substance has dioctyl phosphate (2C 8 P having a phosphate group as a hydrophilic group).
OOH) and trioctylmethylammonium chloride (TOMA) having an ammonium group as a hydrophilic group. 2C 8 POOH is negatively charged in an aqueous solution,
A is positively charged.

【0035】従って、2C8 POOHのみを混入した膜
(チャンネル1)は、酒石酸(酸味)の水素イオン、N
aCl(塩味)のナトリウムイオンいずれにも応答す
る。一方、2C8 POOHとTOMAを等量混入した膜
(チャンネル4)は水溶液中での表面電荷の和は零であ
るためナトリウムイオンにはわずかしか応答しない。し
かし、水素イオンは吸着性があるため膜電位を変化させ
る。図7(b) から2C8 POOHとTOMAの比を(4
7〜48):(53〜52)とすれば塩味に応答しない
有機膜が得られることがわかる。
Therefore, the membrane (channel 1) in which only 2C 8 POOH was mixed, the hydrogen ion of tartaric acid (sour taste), N
It responds to both sodium ions of aCl (salt taste). On the other hand, the membrane (channel 4) in which equal amounts of 2C 8 POOH and TOMA are mixed, has a total surface charge of 0 in an aqueous solution, and therefore only slightly responds to sodium ions. However, since hydrogen ions have adsorptivity, they change the membrane potential. From FIG. 7 (b), the ratio of 2C 8 POOH and TOMA is (4
7-48): (53-52) shows that an organic film which does not respond to salty taste can be obtained.

【0036】酸味あるいは塩味に応答しない有機膜を作
製するときの苦味物質または両親媒性物質の種類と混合
比について述べる。2C8 POOHとTOMAの例から
わかるように、水溶液中で負に帯電する苦味物質または
両親媒性物質と正に帯電する苦味物質または両親媒性物
質とを等量混入すれば塩味に応答しない有機膜を作製で
きるというわけではない。例えば、苦味物質または両親
媒性物質は種類によって、水溶液中でイオンとなる割合
(解離度)、解離した苦味物質または両親媒性物質の単
位量あたりの塩味を呈する物質のイオンと結合する親水
基の電荷の量、苦味物質または両親媒性物質の有機膜表
面への配列のし易さ等が異なる。そして、有機膜の水溶
液中での表面電荷は、これらの要因が総合されて決定す
る。苦味物質または両親媒性物質が水溶液中で正に帯電
するか・負に帯電するかについては表1に挙げたように
参考となるデータがあるが、他の要因についてのデータ
はないので、前述のように苦味物質または両親媒性物質
の混合比を変えて実験し最適な混合比を求めることにな
る。
The kind and mixing ratio of the bitter substance or the amphipathic substance when an organic film that does not respond to sourness or saltiness is prepared will be described. As can be seen from the examples of 2C 8 POOH and TOMA, an organic substance that does not respond to salty taste if the bitter substance or amphipathic substance that is negatively charged and the bitter substance or amphipathic substance that is positively charged in the aqueous solution are mixed in equal amounts. It is not possible to make a membrane. For example, a bitter substance or an amphipathic substance is, depending on the type, a ratio (dissociation degree) of an ion in an aqueous solution, a hydrophilic group that binds to the ion of a salty substance per unit amount of the dissociated bitter substance or amphipathic substance. The amount of electric charges of the above, the ease of arranging the bitter substance or the amphipathic substance on the surface of the organic film, etc. Then, the surface charge in the aqueous solution of the organic film is determined by combining these factors. There are reference data as listed in Table 1 regarding whether the bitter substance or amphipathic substance is positively charged or negatively charged in the aqueous solution, but there is no data on other factors. As described above, the optimum mixing ratio will be determined by conducting experiments by changing the mixing ratio of the bitter substance or the amphipathic substance.

