JPH0750146B2 - Short-circuit fault location method for 3-terminal parallel 2-circuit transmission line - Google Patents

Short-circuit fault location method for 3-terminal parallel 2-circuit transmission line

Info

Publication number
JPH0750146B2
JPH0750146B2 JP30761388A JP30761388A JPH0750146B2 JP H0750146 B2 JPH0750146 B2 JP H0750146B2 JP 30761388 A JP30761388 A JP 30761388A JP 30761388 A JP30761388 A JP 30761388A JP H0750146 B2 JPH0750146 B2 JP H0750146B2
Authority
JP
Japan
Prior art keywords
short
circuit
line
distance
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30761388A
Other languages
Japanese (ja)
Other versions
JPH02154169A (en
Inventor
賢次 村田
和夫 園原
進 伊藤
京二 石津
徳男 江村
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP30761388A priority Critical patent/JPH0750146B2/en
Publication of JPH02154169A publication Critical patent/JPH02154169A/en
Publication of JPH0750146B2 publication Critical patent/JPH0750146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、3端子平行2回線送電線の短絡故障点標定
方法に関し、さらに詳細にいえば、送電端側で検出され
る正相電流により3端子平行2回線送電線の短絡故障
(零相電圧の発生を伴なわない3相地絡等の場合も含
む)点の標定を行なう方法に関するものである。
TECHNICAL FIELD The present invention relates to a short-circuit fault point locating method for a three-terminal parallel two-line power transmission line, and more specifically, it relates to a positive-phase current detected at the power transmission end side. The present invention relates to a method for locating a short-circuit fault (including a case of a three-phase ground fault that does not accompany the generation of a zero-phase voltage) of a three-terminal parallel two-line transmission line.

〈従来の技術〉 従来から変電所間の送電線は、電力供給の信頼度向上の
ため、一般的に平行2回線方式で行われている。上記送
電線は、建造物内で保守管理されている変電所等と比較
して、外部に起因する故障が不可避であり、故障発生時
には、故障点探索作業が伴うが、特に、山間部における
故障点探索は非常に困難な場合がある。
<Prior Art> Conventionally, a transmission line between substations has generally been a parallel two-line system in order to improve reliability of power supply. Compared to substations, etc. that are maintained and managed in the building, the above-mentioned power transmission lines are inevitably subject to external failures, and when a failure occurs, a failure point search operation is involved, but especially in the mountainous areas. Point search can be very difficult.

従来からの3端子平行2回線送電線における短絡故障点
標定方法としては、線間電圧と線間電流を入力とし、故
障時における線間電圧を線間電流で除算することによ
り、送電端から故障点までのインピーダンスを求める、
いわゆる44Sリレーの演算原理による方法がある。
The conventional short-circuit fault point locating method in a 3-terminal parallel 2-line transmission line is to input a line voltage and a line current, and divide the line voltage at the time of the fault by the line current to obtain a fault from the power transmission end. Find the impedance to the point,
There is a method based on the so-called 44S relay calculation principle.

