JP3313433B2 - Horse mackerel detection method - Google Patents

Horse mackerel detection method

Info

Publication number
JP3313433B2
JP3313433B2 JP34968892A JP34968892A JP3313433B2 JP 3313433 B2 JP3313433 B2 JP 3313433B2 JP 34968892 A JP34968892 A JP 34968892A JP 34968892 A JP34968892 A JP 34968892A JP 3313433 B2 JP3313433 B2 JP 3313433B2
Authority
JP
Japan
Prior art keywords
taste
reference liquid
sample
liquid
taste sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34968892A
Other languages
Japanese (ja)
Other versions
JPH06174688A (en
Inventor
茂義 河原井
勝史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP34968892A priority Critical patent/JP3313433B2/en
Publication of JPH06174688A publication Critical patent/JPH06174688A/en
Application granted granted Critical
Publication of JP3313433B2 publication Critical patent/JP3313433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、人間の五感の一つで
ある味覚を代行できるようにしたセンサを利用して、こ
れまで人工のセンサによる測定が困難であった飲食物の
味の違いを検出し、測定できるようにする技術に関す
る。食品例えば飲食に供する飲料水、酒類などの味違
い、味の差とでもいうべきものを検出する技術を提供す
るものであるから、飲料水や酒類の生産工場において、
その品質管理を、人手によらず機械装置によって行うこ
とができるようにする技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a sensor capable of acting as a substitute for the taste, which is one of the five senses of human beings, and uses the difference in taste of food and drink, which has been difficult to measure by an artificial sensor. The present invention relates to a technology for enabling detection and measurement. Food, such as drinking water for food and drink, the difference in taste of alcohol, etc., because it provides a technology to detect what should be called the difference in taste, in drinking water and alcohol production plant,
The present invention relates to a technology that enables the quality control to be performed by a mechanical device without manual operation.

【0002】[0002]

【用語の意味】味の基本要素として、塩味、甘味、苦
味、酸味、うま味があると言われていて、それぞれに程
度の大小があるものとされている。人間の感覚で評価で
きるこれらの味の違いは、あるいは、塩味なら塩味につ
いての(同種の)味の違いは、物理的に計測可能な量と
して把握できるものとし、計測可能な味または味の違い
(比較又は対比的な味)をここでは「アジ」と称するこ
ととする。
[Definition of terms] It is said that there are saltiness, sweetness, bitterness, sourness, and umami as basic components of taste, each of which has a degree of magnitude. These differences in taste that can be evaluated by human senses, or differences in saltiness (of the same type) for saltyness, can be grasped as physically measurable quantities, and differences in measurable taste or taste (Comparative or contrasting taste) is herein referred to as “adzuki”.

【0003】[0003]

【従来の技術】従来は、例えば特開昭62−187252号公報
にあるように複数の味覚センサの出力値から測定対象物
における各原味(基本味)成分すなわち選択された呈味
物質の濃度を算出し、各濃度値を人の味覚に合った各原
味の強さを表す値に補正することでアジを測定してい
た。
2. Description of the Related Art Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 62-187252, for example, the concentration of each original taste (basic taste) component, that is, the concentration of a selected taste substance in an object to be measured is determined from the output values of a plurality of taste sensors. Calculated values were measured for horse mackerel by correcting each density value to a value representing the strength of each taste corresponding to human taste.

【0004】しかし、前記公報にいう味覚センサとは各
基本味を呈する物質を選択的に検出する化学センサまた
は物理センサであり、具体的には塩味は食塩濃度計で、
酸味は水素イオン指数計で、甘味は測定対象物の液体の
屈折率を利用した糖度計であった。これらのセンサは選
択的であるから例えば塩味の強さを測定しようとしてい
る食塩濃度計は食塩の濃度の測定はできるが、塩味を呈
する他の物質の濃度は測定できず、人の味覚に合うよう
に補正するといっても限界があった。色に例えてこれを
いえば、単一の色しか検知しないセンサを用いてカラー
の結果を得ようとするようなものであった。
However, the taste sensor referred to in the above publication is a chemical sensor or a physical sensor that selectively detects a substance exhibiting each basic taste. Specifically, salt taste is a salt concentration meter,
The sourness was measured by a hydrogen ion index meter, and the sweetness was measured by a saccharimeter using the refractive index of the liquid to be measured. Since these sensors are selective, for example, a salt concentration meter that is trying to measure the strength of salty taste can measure the concentration of salt, but cannot measure the concentration of other substances that exhibit salty taste, and it suits human taste There was a limit to the correction. Speaking of color, it is like trying to get a color result using a sensor that only detects a single color.

【0005】一部同一出願人は特開平3−54446 号公報
において、疎水性の部分と、親水性の部分とをもつ分子
で成る脂質性物質を、高分子のマトリックス内に定着さ
せ、その表面に脂質性分子の親水性部分が整列するよう
な構造をもつ脂質性分子膜が、アジのセンサすなわち、
人間の味覚に代わりうる味覚センサとなることを示し
た。
[0005] In Japanese Patent Application Laid-Open No. 3-54446, a partially identical applicant discloses that a lipid substance comprising a molecule having a hydrophobic portion and a hydrophilic portion is fixed in a polymer matrix, and the surface thereof is fixed. A lipid molecular membrane having a structure such that the hydrophilic portion of the lipid molecule is aligned with the horse mackerel sensor,
It was shown that it could be a taste sensor that could replace human taste.