【0037】また、塩味に応答しない有機膜の場合は、
有機膜の水溶液中での表面電荷の和が零であればよいの
であるが、酸味に応答しない有機膜の場合は、酸味を呈
する物質がイオン化したとき陽イオンである水素イオン
はペアとなっていた陰イオンより約100倍位有機膜の
親水基と結びつく力が強いので、表面の電荷が水素イオ
ンの吸着する負の電荷1に対して、正の電荷約100と
なるように苦味物質または両親媒性物質の種類と混合比
を選ぶことになる。
In the case of an organic film which does not respond to salty taste,
It suffices if the sum of the surface charges in the aqueous solution of the organic film is zero, but in the case of an organic film that does not respond to sourness, when the substance exhibiting sourness is ionized, hydrogen ions that are cations form a pair. About 100 times stronger than the anion, because it has a stronger bond with the hydrophilic group of the organic film, the bitter substance or the parents should have a positive charge of about 100 for one negative charge of hydrogen ions adsorbed on the surface. The type and mixing ratio of the volatile substance will be selected.

【0038】前述の実施例は、従来の技術の項で挙げた
同一出願人の先願「味覚センサ及びその製造方法」(特
願平1−190819号)の味覚センサ用脂質膜にこの発明を
適用したものであるが、同じく同一出願人の先願である
「味覚センサおよびその製造方法」(特願平3−020450
号)及び「センサ」(特願平3−122636号)で開示した
味覚センサにも適用することができる。
In the above-mentioned embodiments, the present invention is applied to the lipid membrane for a taste sensor of the prior application “Taste sensor and its manufacturing method” (Japanese Patent Application No. 1-190819) of the same applicant as mentioned in the section of the prior art. Although applied, the same applicant's earlier application “Taste sensor and its manufacturing method” (Japanese Patent Application No. 3-020450).
No.) and “sensor” (Japanese Patent Application No. 3-122636).

【0039】上記の実験のほかにも発明者らは、相互作
用の再現について併せて実験し、次のような事実を発見
した。いずれも有用な発明を生むものであり、ここに開
示する。まずはじめに考察すべきことは、人間が感じる
食品の味についてである。酸味と塩味は電解質によって
呈される味であるため、電位応答を測定する現在の味覚
センサでは、苦味とともに測定が容易な味質である。そ
こで、単独の味の質であれば、5基本味へのマルチチャ
ンネルセンサのパターンに適当な処理を施すことにより
定量化が可能である。しかしながら、我々が普段口にす
る食品の味は様々な味が混合されたものである。味物質
は混合することにより影響を及ぼしあい、各々を単独に
口にした場合とは味の強度が異なってしまう。このよう
な味の相互作用は、官能検査により検証されている。し
かし、大脳という最終段階の処理を経た後のあいまいな
感覚により定量化されるため、その相互作用の程度は検
査により様々な結果が得られており、一般法則はない。
つまり、単独味であればいくつかの定量化された尺度を
目安とすることができるが、混合味、即ち一般の食品に
対しては定量化の指標とすべき値や法則はない。そこで
次のような段階を踏むことによって味の定量化が可能と
なる。
In addition to the above experiments, the inventors also conducted experiments on reproduction of interactions, and found the following facts. Both produce useful inventions and are disclosed herein. The first thing to consider is the taste of food as perceived by humans. Since the sourness and salty taste are exhibited by the electrolyte, the present taste sensor that measures the potential response is a taste quality that is easy to measure along with bitterness. Therefore, if the quality of a single taste is quantified, the pattern of the multi-channel sensor for the five basic tastes can be quantified by appropriate processing. However, the taste of food that we usually eat is a mixture of different tastes. Taste substances influence each other by mixing, and the taste intensity is different from that when each is taken alone. Such taste interactions have been verified by sensory tests. However, since the cerebrum is quantified by the vague sensation after the final processing, the degree of the interaction has various results obtained by the examination, and there is no general rule.
In other words, some tastes can be used as a guide for single taste, but there is no value or rule to be used as a quantification index for mixed tastes, that is, general foods. Therefore, the taste can be quantified by taking the following steps.