第5図は上記44S方式を説明するための3端子平行2回
線送電線を簡略化した回路図であり、回路は送電端
(A)と2回線分岐点(T)との間に送電線(f1)(f
2)が接続され、2回線分岐点(T)と受電端(B)
(C)との間にそれぞれ送電線(f3)(f4)、(f5)
(f6)が接続され、受電端(B)(C)に負荷(LB)
(LC)が接続されたものである。そして、 x;第5図Aにおける送電端(A)から故障点までの距
離、または、第5図B,Cにおける分岐点(T)から故障
点までの距離、 la;送電端(A)から2回線分岐点(T)との距離、 lb;2回線分岐点(T)と受電端(B)との距離、 lc;2回線分岐点(T)と受電端(C)との距離、 ;送電線の単位長当りの正相インピーダンス、 a,b;送電端のA相,B相の電圧、 af,bf;故障点のA相,B相の電圧、 al,bl;送電線(f1)のA相,B相の電流、 al′,bl′;送電線(f3)のA相,B相の電流、 al″,bl″;送電線(f5)のA相,B相の電流、 LBa,LBb;故障時に負荷(LB)に流れるA相,B相の電
流、 LCa,LCb;故障時に負荷(LC)に流れるA相,B相の電
流、 としている。但し、送電端側で分る値はla,lb,lc,,
a,b,al,blのみである。
FIG. 5 is a circuit diagram in which the three-terminal parallel two-line power transmission line for explaining the 44S system is simplified. The circuit has a power transmission line (A) between the power transmission end (A) and the two-line branch point (T). f1) (f
2) is connected, and the two-circuit branch point (T) and the power receiving end (B)
Transmission lines (f3) (f4) and (f5) between (C) and
(F6) is connected, and load (LB) is applied to the receiving end (B) and (C)
(LC) is connected. Then, x: the distance from the power transmission end (A) to the failure point in FIG. 5A, or the distance from the branch point (T) to the failure point in FIGS. 5B and C, la; from the power transmission end (A) Distance between two-line branch point (T), lb; Distance between two-line branch point (T) and power receiving end (B), lc; Distance between two-line branch point (T) and power receiving end (C), Positive-phase impedance per unit length of the transmission line, a, b; A-phase and B-phase voltage at the transmission end, af, bf; A-phase and B-phase voltage at the fault point, al, bl; Transmission line (f1) A-phase and B-phase currents of al, bl ′; A-phase and B-phase currents of transmission line (f3), al ″, bl ″; A-phase and B-phase currents of transmission line (f5), LBa , LBb: A-phase and B-phase currents flowing in the load (LB) at the time of failure, LCa, LCb; A-phase and B-phase currents flowing in the load (LC) at the time of failure. However, the values that can be seen at the transmitting end are la, lb, lc,
Only a, b, al, bl.

上記条件の下で44S方式のアルゴリズムにより、送電
端(A)と2回線分岐点(T)との間で送電線(f1)の
A相とB相とが短絡している場合(第5図A)、2回
線分岐点(T)と受電端(B)との間で送電線(f3)の
A相とB相とが短絡している場合(第5図B)、2回
線分岐点(T)と受電端(C)との間で送電線(f5)の
A相とB相とが短絡している場合(第5図C)における
距離xを求める。尚、第5図は故障点の様相を示す。
Under the above conditions, when the A-phase and B-phase of the transmission line (f1) are short-circuited between the transmission end (A) and the two-circuit branch point (T) by the 44S system algorithm (Fig. 5). A) When the A phase and the B phase of the power transmission line (f3) are short-circuited between the two-circuit branch point (T) and the power receiving end (B) (Fig. 5B), the two-circuit branch point ( The distance x when the A phase and the B phase of the power transmission line (f5) are short-circuited between T) and the power receiving end (C) (Fig. 5C) is obtained. Incidentally, FIG. 5 shows the aspect of the failure point.

の場合には、キルヒホッフの電圧降下則から、下式が
成立し、 af−bf=a−b−x(al−bl) 上式を変形して (a−b)/(al−bl) =x+(af−bf)/(al−bl) …〔I〕 となる。
In the case of, the following equation is established from Kirchhoff's voltage drop law, and af−bf = ab−x (al−bl) is transformed into (ab −) / (al−bl) = x + (af-bf) / (al-bl) ... [I].

の場合には、上記の場合と同様にキルヒホッフの電
圧降下則から下式が成立し、 af−bf=a−b−(la+x)(al−bl) −x(al″−bl″) 上式を変形して (a−b)/(al−bl) =(la+x)+ x(al″−bl″)/(al−bl)+ (af−bf)/(al−bl) …〔II〕 となる。
In the case of, similar to the above case, the following equation is established from the Kirchhoff's voltage drop law, and af−bf = ab− (la + x) (al−bl) −x (al ″ −bl ″) (A−b) / (al−bl) = (la + x) + x (al ″ −bl ″) / (al−bl) + (af−bf) / (al−bl) ... [II] Becomes

またの場合には、上記の場合と同様にして、 (a−b)/(al−bl) =(la+x)+ x(al′−bl′)/(al−bl)+ (af−bf)/(al−bl) …〔III〕 を得ることができる。In this case, similarly to the above case, (ab) / (al-bl) = (la + x) + x (al'-bl ') / (al-bl) + (af-bf) / (Al-bl) ... [III] can be obtained.