【0006】前記脂質性分子膜の膜式図を、化学物の設
計法で使われている表現方法で表わしたものが図8であ
る。脂質性分子のうち円で示した球状部は親水基aすな
わち親水性部位aであり、それから原子配列が長く延び
る炭化水素の鎖構造b(例えばアルキル基)がある。図
ではいずれの場合も2本の鎖が延びて一つの分子を表わ
しており、全体で分子群を構成している。この炭化水素
の鎖の部分は、疎水性部位bである。このような脂質性
分子群31が、膜部材32の表面のマトリックス33(表面の
構造、平面的なひろがりをもったミクロな構造)の中
に、一部はマトリックス内部に溶け込ませた形(例えば
図8の31′)で収容されている。その収容のされ方は、
親水性部位が表面に配列するようなものとなっている。
FIG. 8 shows the membrane diagram of the lipidic molecular membrane in a representation method used in a method of designing a chemical substance. The globular part shown by a circle in the lipid molecule is a hydrophilic group a, that is, a hydrophilic part a, and there is a hydrocarbon chain structure b (for example, an alkyl group) whose atomic arrangement extends long from it. In each case, two chains are extended to represent one molecule in each case, and the whole constitutes a molecule group. This part of the hydrocarbon chain is the hydrophobic site b. Such a lipid molecule group 31 is partially dissolved in a matrix 33 (a surface structure, a microstructure having a planar spread) on the surface of the membrane member 32 (for example, It is accommodated at 31 ') in FIG. The manner of its containment is
The hydrophilic sites are arranged on the surface.

【0007】この脂質性分子膜を用いて、マルチチャン
ネルの味覚センサとしたものが図5(a),(b) である。本
図ではマルチチャンネルのアレイ電極のうち三つの感応
部が示されている。図示の例では、基材に 0.5mmφの孔
を貫通して、それに銀の丸棒を差し込み電極とした。脂
質性分子膜は緩衝層を介して電極に接触するように基材
に張りつけている。
FIGS. 5 (a) and 5 (b) show a multi-channel taste sensor using this lipid molecular membrane. In this figure, three sensitive parts of the multi-channel array electrode are shown. In the illustrated example, a 0.5 mmφ hole was penetrated through the base material, and a silver round bar was inserted into the hole to form an electrode. The lipid molecular membrane is adhered to the substrate via the buffer layer so as to contact the electrode.

【0008】前記マルチチャンネルの味覚センサを用い
たアジの測定系を図6に示す。呈味物質の水溶液を作
り、それを被測定溶液11とし、ビーカーのような容器12
に入れる。被測定溶液中に、前に述べたような、アクリ
ル板(基材)上に脂質膜と電極とを配置して作った味覚
センサアレイ13を入れた。使用前に、塩化カリウム 1m
mole/l 水溶液で電極電位を安定化した。図中、14−
1,……14−8は各々の脂質膜を黒点で示したものであ
る。
FIG. 6 shows a horse mackerel measuring system using the multi-channel taste sensor. Prepare an aqueous solution of the taste substance, use it as the solution to be measured 11, and place it in a container 12 such as a beaker.
Put in. The taste sensor array 13 formed by arranging a lipid membrane and electrodes on an acrylic plate (substrate) as described above was placed in the solution to be measured. Before use, potassium chloride 1m
The electrode potential was stabilized with a mole / l aqueous solution. In the figure, 14-
1,..., 14-8 indicate the respective lipid membranes by black dots.

【0009】測定の基準となる電位を発生する電極とし
て参照電極15を用意し、それを被測定溶液に入れる。味
覚センサアレイ13と参照電極15とは所定の距離を隔てて
設置する。参照電極15の表面には、緩衝層16として、塩
化カリウム 100m mole/l を寒天で固化したもので覆っ
てあるから、結局、電極系は銀2|塩化銀4|脂質膜3
(14)|被測定溶液12|緩衝層(塩化カリウム 100m mole
/l )16|塩化銀4|銀2という構成となっている。
A reference electrode 15 is prepared as an electrode for generating an electric potential serving as a reference for measurement, and is placed in a solution to be measured. The taste sensor array 13 and the reference electrode 15 are installed at a predetermined distance. Since the surface of the reference electrode 15 is covered with a buffer layer 16 coated with 100 mMole / l of potassium chloride solidified with agar, the electrode system is eventually composed of silver 2 | silver chloride 4 | lipid membrane 3
(14) | Measurement solution 12 | Buffer layer (potassium chloride 100m mole
/ L) 16 | silver chloride 4 | silver 2

【0010】脂質膜からの電気信号は、図では8チャン
ネルの信号となり、リード線17−1,……,17−8によ
ってそれぞれバッファ増幅器19−1,……,19−8に導
かれる。バッファ増幅器19の各出力は、アナログスイッ
チ(8チャンネル)20で選択されてA/D変換器21に加
えられる。参照電極15からの電気信号もリード線18を介
してA/D変換器21に加えられ、膜からの電位との差を
ディジタル信号に変換する。このディジタル信号はマイ
クロコンピュータ22で適当に処理され、またX−Yレコ
ーダ23で表示される。この例では、8チャンネルの味覚
センサが用いられ、各チャンネルは、人間の味覚を再現
できるような多くの味覚情報を得るために、それぞれ味
に対して異なる応答特性を持つ表1に示す脂質性分子膜
で構成されている。
The electrical signal from the lipid membrane becomes an eight-channel signal in the figure, and is led to buffer amplifiers 19-1,..., 19-8 by leads 17-1,. Each output of the buffer amplifier 19 is selected by an analog switch (8 channels) 20 and applied to an A / D converter 21. The electric signal from the reference electrode 15 is also applied to the A / D converter 21 via the lead wire 18, and converts the difference from the potential from the membrane into a digital signal. This digital signal is appropriately processed by the microcomputer 22 and displayed by the XY recorder 23. In this example, an 8-channel taste sensor is used, and each channel has a different response characteristic to taste in order to obtain a lot of taste information that can reproduce human taste. It is composed of a molecular film.