【0040】第1は、マルチチャンネル型脂質膜センサ
により味を測定することが可能であることが示唆されて
いるので、まずこのセンサの膜電位応答のふるまいを生
物の味受容器応答電位に近づけることである。そのため
には、アジに対する特性の異なる複数の脂質を混合して
作製した脂質膜を使用し、膜電位応答のふるまいと生物
の味受容器応答電位との比較を行った。これが図8であ
り、混入した脂質はアゾレクチン(大豆より抽出したレ
シチン)と2C8 POOHである。比較に用いたものは
ラットの味細胞の受容器電位である。図8より、ここで
用いている膜が生体系と非常によく似たふるまいをして
おり、閾値なども生体系とほぼ一致していることがわか
る。このように、脂質膜の組成を調整することで、膜の
応答特性を受容器電位とほとんど同じにすることができ
る。ここでは、いずれもアゾレクチンと2C8 POOH
の混合膜を示したが、生物が持つ味受容細胞の受容特性
は非常に多様であり、このように膜組成の調整により生
物に対応する膜を作製することが可能であることが判明
した。このような組成を変えた脂質膜を多数用意するこ
とで、ラット以外の動物(ヒトを含む)の受容器レベル
の味の応答パターンと同じ情報をもつセンサの出力パタ
ーンを得ることが可能となる。
First, since it has been suggested that taste can be measured by a multichannel lipid membrane sensor, first, the behavior of the membrane potential response of this sensor is brought close to the taste receptor response potential of an organism. That is. To do so, we used a lipid membrane prepared by mixing multiple lipids with different characteristics to horse mackerel, and compared the behavior of the membrane potential response with the taste receptor response potential of the organism. This is FIG. 8, and the mixed lipids are azolectin (lecithin extracted from soybean) and 2C 8 POOH. What was used for comparison was the receptor potential of rat taste cells. From FIG. 8, it can be seen that the membrane used here behaves very similar to the biological system, and the threshold values and the like are almost the same as those of the biological system. Thus, by adjusting the composition of the lipid membrane, the response characteristic of the membrane can be made almost the same as the receptor potential. Here, both are azolectin and 2C 8 POOH.
It was found that the taste-receiving cells of organisms have a wide variety of receptive properties, and thus it is possible to prepare membranes corresponding to organisms by adjusting the membrane composition. By preparing a large number of lipid membranes with different compositions, it is possible to obtain sensor output patterns that have the same information as the receptor-level taste response patterns of animals other than rats (including humans). .

【0041】第2は、脂質の混合比を連続的に変化させ
た膜を用いて酸味(酒石酸)と塩味(NaCl)を測定
した、前述の実験結果(図7(a) 、(b) )から、酸味の
特徴はチャンネル1〜4は横一直線のパターンとなり、
塩味はチャンネル1〜8で右下がりのパターンとなるこ
とがわかる。このパターンの特徴を利用することによ
り、酸味あるいは塩味の強さを計算した。ここで、チャ
ンネル1,4,8の電位をそれぞれV1 ,V4 ,V8 と
し、それらの値が酸味度あるいは塩味度を表しており、
それらの相乗平均を酸味度あるいは塩味度と仮に定義す
る。すなわち、 酸味度=√(V1 ・V4 )……………(2) 塩味度=√(V1 ・V8 )……………(3) とする。図9は酒石酸(酸味)とNaCl(塩味)の混
合溶液に対するパターンの一例であるが、式(2)を用
いて酸味度を求めると図10のようになる。図10より
塩味を加えた場合に、酸味は単独のときよりも強くなっ
ている。これは、ヒトの味覚において酸味と塩味が強調
しあうという味の相互作用の結果と一致する。また、図
11に式(2)より求めた種々の酸味物質の強さと、ヒ
トの感覚との対応を示す。図11より、センサとヒトの
感覚値が1対1に対応し、このセンサがヒトの味覚をか
なり再現できていることがわかる。
Second, the acidity (tartaric acid) and saltiness (NaCl) were measured using a membrane in which the mixing ratio of lipids was continuously changed, and the above-mentioned experimental results (FIGS. 7 (a) and 7 (b)). Therefore, the characteristic of sourness is that the channels 1 to 4 have a horizontal straight pattern,
It can be seen that the salty taste has a downward sloping pattern in channels 1-8. By utilizing the characteristics of this pattern, the intensity of sourness or saltiness was calculated. Here, the electric potentials of the channels 1, 4, and 8 are V1, V4, and V8, respectively, and these values represent acidity or saltiness,
The geometric mean of these is tentatively defined as acidity or saltiness. That is, acidity = √ (V1 · V4) ………… (2) Saltiness = √ (V1 · V8) ………… (3). FIG. 9 is an example of a pattern for a mixed solution of tartaric acid (sour taste) and NaCl (salt taste), and when the sourness is obtained using the formula (2), it becomes as shown in FIG. From FIG. 10, when the salty taste is added, the sourness is stronger than when it is alone. This is consistent with the result of a taste interaction in which the sourness and the salty taste are emphasized in human taste. Further, FIG. 11 shows the correspondence between the strengths of various sour substances obtained from the formula (2) and the human sense. From FIG. 11, it can be seen that the sensor and the human sensory value have a one-to-one correspondence, and that this sensor can considerably reproduce the human taste.