以上の3式が示すように、右辺第1項が故障点までの正
相インピーダンスであり、これ以外に、故障抵抗が介在
するために残る故障点電圧による故障点誤差(af−
bf)/(al−bl)、及び分岐点以遠の故障では分流
による分岐誤差 {x(al″−bl″)/(al−bl)又はx
(al′−bl′)/(al−bl)}が含まれる。
As shown in the above three equations, the first term on the right side is the positive phase impedance up to the fault point, and besides this, the fault point error (af-
bf) / (al-bl), and branch error due to shunt in faults beyond the branch point {x (al ″ -bl ″) / (al-bl) or x
(Al'-bl ') / (al-bl)} is included.

上記故障点誤差は、短絡故障における(af−bf)が
小さいこと、(al−bl)には短絡故障電流と負荷電
流が含まれるが、負荷電流は無視できるため(af−
bf)/(al−bl)は故障点抵抗と考えられることに
より、リアクタンス成分を採用することにより、その影
響を殆ど無くすことができる。従って、下式により、上
記の場合における故障点までの距離xを算出すること
ができる。尚、Im[… ]はリアクタンス成分を示す。
Im[(a−b)/(al−bl)]=xIm[] 〈発明が解決しようとする課題〉 ところが、分岐誤差は、の場合のように故障電流が
2回線分岐に分流することにより生ずるので、この分流
効果により送電端側、即ち距離リレーから見たインピー
ダンスは実際のインピーダンスよりも大きくなる。
The fault point error is that (af-bf) in a short circuit fault is small, and (al-bl) includes a short circuit fault current and a load current, but the load current can be ignored (af-
Since bf) / (al-bl) is considered to be the resistance at the fault point, the influence can be almost eliminated by adopting the reactance component. Therefore, the distance x to the failure point in the above case can be calculated by the following formula. Im [...] Indicates the reactance component.
Im [(a-b) / (al-bl)] = xIm [] <Problems to be solved by the invention> However, the branch error is caused by shunting the fault current into two line branches as in the case. Therefore, the impedance seen from the power transmission end side, that is, the distance relay becomes larger than the actual impedance due to this shunting effect.

上記の場合を例にして分岐誤差をさらに詳細に説明す
る。この場合における電流分布は、一般に、次のように
現すことができる。
The branch error will be described in more detail by taking the above case as an example. The current distribution in this case can generally be expressed as follows.

a1={LBa+LCa+af+aflc(lb−x)/L}×
1/2 b1={LBb+LCb+bf+bflc(lb−x)/L}×
1/2 al″={−LCa+afla(lb−x)/L}/2 bl″={−LCb+bfla(lb−x)/L}/2 af−bf=Rfaf=−Rfbf=Rfaf/2 但し、af,bfは各々故障点から流出するA相,B相の
故障電流であり、Rfは故障点抵抗であり、Lはla lb+l
b lc+la lcである。
a1 = {LBa + LCa + af + aflc (lb−x) / L} ×
1/2 b1 = {LBb + LCb + bf + bflc (lb−x) / L} ×
1/2 al "= {-LCa + afla (lb-x) / L} / 2 bl" = {-LCb + bfla (lb-x) / L} / 2 af-bf = Rfaf = -Rfbf = Rfaf / 2 where af , bf are the fault currents of the A and B phases flowing out from the fault point, Rf is the fault point resistance, and L is la lb + l
b lc + la lc.