【0011】[0011]

【表1】 [Table 1]

【0012】また、一部同一出願人は、「味覚センサお
よびその製造方法」の特許出願もすませた(特願平3−
020450号)。この出願の明細書及び図面で前述の特開平
3−54446号公報よりさらに人の味覚器官に近い分子膜
を示した。そして、この分子膜の材料として親水基と疎
水基とを有する両親媒性物質(脂質も含まれる)と呼ば
れるものあるいはアルカロイド等の苦味物質を利用可能
な分子膜の構造を示した。この構造は、図7に示すよう
に基板1に設けられたベース膜7に両親媒性分子群36あ
るいは苦味物質の分子群36が円で示される親水性の部位
を外に向けて整列し、単分子膜を構成している。
In addition, the same applicant has also filed a patent application for “taste sensor and manufacturing method thereof” (Japanese Patent Application No. Hei.
020450). In the specification and drawings of this application, a molecular membrane closer to human taste organs than in the above-mentioned JP-A-3-54446 is shown. Then, the structure of a molecular film capable of utilizing a substance called an amphipathic substance (including lipid) having a hydrophilic group and a hydrophobic group or a bitter substance such as an alkaloid as a material of the molecular film was shown. In this structure, as shown in FIG. 7, the amphipathic molecule group 36 or the bitter substance molecule group 36 is arranged on the base film 7 provided on the substrate 1 such that the hydrophilic site indicated by a circle faces outward, It constitutes a monomolecular film.

【0013】一部同一出願人のこれらの明細書にいう味
覚センサは正に味覚センサであって、人の味覚器官であ
る舌に近い物理化学的性質を持ち、呈味物質が異なって
も同様な味であれば同様な出力が得られるし、異なる味
に対してもなんらかの出力がえられる。色に例えてこれ
をいえば、カラーで検出できるセンサである。
The taste sensor referred to in the specification of the same applicant is a taste sensor and has physicochemical properties close to those of the tongue which is a human taste organ, and the same applies to different taste substances. A similar output can be obtained for a different taste, and some output can be obtained for a different taste. Speaking of color, this is a sensor that can detect color.

【0014】更に一部同一出願人は、前記味覚センサを
用いてアジを検出する方法を出願し(特開平4−064053
号公報)その中で脂質性分子を用いた味覚センサによる
アジの検出、測定を再現性よく行うために、基準液とし
て被測定サンプル液と同一または類似のアジを呈するも
のを用いることとし、味覚センサを基準液に十分に浸漬
することとし、味覚センサに測定ごとに同様な刺激を加
えるようにし、測定時刻を表面電位の安定後であって膜
内電位が緩慢に変化する時に選ぶこととして、味覚セン
サによる測定値の再現性を良くし、測定値のばらつきも
小さくでき、アジの識別力が増加する方法を開示した。
Further, the same applicant has applied for a method of detecting horse mackerel using the above-mentioned taste sensor (Japanese Patent Laid-Open No. 4-064053).
In order to perform the detection and measurement of horse mackerel with a taste sensor using lipid molecules with good reproducibility, a liquid exhibiting the same or similar horse mackerel as the sample liquid to be measured is used as a reference solution. Sufficiently immerse the sensor in the reference solution, apply a similar stimulus to the taste sensor for each measurement, and select the measurement time after the surface potential is stabilized and the intramembrane potential changes slowly, A method has been disclosed in which the reproducibility of the measured value by the taste sensor is improved, the variation in the measured value is reduced, and the discriminating power of horse mackerel is increased.

【0015】[0015]

【発明が解決しようとする課題】前記方法によってもま
だ次のような問題があった。すなわち、 表面電位の絶対値が継続的にドリフトすること。味覚
センサでサンプル溶液を一度測定すると、サンプル溶液
が脂質膜内に浸透したり、脂質膜表面に付着したりする
ため、脂質膜表面の電荷密度が変り、味覚センサ出力が
ドリフトする。
However, the above method still has the following problems. That is, the absolute value of the surface potential continuously drifts. Once the sample solution is measured by the taste sensor, the sample solution permeates into the lipid membrane or adheres to the lipid membrane surface, so that the charge density on the lipid membrane surface changes and the taste sensor output drifts.

【0016】基準液を繰り返し測定することによって
基準液自体が継続的に変化すること。味覚センサを基準
液に断続的に浸漬せしめながら同じ態様で繰り返し測定
すると、洗浄用の基準液があっても繰り返し回数が多い
とサンプル液からの汚染や空気酸化により基準液自体の
味が、継続的に変化する。
The reference liquid itself continuously changes by repeatedly measuring the reference liquid. If the taste sensor is intermittently immersed in the reference solution and the measurement is repeated in the same manner, even if there is a reference solution for washing, if the number of repetitions is large, the taste of the reference solution itself will continue due to contamination from the sample solution and air oxidation. Change.