【0042】[0042]

【発明の効果】酸味あるいは塩味が電解質によって呈さ
れる味であることに着目し、水溶液中で親水基が正の電
荷を持つ苦味物質または両親媒性物質と負の電荷を持つ
苦味物質または両親媒性物質とを適当な割合で混合する
ことで、その表面の電荷を調整した味覚センサ及び味覚
センサ用有機膜が得られた。これらの味覚センサまたは
味覚センサ用有機膜を用いることで、アジに対する情報
量が増える。とりわけ、その測定が難しいとされる甘味
に対して有効であり、アジの情報を処理して各基本味の
強さを求めようとするときに、酸味あるいは塩味に対し
て無感度の膜を用いることで、例えば、アジの連立方程
式中の甘味の項のウエイトを大きくして、甘味の強さの
測定誤差を小さくすることができる。
EFFECTS OF THE INVENTION Focusing on the fact that acidity or saltiness is a taste exhibited by an electrolyte, a bitter substance or amphipathic substance whose hydrophilic group has a positive charge and a bitter substance or parent which has a negative charge in an aqueous solution. A taste sensor and an organic film for a taste sensor in which the charge on the surface was adjusted were obtained by mixing the medium substance with an appropriate ratio. By using these taste sensors or organic films for taste sensors, the amount of information for horse mackerel increases. Especially, it is effective for sweetness that is difficult to measure, and when processing the information of horse mackerel to obtain the strength of each basic taste, use a film insensitive to sourness or saltiness. Thus, for example, the weight of the sweetness term in the simultaneous equation of horse mackerel can be increased to reduce the measurement error of the sweetness intensity.

【0043】[0043]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の味覚センサ用有機膜の断面を示す模
式図。
FIG. 1 is a schematic view showing a cross section of an organic film for a taste sensor of the present invention.

【図2】この発明の味覚センサの断面を示す模式図。FIG. 2 is a schematic view showing a cross section of the taste sensor of the present invention.

【図3】従来の味覚センサ用有機膜の断面を示す模式
図。
FIG. 3 is a schematic diagram showing a cross section of a conventional organic film for a taste sensor.

【図4】従来の味覚センサの断面を示す模式図。FIG. 4 is a schematic view showing a cross section of a conventional taste sensor.

【図5】味覚センサの模式図であり、(a) は正面図、
(b) は断面図。
FIG. 5 is a schematic view of a taste sensor, (a) is a front view,
(b) is a sectional view.

【図6】アジの測定系を示す図。FIG. 6 is a diagram showing a horse mackerel measurement system.

【図7】濃度によるパターンの変化を示す図であり、
(a) は酒石酸(酸味)、(b) は塩化ナトリウム(塩味)
の濃度によるパターンの変化を示す図。
FIG. 7 is a diagram showing a change in a pattern depending on the density,
(a) is tartaric acid (sour taste), (b) is sodium chloride (sour taste)
FIG. 6 is a diagram showing a change in a pattern depending on the density of.

【図8】味覚センサの電位応答とラットの味受容器電位
応答とを比較した図であり、(a) は塩酸(酸味)、(b)
は塩化ナトリウム(塩味)、(c) は塩酸キニーネに対す
る電位応答の図。
FIG. 8 is a diagram comparing the potential response of the taste sensor and the potential response of the taste receptor in rat, (a) is hydrochloric acid (sour), and (b) is
Shows the potential response to sodium chloride (salt) and (c) to quinine hydrochloride.

【図9】塩化ナトリウムに酒石酸を加えた混合溶液に対
する応答パターンを示す図。
FIG. 9 is a view showing a response pattern to a mixed solution of tartaric acid added to sodium chloride.

【図10】塩味混合による酸味度の変化を示す図。FIG. 10 is a diagram showing changes in acidity due to saltiness mixing.