従って、上記〔II〕式は (a−b)/(al−bl)= (la+x)+ x{(LCb−LCa)+(af−bf)la(lb−x)
/L}/[{(LBa−LBb)+(LCa−LCb)}+ {1+lc(lb−x)/L}(af−bf)]+ Rf(af−bf)/[{(LBa−LBb)+(LCa−
LCb)}+{1+lc(lb−x)/L}(af−bf)] となり、式中xで括られる項は分岐誤差であり、Rfで
括られる項は故障点誤差である。
Therefore, the above formula [II] is (a−b) / (al−bl) = (la + x) + x {(LCb−LCa) + (af−bf) la (lb−x)
/ L} / [{(LBa-LBb) + (LCa-LCb)} + {1 + lc (lb-x) / L} (af-bf)] + Rf (af-bf) / [{(LBa-LBb) + (LCa-
LCb)} + {1 + lc (lb-x) / L} (af-bf)], where the term enclosed by x is the branch error and the term enclosed by Rf is the fault point error.

そして、負荷電流差LBa−LBb,LCa−LCbは、故
障電流af−bfに比較して小さいので無視できるか
ら、上式は、 (a−b)/(al−bl)≒ (la+x)+ xla(lb−x)/L/{1+la(lb−x)/L}+Rf/{1
+la(lb−x)/L} となる。
Since the load current differences LBa-LBb and LCa-LCb are small compared to the fault current af-bf, they can be neglected. Therefore, the above equation is (a-b) / (al-bl) ≈ (la + x) + xla (Lb-x) / L / {1 + la (lb-x) / L} + Rf / {1
+ La (lb-x) / L}.

そして、インピーダンスのリアクタンス成分を採用すれ
ば、Rfで括られる項は純粋な低較正文であるため、キャ
ンセルされ、 m[(a−b)/(al−bl)]≒ [(la+x)+xla(lb−x)/{L+lc(lb−
x)}]×m[] となる。この式中の分岐誤差成分 xla(lb−x)/{L+lc(lb−x)}は正の値であ
り、分岐以遠の故障は真の故障点より遠くを標定する傾
向となる。距離リレーにおいては、アンダーリーチとな
る。
Then, if the reactance component of impedance is adopted, the term enclosed by Rf is a pure low-calibration sentence, so it is canceled and m [(a−b) / (al−bl)] ≈ [(la + x) + xla ( lb-x) / {L + lc (lb-
x)}] × m []. The branch error component xla (lb-x) / {L + lc (lb-x)} in this equation is a positive value, and the faults beyond the branch tend to locate far from the true fault point. Under reach for distance relays.

ここで、分岐誤差を ε(x)=(Xla(lb−X)/{L+lc(lb−x)} とし、分岐誤差の大きさを検討する。両辺をxで微分
し、 dε(x)/dx=0より、 lcx2−2(L+lb lc)x+lb(L+lb lc)dε(x)
/dx=0を得る。
Here, the branch error is set to ε (x) = (Xla (lb−X) / {L + lc (lb−x)}, and the magnitude of the branch error is examined. Differentiating both sides with x, dε (x) / From dx = 0, lcx 2 −2 (L + lb lc) x + lb (L + lb lc) dε (x)
/ dx = 0 is obtained.

但し、上記の場合には、xはlbよりも小さいから、最
大値を与えるxは、 である。この値を関数ε(x)に代入して最大値を求め
ると、 となる。
However, in the above case, since x is smaller than lb, x that gives the maximum value is Is. Substituting this value into the function ε (x) to obtain the maximum value, Becomes

ここで、la/lb=β,la/lc=γとすると、 ε(x)中のL/lb lcは、(la lb+lb lc+la lc)/lb
lc=1+β+γとなるから、 となる。そして、β→0とし、さらに、γ→∞として上
式が取り得る最大値を求めると、 となる。
Here, if la / lb = β and la / lc = γ, then L / lb lc in ε (x) is (la lb + lb lc + la lc) / lb
Since lc = 1 + β + γ, Becomes Then, β → 0 is set, and further, when γ → ∞, the maximum value that the above equation can take is calculated. Becomes