【0017】サンプル液と同一または類似のアジを呈
する基準液を用いると、サンプル液の味成分の濃度と基
準液の味成分の濃度がほぼ同じなので、イオン性の味成
分は問題ないが吸着性のある味成分は一度基準液で吸着
してしまうと脂質膜より脱離しにくいため、吸着性のあ
る味成分の感度が悪くなる。
When a reference liquid having the same or similar agility as the sample liquid is used, the concentration of the taste component in the sample liquid is substantially the same as the concentration of the taste component in the reference liquid. Once a taste component having a taste is once adsorbed by the reference solution, it is difficult to desorb the taste component from the lipid membrane.

【0018】[0018]

【課題を解決するための手段】前項で述べた課題に対処
するため、この発明では次の2点に着目する。第一の
基準液と第二の基準液とを用いる。これは味覚センサの
継続的なドリフトの影響と基準液を繰り返し測定するこ
とによって基準液自体が継続的に変化するという影響を
できるだけ少なくするためにとられる処置である。以前
の検出方法は、基準液を測定したときの測定値V0 とサ
ンプル液を測定したときの測定値Vs によりサンプルの
基準値からの相対値(Vs −V0 )を計算していたが、
味覚センサの継続的なドリフトも一緒に測定していたた
めばらつきが大きかった。つまり、味覚センサの単位時
間あたりのドリフトを εmV/s とするとサンプル液を
測定したときの測定値Vs は次式のように表せる。 Vs =Vs ´+tε ここで、Vs ´:味覚センサのドリフト分を含まない真のサンプル測定値 t :時間 よって相対値(Vs −V0 )は Vs −V0 =Vs ´−V0 +tε となり味覚センサの継続的なドリフトも測定していた
が、本発明の測定方法は、第一の基準液を測定したとき
の測定値V0 、第二の基準液を測定したときの測定値V
k 、再度第一の基準液を測定したときの測定値V0 ´、
サンプル液を測定したときの測定値Vs によりサンプル
の基準値からの相対値{(Vs −V0 ´)−(Vk −V
0 )}は、次式のように表せる。 {(Vs −V0 ´)−(Vk −V0 )} =[{Vs ´+( T+2t) ε−V0 ´´−( T+t) ε} −{Vk ´+tε−V0 ´´}] =Vs ´−Vk ´ ……………(1) ここで、Vs ´ :味覚センサのドリフト分を含まない真のサンプル測定値 Vk ´ :味覚センサのドリフト分を含まない真の第二の基準液測定値 V0 ´´:味覚センサのドリフト分を含まない真の第一の基準液測定値 t :第一の基準液から第二の基準液及び第一の 基準液からサンプル液を測るまでの時間 T :第二の基準液から第一の基準液を測るまでの時間 よって、味覚センサの継続的なドリフトの影響を受けな
い相対値(Vs ´−Vk´)を得ることに成功した。更
に以前の基準液を繰り返し測定することによって基準液
自体が継続的に変化するという問題も第一の基準液を用
いることによって式(1)のように第一の基準液(以前
の基準液)の味が変化しても影響がなくなった。
In order to address the problems described in the preceding section, the present invention focuses on the following two points. A first reference liquid and a second reference liquid are used. This is a measure taken to minimize the influence of the continuous drift of the taste sensor and the continuous change of the reference liquid itself by repeatedly measuring the reference liquid. In the previous detection method, a relative value (Vs-V0) from the reference value of the sample was calculated from the measured value V0 when the reference solution was measured and the measured value Vs when the sample solution was measured.
Since the continuous drift of the taste sensor was measured together, the variation was large. That is, assuming that the drift per unit time of the taste sensor is εmV / s, the measured value Vs when the sample liquid is measured can be expressed by the following equation. Vs = Vs '+ t.epsilon. Where Vs': a true sample measured value not including the drift of the taste sensor t: time The relative value (Vs-V0) is Vs-V0 = Vs'-V0 + t.epsilon. The measurement method of the present invention measures the measured value V0 when the first reference solution is measured and the measured value V0 when the second reference solution is measured.
k, the measured value V 0 'when the first reference liquid is measured again,
The relative value from the reference value of the sample {(Vs−V0 ′) − (Vk−V) is obtained from the measured value Vs when the sample liquid is measured.
0)} can be expressed as the following equation. {(Vs−V0 ′) − (Vk−V0)} = [{Vs ′ + (T + 2t) ε−V0 ′ − (T + t) ε} −ΔVk ′ + tε−V0 ′ } = Vs′−Vk Here, Vs': a true sample measurement value that does not include the drift of the taste sensor Vk ': a true second reference liquid measurement value that does not include the drift of the taste sensor V0'' : True first reference liquid measured value not including the drift of the taste sensor t: time from measurement of the first reference liquid to the second reference liquid and from the first reference liquid to measurement of the sample liquid T: second Based on the time required to measure the first reference liquid from the reference liquid, the relative value (Vs'-Vk ') which was not affected by the continuous drift of the taste sensor was successfully obtained. Further, the problem that the reference liquid itself continuously changes due to repeated measurement of the previous reference liquid is also caused by using the first reference liquid as shown in the equation (1). The change in taste no longer affected.