【図11】味覚センサの出力と人間の感覚値とを比較し
た結果を示す図。
FIG. 11 is a diagram showing a result of comparison between an output of a taste sensor and a human sense value.

【符号の説明】[Explanation of symbols]

1 基材(基板) 2 電極 3 脂質膜 4 緩衝層 5 リード線 6 両親媒性物質又は苦味物質の分子群 7 膜部材 8 マトリックス 9 ベース膜 11 被測定溶液 12 容器 13 味覚センサアレイ 14 各々の脂質膜(黒点で示す) 15 参照電極 16 緩衝層 17 リード線 18 リード線 19 バッファ増幅器 20 アナログスイッチ 21 A/D変換器 22 マイクロコンピュータ 23 X−Yレコーダ 24 接地電位 61 正に帯電する両親媒性物質または苦味物質の分子
群 62 負に帯電する両親媒性物質または苦味物質の分子
1 Base Material (Substrate) 2 Electrode 3 Lipid Membrane 4 Buffer Layer 5 Lead Wire 6 Molecular Group of Amphiphile or Bitter Substance 7 Membrane Member 8 Matrix 9 Base Membrane 11 Measured Solution 12 Container 13 Taste Sensor Array 14 Each Lipid Membrane (indicated by black dots) 15 Reference electrode 16 Buffer layer 17 Lead wire 18 Lead wire 19 Buffer amplifier 20 Analog switch 21 A / D converter 22 Microcomputer 23 XY recorder 24 Ground potential 61 Positively charged amphiphilic substance Or molecular group of bitter substance 62 Negatively charged amphiphilic substance or molecular group of bitter substance

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591027765 林 健司 鹿児島県鹿児島市下伊敷町3315番地 伊敷 東住宅1−503 (72)発明者 山藤 馨 福岡県福岡市中央区草香江1丁目6番21号 (72)発明者 都甲 潔 福岡県福岡市東区美和台2丁目8番32−2 号 (72)発明者 林 健司 鹿児島県鹿児島市下伊敷町3315番地 伊敷 東住宅1−503 (72)発明者 池崎 秀和 東京都港区南麻布五丁目10番27号 アンリ ツ株式会社内 (72)発明者 東久保 理江子 東京都港区南麻布五丁目10番27号 アンリ ツ株式会社内 (72)発明者 佐藤 勝史 東京都港区南麻布五丁目10番27号 アンリ ツ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 591027765 Kenji Hayashi 3315 Shimoirashi-cho, Kagoshima City, Kagoshima Prefecture 1-503 Iki Higashi Housing (72) Inventor Kaoru Yamato 1-6-21 Kusakoe, Chuo-ku, Fukuoka City, Fukuoka Prefecture (72) Inventor Kiyoshi Toko 2-8-2-2 Miwadai, Higashi-ku, Fukuoka-shi, Fukuoka (72) Inventor Kenji Hayashi 3315 Shimoirashi-cho, Kagoshima-shi, Kagoshima Ishiki Higashi Housing 1-503 (72) Inventor Hidekazu Ikezaki 5-10-10 Minamiazabu, Minato-ku, Tokyo Anritsu Co., Ltd. (72) Inventor Rieko Higashikubo 5-chome 10-27 Minamiazabu, Minato-ku, Tokyo (72) Inventor Katsushi Sato Tokyo Minato-azabu 5-chome 10-27, Anritsu Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極(2)と、該電極の被測定溶液に接
する側の面全体を覆って該電極に固定され、かつ、被測
定溶液に接する側に向けた親水性部位の全電荷の和が実
質的に零となる複数種類の両親媒性物質又は苦味物質の
分子群(6)とを備えた味覚センサ。
1. The electrode (2) and the total charge of a hydrophilic part which is fixed to the electrode by covering the entire surface of the electrode in contact with the solution to be measured, and which is directed to the side in contact with the solution to be measured. A taste sensor comprising a plurality of kinds of amphipathic substances or molecular groups (6) of bitter substances whose sum is substantially zero.
【請求項2】 マトリックスを表面に有する膜(7)
と、親水性部位(a)と疎水性部位(b)とを有し、前
記膜のマトリックス内に前記親水性部位が表面に配列す
るように収容され、かつ、表面に配列した親水性部位の
全電荷の和が実質的に零となる両親媒性物質又は苦味物
質の分子群(6)とを備えた味覚センサ用有機膜。
2. A film having a matrix on its surface (7)
And a hydrophilic site (a) and a hydrophobic site (b), the hydrophilic site is housed in the matrix of the membrane so that the hydrophilic site is arrayed, and An organic film for a taste sensor, comprising a molecular group (6) of an amphipathic substance or a bitter substance in which the sum of all charges is substantially zero.
JP26954192A 1992-09-12 1992-09-12 Taste sensor and organic film for taste sensor Expired - Lifetime JP3355412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26954192A JP3355412B2 (en) 1992-09-12 1992-09-12 Taste sensor and organic film for taste sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26954192A JP3355412B2 (en) 1992-09-12 1992-09-12 Taste sensor and organic film for taste sensor