尚、上記ε(x)の最大値を与えるxと、分岐点以遠の
距離lbとの比について、さらに検討すれば、 となり、L/lb lc=δとすると上式は、 となる。そして、δ=L/lb lc=1+β+γであるか
ら、δ≧1であり、 となる 以上説明した如く、44S方式によれば、分岐点以遠に故
障が発生した場合には、真の故障点よりも以遠を標定
し、分岐以遠の略中間点における故障が最大誤差とな
り、その大きさの最大値は、分岐以遠の距離(lb或はl
c)の25%となる。従って、送電線路長が数Kmから数十K
mにわたる3端子平行2回線送電線において、このよう
な大きな誤差範囲を探索することは、非常に困難であ
り、特に山間部においては、多大な時間と労力を要する
ことになる。
Incidentally, if the ratio of x giving the maximum value of ε (x) and the distance lb beyond the branch point is further examined, And L / lb lc = δ, the above equation becomes Becomes Then, since δ = L / lb lc = 1 + β + γ, δ ≧ 1, As described above, according to the 44S method, when a failure occurs at a point beyond the branch point, the point farther from the true point of failure is located, and the failure at the substantially intermediate point beyond the branch becomes the maximum error. The maximum magnitude is the distance beyond the branch (lb or l
25% of c). Therefore, the transmission line length is from several Km to several tens of K.
It is extremely difficult to search for such a large error range in a three-terminal parallel two-line transmission line extending over m, and it takes a lot of time and labor particularly in a mountain area.

この発明は、短絡故障点の標定を解析する過程におい
て、分岐への分流が線路長さと関係があることに着目
し、送電端側で得られる情報のみに基いて分岐誤差の影
響を受けない3端子平行2回線送電線の短絡故障点標定
方法を提供することを目的とする。
In the process of analyzing the orientation of the short-circuit fault point, the present invention focuses on the fact that the shunt current to the branch is related to the line length, and is not affected by the branch error based only on the information obtained at the transmitting end side. It is an object of the present invention to provide a short-circuit fault point locating method for a terminal parallel 2-line transmission line.

〈課題を解決するための手段〉 上記目的を達成するための、この発明の3端子平行2回
線送電線の短絡故障点標定方法は、 送電端から短絡故障点までの距離を算出するための補正
係数γ1、γ2、γ3をそれぞれ下式〔I〕〔II〕〔II
I〕に基いて算出しておき、 γ1=(la lb+lb lc+la lc)/(lb+lc) …〔I〕 γ2=(lb+lc)/lc …〔II〕 γ3=(lb+lc)/lb …〔III〕 (但し、la;送電端と2回線分岐点との距離、lb;2回線
分岐点と一方の受電端との距離、lc;2回線分岐点と他方
の受電端との距離とする) 上記補正係数γ1と送電端側で検出される2回線の正相
電流の大きさ|11|,|12|とを要素とした下記演算式
〔IV〕に基いてx1とx2を求め、 xi=2γ1|1i|/(|11|+|12|) …〔IV〕 {但し、iは平行2回線の添字を示す} x1とx2の内から小さい方の演算値x miniとlaとを比較
し、x miniがlaよりも小さい場合にはx miniを送電端か
ら短絡故障点までの距離とし、 x miniが距離laよりも大きい場合には、 x′=(x mini−la)γ2式により求められるx′を、
2回線分岐点と一方の受電端との間に故障が発生した場
合における分岐点から短絡故障点までの距離とし、x″
=(x mini−la)γ3式により求められるx″を、2回
線分岐点と他方の受電端との間に故障が発生した場合に
おける分岐点から短絡故障点までの距離とする方法であ
る。
<Means for Solving the Problem> A short-circuit fault point locating method for a three-terminal parallel two-line power transmission line of the present invention for achieving the above object is a correction for calculating a distance from a power transmission end to a short-circuit fault point. The coefficients γ1, γ2, and γ3 are calculated by the following formulas [I], [II], [II], respectively.
I] = (la lb + lb lc + la lc) / (lb + lc)… [I] γ2 = (lb + lc) / lc… [II] γ3 = (lb + lc) / lb… [III] (however, , La; distance between transmission end and two-circuit branch point, lb; distance between two-circuit branch point and one receiving end, lc; distance between two-circuit branch point and other receiving end) Correction coefficient γ1 X1 and x2 are calculated based on the following formula [IV], which uses the magnitudes of the positive line currents of the two lines | 11 |, | 12 | detected at the transmitting end side as elements, and xi = 2γ1 | 1i | / (| 11 | + | 12 |) [IV] {however, i indicates a subscript of parallel two lines} x1 and x2 are compared, and the smaller calculated value x mini and la are compared. If it is smaller than la, let x mini be the distance from the transmitting end to the short-circuit fault point, and if x mini is greater than la, x ′ = (x mini-la) γ ,
The distance from the branch point to the short-circuit fault point when a fault occurs between the two-circuit branch point and one power receiving end, and x ″
= (X mini-la) γ3 is a method in which x ″ is the distance from the branch point to the short-circuit fault point when a fault occurs between the two-circuit branch point and the other power receiving end.