【0019】第一の基準液に第二の基準液を水で薄め
たものを用いる。サンプル液と同一または類似のアジを
呈する第一の基準液を用いると、サンプル液の味成分の
濃度と第一の基準液の味成分の濃度がほぼ同じなので、
イオン性の味成分は脂質膜に吸着しないので問題ない
が、吸着性のある味成分は一度基準液やサンプル液で吸
着してしまうと脂質膜より脱離しにくいため、第一の基
準液は第二の基準液を水で薄めたものを用いた。このこ
とにより第二の基準液及び測定液で吸着した味成分が容
易に脱離し、感度が向上し、味の識別能力が高くなっ
た。
As the first reference liquid, a second reference liquid diluted with water is used. When the first reference liquid having the same or similar adjectiveness as the sample liquid is used, the concentration of the taste component in the sample liquid is substantially the same as the concentration of the taste component in the first reference liquid.
There is no problem because ionic taste components do not adsorb to the lipid membrane, but once the adsorbable taste components are adsorbed by the reference solution or sample solution, they are difficult to desorb from the lipid membrane. A second reference solution diluted with water was used. As a result, the taste components adsorbed by the second reference liquid and the measurement liquid were easily desorbed, the sensitivity was improved, and the taste discrimination ability was enhanced.

【0020】[0020]

【作用】図1の流れ図によれば、第一の基準液→第二
の基準液→第一の基準液→サンプル液の順に測定しサン
プル液測定値の基準値からの相対値{(Vs −V0 ´)
−(Vk −V0 )}を計算することにより味覚センサの
継続的なドリフトにおける相対値のばらつきが無くな
り、第一の基準液を用いることによって第一の基準液
の味が変化しても測定値への影響が無くなり第一の基
準液の濃度を水を加えるなどして低くすると膜への吸着
物質が第一の基準液により容易に脱離し、味覚センサ出
力の情報量が増したので、結果として、再現性のよい、
より識別能力を増したアジの検出が可能となった。
According to the flowchart of FIG. 1, the first reference liquid → the second reference liquid → the first reference liquid → the sample liquid are measured in this order, and the relative value of the measured value of the sample liquid from the reference value {(Vs− V0 ')
By calculating-(Vk -V0) ば ら つ き, the variation of the relative value in the continuous drift of the taste sensor is eliminated, and even if the taste of the first reference liquid changes by using the first reference liquid, the measured value is obtained. When the concentration of the first reference solution was reduced by adding water, etc., the substance adsorbed on the membrane was easily desorbed by the first reference solution, and the amount of information of the taste sensor output increased. As good reproducibility,
It became possible to detect horse mackerel with higher discrimination ability.

【0021】[0021]

【実施例】従来の技術の項で述べた脂質膜を用いた味覚
センサを使用して、コーヒー飲料として市販されている
7商品について、アジの検出(差異の判別)を実施する
こととする。味覚センサに使用する脂質性分子として、
表1に掲げた8種類(番号1,2,3,4,7,8,1
0,11の脂質を用い、順次番号1〜8を付し、そこか
ら得られる電位の信号を1〜8チャンネルと称する)を
用いた。第一の基準液と第二の基準液には、コーヒー飲
料7商品をブレンドして用いた。アジの検出の手順は次
の通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Using a taste sensor using a lipid membrane as described in the section of the prior art, detection of horse mackerel (discrimination of difference) is carried out for seven commercially available coffee drinks. As lipid molecules used in taste sensors,
Eight types listed in Table 1 (numbers 1, 2, 3, 4, 7, 8, 1
0 to 11 lipids were sequentially numbered 1 to 8, and potential signals obtained therefrom are referred to as channels 1 to 8). Seven products of coffee beverages were blended and used for the first reference liquid and the second reference liquid. The procedure of horse mackerel detection is as follows.

【0022】1) 保存液(第一の基準液に同じ)に脂質
膜を用いた味覚センサをほぼ10時間浸漬する。 2) 第一
の基準液(洗浄用)へ味覚センサの出し入れを10回行
う。第一の基準液(洗浄用)で洗浄するといってもよい
し、第一の基準液に断続的に浸漬するといってもよい
し、味覚センサの脂質膜の表面に刺激を与えるというこ
ともできる。 3) 第一の基準液で測定用として用意したものに浸漬
し、20秒後に味覚センサの電位を測定し、測定値をV0
とする。 4) 手順2)、3)を2回以上繰り返し、測定ごとに今回の
測定値V0 と前回の測定値V0 の差が所定の値以下かど
うかを判断し、所定の値以下(つまりV0 が安定した
ら)であれば手順5)へ進む。 5) 味覚センサを第一の基準液(測定用)から出して、
第二の基準液(洗浄用)で洗浄する。(前記2)と同様に
10回出し入れをする。) 6) 第二の基準液(測定用)に味覚センサを浸漬し、20
秒後に味覚センサの電位Vk を測定する。 7) 再度第一の基準液(洗浄用)へ味覚センサの出し入
れを10回行う。第一の基準液(洗浄用)で洗浄するとい
ってもよいし、第一の基準液に断続的に浸漬するといっ
てもよいし、味覚センサの脂質膜の表面に刺激を与える
ということもできる。 8) 第一の基準液で測定用として用意したものに浸漬
し、20秒後に味覚センサの電位を測定し、測定値をV0
´ とする。 9) 手順7)、8)を2回以上繰り返し、測定ごとに今回の
測定値V0 ´ と前回の測定値V0 ´ の差が所定の値
以下かどうかを判断し、所定の値以下(つまりV0 が安
定したら)であれば手順10) へ進む。 10) 味覚センサを第一の基準液(測定用)から出して、
サンプル液(洗浄用)で洗浄する。(前記2)と同様に10
回出し入れをする。) 11) サンプル液(測定用)に味覚センサを浸漬し、20秒
後に味覚センサの電位Vs を測定する。 12) 測定の手順2)に戻り手順2)〜11) を繰り返す。所定
の回数繰り返したら手順を終わる。
1) A taste sensor using a lipid membrane is immersed in a storage solution (same as the first reference solution) for approximately 10 hours. 2) Take the taste sensor in and out of the first reference solution (for cleaning) 10 times. It may be said that it is washed with the first reference solution (for washing), it may be said that it is immersed intermittently in the first reference solution, or it can be said that it stimulates the surface of the lipid membrane of the taste sensor. . 3) Immerse the sample in the first reference solution prepared for measurement. After 20 seconds, measure the potential of the taste sensor.
And 4) Steps 2) and 3) are repeated at least twice, and for each measurement, it is determined whether the difference between the current measured value V0 and the previous measured value V0 is equal to or less than a predetermined value. If), proceed to step 5). 5) Take out the taste sensor from the first reference liquid (for measurement),
Wash with a second reference solution (for washing). (Same as 2)
Put in and out 10 times. 6) Immerse the taste sensor in the second reference solution (for measurement),
After a second, the potential Vk of the taste sensor is measured. 7) Put the taste sensor in and out of the first reference solution (for washing) again 10 times. It may be said that it is washed with the first reference solution (for washing), it may be said that it is immersed intermittently in the first reference solution, or it can be said that it stimulates the surface of the lipid membrane of the taste sensor. . 8) Immerse the sample in the first reference solution prepared for measurement. After 20 seconds, measure the potential of the taste sensor.
´. 9) Steps 7) and 8) are repeated at least twice, and it is determined whether or not the difference between the current measured value V0 'and the previous measured value V0' is equal to or less than a predetermined value for each measurement. If is stable), proceed to step 10). 10) Take out the taste sensor from the first reference liquid (for measurement),
Wash with sample solution (for washing). (10) as in (2) above
Get in and out. 11) Immerse the taste sensor in the sample solution (for measurement), and measure the potential Vs of the taste sensor after 20 seconds. 12) Return to measurement step 2) and repeat steps 2) to 11). When the process is repeated a predetermined number of times, the procedure ends.