Publications (2)

Publication Number Publication Date
JPH075147A true JPH075147A (en) 1995-01-10
JP3355412B2 JP3355412B2 (en) 2002-12-09

Family

ID=17473820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26954192A Expired - Lifetime JP3355412B2 (en) 1992-09-12 1992-09-12 Taste sensor and organic film for taste sensor

Country Status (1)

Country Link
JP (1) JP3355412B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281203A (en) * 2000-03-31 2001-10-10 Society For Techno-Innovation Of Agriculture Forestry & Fisheries Molecular film for taste inspection
JP2003004692A (en) * 2001-06-18 2003-01-08 Society For Techno-Innovation Of Agriculture Forestry & Fisheries Lipid film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281203A (en) * 2000-03-31 2001-10-10 Society For Techno-Innovation Of Agriculture Forestry & Fisheries Molecular film for taste inspection
JP4520577B2 (en) * 2000-03-31 2010-08-04 株式会社インテリジェントセンサーテクノロジー Molecular membrane for taste inspection
JP2003004692A (en) * 2001-06-18 2003-01-08 Society For Techno-Innovation Of Agriculture Forestry & Fisheries Lipid film
JP4602599B2 (en) * 2001-06-18 2010-12-22 株式会社インテリジェントセンサーテクノロジー Lipid membrane

Also Published As

Publication number Publication date
JP3355412B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
EP0410356B1 (en) Taste sensing system using artificial lipid membranes
DE69635642T2 (en) METHOD FOR DETERMINING TASTE WITH A TASTING SENSOR MADE FROM A MOLECULAR MEMBRANE
Hayashi et al. Electric characteristics of lipid-modified monolayer membranes for taste sensors
US20050191428A1 (en) Ion-selective electrodes
JPH075147A (en) Taste sensor and organic film therefor
JP2578374B2 (en) Taste detection system
Kobayashi et al. Development of an artificial lipid‐based membrane sensor with high selectivity and sensitivity to the bitterness of drugs and with high correlation with sensory score
JP3143172B2 (en) Horse mackerel measurement method
EP1751531A1 (en) Ion-selective electrodes
JP3748298B2 (en) Membrane for taste sensor and taste sensor
Mandjoukov et al. Planar, low-cost, flexible, and fully laminated graphene paper pseudo-reference and potassium-selective electrodes
JP3356507B2 (en) Taste sensor
JP3190123B2 (en) Cell for measuring liquid aji
Iiyama et al. Sensitivity-improvement of taste sensor by change of lipid concentration in membrane
JP3029693B2 (en) Horse mackerel measurement method
Chou et al. Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes
Bae et al. Response of polymer membranes as sensing elements for an electronic tongue
Oohira et al. Electrical Characteristics of Lipid/PY C/DO PP Membrane and PVC/DOPP Membrane Used as Transducers in Chemical Sensors
JP3313433B2 (en) Horse mackerel detection method
Shvedene et al. A potentiometric multisensor system of anion-selective electrodes based on ionic liquids
Cui et al. Selectivity control in a sweetness sensor using lipid/polymer membranes
Szpakowska et al. Investigation of sour substances by a set of all-solid-state membrane electrodes
JP4248662B2 (en) Chemical sensor
JP3349786B2 (en) Hydrophobic polymer film for taste sensor and method for producing the same
JP4260983B2 (en) Molecular film sensor, substance analysis method, and method for determining concentration of sensitive substance in molecular film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

EXPY Cancellation because of completion of term