〈作用〉 以上のこの発明によれば、送電線路長に基いて送電端か
ら短絡故障点までの距離、或は2回線分岐点から短絡故
障点までの距離を算出するための予め計算された補正係
数γ1、γ2、γ3と、送電端の2回線の正相電流の大
きさ|11|,|12|とを要素として〔IV〕式の演算を行
うことにより、送電端と2回線分岐点との間に短絡故障
が発生した場合の、送電端から短絡故障点までの距離を
算出することができる。また、短絡故障が2回線分岐点
以遠に発生した場合には、x′=(x mini−la)γ2式
と、 x″=(x mini−la)γ3式とにより、それぞれ距離を
算出することにより、x′,x″の何れかの地点に発生し
ている短絡故障点の標定をすることができる。
<Operation> According to the present invention described above, a previously calculated correction for calculating the distance from the power transmission end to the short-circuit fault point or the distance from the two-circuit branch point to the short-circuit fault point based on the transmission line length. By using the coefficients γ1, γ2, γ3 and the magnitudes of the positive-phase currents of the two lines at the transmitting end | 11 |, | 12 | It is possible to calculate the distance from the power transmission end to the short-circuit fault point when a short-circuit fault occurs during the period. If a short-circuit fault occurs at a point beyond the branch point of two lines, calculate the distances respectively using x '= (x mini-la) γ2 and x "= (x mini-la) γ3. Thus, it is possible to locate the short-circuit fault point occurring at any of x'and x ".

即ち、送電線の長さに基いて補正係数γ1、γ2、γ3
を予め算出しておき、送電端側では、短絡故障によって
生ずる2回線の正相電流の大きさ|11|,|12|のみを
入力として、上述の所定の演算を行なうことにより、分
岐誤差の影響を受けることなく短絡故障点の標定を行な
うことができる。
That is, the correction factors γ1, γ2, γ3 based on the length of the transmission line.
Is calculated in advance, and the branching error of the branching error is calculated by inputting only the magnitudes | 11 | and | 12 | It is possible to locate a short-circuit fault point without being affected.