【0023】この手順を図2に示した。被測定サンプル
液が複数ある場合には、ローテーションにランダム性を
もたせるように、サンプルの測定順序を決めておき、繰
り返し測定をして平均値を求めるとよい。
This procedure is shown in FIG. When there are a plurality of sample liquids to be measured, the measurement order of the samples may be determined so that the rotation has randomness, and the average value may be obtained by repeatedly measuring.

【0024】次に第2の実施例として、第1の実施例に
おける第一の基準液を第二の基準液に純水を加えて2倍
に薄めたものとして、アジの検出を実施することとす
る。サンプル、第二の基準液及び手順は、第1の実施例
と同じである。第1の実施例、第2の実施例の実験結果
を主成分分析したグラフをそれぞれ図3、図4に示す。
それぞれコーヒー飲料7商品をプロットしたものであ
る。図からもあきらかなように実施例1の第一主成分の
寄与率85.3%、第二主成分の寄与率9.0 %に比べ実施例
2は、それぞれ78.9%、17.4%と第二主成分の情報量が
約2倍位増しコーヒー飲料のアジの識別能力が増した。
これは、第一の基準液にコーヒー飲料7商品をブレンド
したものを純水で2倍に薄めたものを用いたため、第二
の基準液及びサンプル液を測定した際に吸着した味成分
が容易に脱離し、感度が向上し、味の識別能力が高くな
ったと思われる。第2の実施例の方法は、コーヒーやビ
ールなどの吸着性のある味成分を多く含むサンプルに特
に有効である。
Next, as a second embodiment, detection of horse mackerel is performed by assuming that the first reference liquid in the first embodiment is diluted twice by adding pure water to the second reference liquid. And The sample, the second reference solution and the procedure are the same as in the first embodiment. FIGS. 3 and 4 show graphs obtained by performing principal component analysis on the experimental results of the first embodiment and the second embodiment, respectively.
Each of the seven coffee beverages is plotted. As can be seen from the figure, the second principal component has information of 78.9% and 17.4%, respectively, as compared with the contribution ratio of the first principal component of 85.3% and the contribution ratio of the second principal component of 9.0% in the first embodiment. The amount increased about two-fold, and the ability to discriminate horse mackerel in coffee beverages increased.
This is because the product obtained by blending seven coffee beverages with the first reference liquid and diluted twice with pure water was used, so that the taste components adsorbed when the second reference liquid and the sample liquid were measured were easily removed. It is thought that the sensitivity was improved and the ability to discriminate the taste was enhanced. The method of the second embodiment is particularly effective for a sample containing a lot of adsorptive taste components such as coffee and beer.

【0025】[0025]

【発明の効果】第1の発明のアジの検出方法によれば、
脂質性分子を用いた味覚センサによるアジの検出、測定
を再現性よく行うために、第一の基準液及び第二の基準
液としてサンプル液と近いものを用いることとし、第一
の基準液→第二の基準液→第一の基準液→サンプル液の
順に測定しサンプル液測定値の基準値からの相対値
{(Vs −V0 ´)−(Vk −V0 )}を計算すること
により味覚センサの継続的なドリフトにおける相対値の
ばらつきを無くし、第一の基準液を用いることによって
第一の基準液の味が変化しても測定値への影響を無くし
た。
According to the method for detecting horse mackerel of the first invention,
In order to perform the detection and measurement of horse mackerel with a taste sensor using lipid molecules with good reproducibility, the first reference solution and the second reference solution should be close to the sample solution, and the first reference solution → The taste sensor is measured by measuring in the order of the second reference liquid → the first reference liquid → the sample liquid and calculating the relative value {(Vs−V0 ′) − (Vk−V0)} of the measured value of the sample liquid from the reference value. The variation of the relative value in the continuous drift was eliminated, and the use of the first reference liquid did not affect the measured value even if the taste of the first reference liquid changed.

【0026】第2の発明のアジの検出方法では、更に第
一の基準液の濃度を水を加えるなどして低くすることで
膜への吸着物質が第一の基準液により容易に脱離し、味
覚センサ出力の情報量が増し、測定値のばらつきも小さ
くできた。第2の発明のアジの検出方法は、苦み物質
等、脂質膜へ吸着する物質に含まれているものが測定対
象の時には特に有効である。
In the method for detecting horse mackerel according to the second invention, the concentration of the first reference solution is further reduced by adding water or the like, whereby the substance adsorbed on the membrane is easily desorbed by the first reference solution, The information amount of the taste sensor output was increased, and the dispersion of the measured values was reduced. The method for detecting horse mackerel according to the second invention is particularly effective when a substance contained in a substance adsorbed on a lipid membrane, such as a bitter substance, is a measurement target.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定手順の流れ図。FIG. 1 is a flowchart of a measurement procedure according to the present invention.

【図2】本発明による測定手順を表わした図。FIG. 2 is a diagram showing a measurement procedure according to the present invention.

【図3】第1の実施例でコーヒー飲料として市販されて
いる7商品について、アジの検出(差異の判別)を行い
実験結果を主成分分析したものをプロットした図。
FIG. 3 is a diagram in which, for seven products marketed as coffee drinks in the first embodiment, horse mackerel detection (difference discrimination) is performed, and a result of a principal component analysis of an experimental result is plotted.

【図4】第2の実施例における主成分分析の図。FIG. 4 is a diagram of a principal component analysis in the second embodiment.

【図5】味覚センサの模式図であり、図5(a) は、正面
図、図5(b) は断面図。
5A and 5B are schematic views of the taste sensor, FIG. 5A is a front view, and FIG. 5B is a cross-sectional view.

【図6】アジの測定系を示す図。FIG. 6 is a view showing a measurement system of horse mackerel.

【図7】単分子膜を化学物の設計法で使われている表現
方法で表わした模式図。
FIG. 7 is a schematic diagram showing a monomolecular film in an expression method used in a method of designing a chemical substance.

【図8】脂質膜を化学物の設計法で使われている表現方
法で表わした模式図。
FIG. 8 is a schematic diagram showing a lipid membrane in an expression method used in a method of designing a chemical substance.

【符号の説明】[Explanation of symbols]

1 基材 2 電極 3 脂質膜 4 緩衝層 5 リード線 10 膜電位の測定系の基本構成 11 被測定溶液 12 容器 13 味覚センサアレイ 14−1〜14−8 各々の脂質膜(黒点で示す) 15 参照電極 16 緩衝層 17−1〜17−8 リード線 18 リード線 19−1〜19−8 バッファ増幅器 20 アナログスイッチ 21 A/D変換器 22 マイクロコンピュータ 23 X−Yレコーダ 24 接地電位 31,31′ 脂質性分子群 32 膜部材 33 マトリックス DESCRIPTION OF SYMBOLS 1 Base material 2 Electrode 3 Lipid film 4 Buffer layer 5 Lead wire 10 Basic structure of measurement system of membrane potential 11 Solution to be measured 12 Container 13 Taste sensor array 14-1 to 14-8 Each lipid film (indicated by a black dot) 15 Reference electrode 16 Buffer layer 17-1 to 17-8 Lead wire 18 Lead wire 19-1 to 19-8 Buffer amplifier 20 Analog switch 21 A / D converter 22 Microcomputer 23 XY recorder 24 Ground potential 31, 31 ' Lipid molecule group 32 Membrane member 33 Matrix

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 両親媒性物質または苦味物質を含む膜を
用いた味覚センサを使用して、類似した複数のサンプル
のアジを検出する方法において、第一の基準液を作る段
階と、前記複数のサンプルと同一または類似のアジを呈
する第二の基準液を作る段階と、前記味覚センサを用い
て前記第一の基準液を測定する段階(1) と、前記味覚セ
ンサを用いて前記第二の基準液を測定する段階(2) と、
前記味覚センサを用いて再度前記第一の基準液を測定す
る段階(3) と、前記味覚センサを用いて前記サンプル液
を測定する段階(4) と、前記段階(1) の前記第一の基準
液の測定値V0 と前記段階(2) の前記第二の基準液の測
定値Vk と前記段階(3)の前記第一の基準液の測定値V0
´と前記段階(4) の前記サンプルの測定値Vsと によ
りサンプルの基準値からの相対値{(Vs −V0 ´)−
(Vk −V0 )}を計算する段階(5) とからなり、前記
段階(1) から段階(5) までの手順を各サンプルについて
行うことによるアジの検出方法。
1. A method for detecting a horse mackerel in a plurality of similar samples using a taste sensor using a membrane containing an amphipathic substance or a bitter substance, comprising the steps of: Preparing a second reference liquid exhibiting the same or similar horse mackerel as the sample, measuring the first reference liquid using the taste sensor (1), and using the taste sensor to detect the second reference liquid. Measuring the reference solution of (2),
Measuring the first reference liquid again using the taste sensor (3), measuring the sample liquid using the taste sensor (4), and the first step (1). The measured value V0 of the reference liquid, the measured value Vk of the second reference liquid in the step (2), and the measured value V0 of the first reference liquid in the step (3)
And the measured value Vs of the sample in step (4), the relative value of the sample from the reference value {(Vs−V0 ′) −
(Vk-V0)}. (5). A method for detecting horse mackerel by performing the above-mentioned steps (1) to (5) for each sample.
【請求項2】 両親媒性物質または苦味物質を含む膜を
用いた味覚センサを使用して、類似した複数のサンプル
のアジを検出する方法において、前記複数のサンプルと
同一または類似のアジを呈する第二の基準液を作る段階
と、前記第二の基準液を水で薄めた第一の基準液を作る
段階と、前記味覚センサを用いて前記第一の基準液を測
定する段階(1) と、前記味覚センサを用いて前記第二の
基準液を測定する段階(2) と、前記味覚センサを用いて
再度前記第一の基準液を測定する段階(3) と、前記味覚
センサを用いて前記サンプル液を測定する段階(4) と、
前記段階(1) の前記第一の基準液の測定値V0 と前記段
階(2) の前記第二の基準液の測定値Vk と前記段階(3)
の前記第一の基準液の測定値V0 ´と前記段階(4) の前
記サンプルの測定値Vs と によりサンプルの基準値か
らの相対値{(Vs −V0 ´)−(Vk −V0 )}を計
算する段階(5) とからなり、前記段階(1)から段階(5)
までの手順を各サンプルについて行うことによるアジの
検出方法。
2. A method for detecting a horse mackerel of a plurality of similar samples using a taste sensor using a membrane containing an amphipathic substance or a bitter substance, wherein the agitator exhibits the same or similar horse mackerel as the plurality of samples. A step of making a second reference liquid, a step of making a first reference liquid obtained by diluting the second reference liquid with water, and a step of measuring the first reference liquid using the taste sensor (1) Measuring the second reference liquid using the taste sensor (2), measuring the first reference liquid again using the taste sensor (3), using the taste sensor Measuring the sample liquid by (4),
The measured value V0 of the first reference liquid in the step (1) and the measured value Vk of the second reference liquid in the step (2) and the step (3)
The relative value {(Vs−V0 ′) − (Vk−V0)} from the reference value of the sample is obtained from the measured value V0 ′ of the first reference liquid and the measured value Vs of the sample in the step (4). Calculating step (5), wherein the steps (1) to (5) are performed.
The method of detecting horse mackerel by performing the procedure up to each sample.
JP34968892A 1992-12-02 1992-12-02 Horse mackerel detection method Expired - Lifetime JP3313433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34968892A JP3313433B2 (en) 1992-12-02 1992-12-02 Horse mackerel detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34968892A JP3313433B2 (en) 1992-12-02 1992-12-02 Horse mackerel detection method

Publications (2)

Publication Number Publication Date
JPH06174688A JPH06174688A (en) 1994-06-24
JP3313433B2 true JP3313433B2 (en) 2002-08-12

Family

ID=18405434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34968892A Expired - Lifetime JP3313433B2 (en) 1992-12-02 1992-12-02 Horse mackerel detection method

Country Status (1)

Country Link
JP (1) JP3313433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858036B2 (en) 2006-12-27 2010-12-28 Intelligent Sensor Technology, Inc. Taste recognition apparatus and taste recognition system using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763729B1 (en) * 1995-03-30 2005-12-28 Intelligent Sensor Technology, Inc. Method of determining taste with gustatory sensor made from molecular membrane
WO2012121618A1 (en) 2011-03-09 2012-09-13 Legin Andrey Vladimirovich Multisensor and method for evaluating taste characteristics of analytes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858036B2 (en) 2006-12-27 2010-12-28 Intelligent Sensor Technology, Inc. Taste recognition apparatus and taste recognition system using the same

Also Published As

Publication number Publication date
JPH06174688A (en) 1994-06-24

Similar Documents

Publication Publication Date Title
US5789250A (en) Taste measuring method using taste sensor with molecular film
JP2578370B2 (en) Taste sensor and manufacturing method thereof
JP4215510B2 (en) Use of said sensors in sensors and sensor systems for the analysis of mixtures with broad selectivity
Sun et al. Piezoelectric quartz crystal sensor for sensing taste-causing compounds in food
JP3037971B2 (en) Horse mackerel detection method
JP3313433B2 (en) Horse mackerel detection method
Kim et al. Application of a taste evaluation system to the monitoring of Kimchi fermentation
Favero et al. Mixed hybrid bilayer lipid membrane incorporating valinomycin: improvements in preparation and functioning
JP3143172B2 (en) Horse mackerel measurement method
JP2578374B2 (en) Taste detection system
JP3561734B2 (en) Method for cleaning membrane for taste sensor
Nikolelis et al. A minisensor for the rapid screening of sucralose based on surface-stabilized bilayer lipid membranes
JP3029693B2 (en) Horse mackerel measurement method
JP2002107339A (en) Method and apparatus for inspection of taste
JP3769095B2 (en) Aji detection method
JP3355412B2 (en) Taste sensor and organic film for taste sensor
JP3190123B2 (en) Cell for measuring liquid aji
JP3748298B2 (en) Membrane for taste sensor and taste sensor
JPH08285813A (en) Measuring method of taste
Szpakowska et al. Investigation of sour substances by a set of all-solid-state membrane electrodes
JP4267783B2 (en) Taste recognition device
JP4602599B2 (en) Lipid membrane
JPH09257741A (en) Signal forming apparatus for analyzing taste
Szpakowska et al. Multichannel taste sensors with lipid, lipid like–polymer membranes
Szpakowska et al. Taste qualities estimation by taste sense and electrochemical sensors

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11