〈実施例〉 以下、この発明の3端子平行2回線送電線おける短絡故
障点標定方法の実施例を添付図面に基いて詳細に説明す
る。
<Embodiment> An embodiment of a short-circuit fault locating method in a three-terminal parallel two-line power transmission line of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は一般的な3端子平行2回線送電線、およびこの
発明に係る短絡故障点標定方法に適用される短絡故障点
算出装置を示す図であり、3端子平行2回線送電線(以
下3端子系と略称する)は、送電側に配置される高抵抗
(1)により接地された変圧器(2)と、変圧器(2)
と2回線分岐点(4)との間、及び2回線分岐点(4)
と負荷(3a)(3b)との間に接続される平行2回線(5
a)(5b)と、平行2回線(5a)(5b)の所定の位置か
ら分岐される単回線(6)と、単回線(6)に接続され
る負荷(7)とを有する。尚、送電側の2回線端子を
A、負荷(3a)の2回線端子をB、負荷(3b)の2回線
端子をCとしている。
FIG. 1 is a diagram showing a general 3-terminal parallel 2-line transmission line and a short-circuit fault point calculation device applied to the short-circuit fault point locating method according to the present invention. The terminal system) is a transformer (2) grounded by a high resistance (1) arranged on the power transmission side, and a transformer (2).
And 2 line branch point (4), and 2 line branch point (4)
Parallel lines (5 connected between the load and the load (3a) (3b)
a) (5b), a single line (6) branched from a predetermined position of two parallel lines (5a) (5b), and a load (7) connected to the single line (6). The two line terminals on the power transmission side are A, the two line terminals of the load (3a) are B, and the two line terminals of the load (3b) are C.

そして、短絡故障点算出装置は、3端子系2回線のそれ
ぞれの回線(5a)(5b)のA端子側に介在させられ、回
線(5a)(5b)の正相電流11,12を検出する正相電
流検出回路(8a)(8b)と、正相電流11,12を所定
の比で変換するトランス(9)と、該トランス(9)に
より変換された正相電流11,12(アナログデータ)
をディジタルデータに変換するA/D変換部(10)と、A/D
変換部(10)により変換されたディジタル信号を格納す
るデータメモリ(11)と、正相電流11,12の大きさ
に基いて短絡故障を検出して短絡故障点算出指令信号を
出力する短絡検出部(12)と、2回線端子Aと2回線分
岐点(4)間の短絡故障点を算出するための補正係数γ
1、2回線分岐点(4)と2回線端子B間の短絡故障点
を算出するための補正係数γ2、および2回線分岐点
(4)と2回線端子C間の短絡故障点を算出するための
補正係数γ3を格納しているメモリ(13)と、短絡故障
点算出指令信号に応じて予めメモリ(13)に格納してい
る補正係数γ1,γ2,γ3と正相電流の大きさ|11|,|
12|とを要素として所定の演算を行って送電端から短
絡故障点、或は2回線分岐点(4)から短絡故障点まで
の距離を算出するCPU(14)と、CPU(14)により算出さ
れた送電端から地絡故障点までの距離等の情報を表示す
る表示部(15)とを有する。
Then, the short-circuit fault point calculating device is interposed on the A terminal side of each line (5a) (5b) of the three-terminal system two lines and detects the positive phase currents 11 and 12 of the lines (5a) (5b). Positive phase current detection circuits (8a) and (8b), a transformer (9) for converting the positive phase currents 11 and 12 at a predetermined ratio, and the positive phase currents 11 and 12 (analog data) converted by the transformer (9). )
A / D converter (10) for converting the
A data memory (11) that stores the digital signal converted by the conversion unit (10) and a short circuit detection that detects a short circuit fault based on the magnitudes of the positive phase currents 11 and 12 and outputs a short circuit fault point calculation command signal. Correction coefficient γ for calculating short circuit fault point between section (12) and 2-line terminal A and 2-line branch point (4)
A correction coefficient γ2 for calculating a short-circuit fault point between the 1- and 2-line branch point (4) and the 2-line terminal B, and a short-circuit fault point between the 2-line branch point (4) and the 2-line terminal C. (13) which stores the correction coefficient γ3 of the above, and the correction coefficients γ1, γ2, γ3 and the magnitude of the positive phase current which are stored in advance in the memory (13) in accordance with the short circuit fault point calculation command signal | 11 |, |
Calculated by the CPU (14) and the CPU (14) that calculates the distance from the transmission end to the short-circuit fault point or the distance from the two-circuit branch point (4) to the short-circuit fault point by performing a predetermined calculation using 12 | and And a display unit (15) for displaying information such as the distance from the transmitted power transmission end to the ground fault point.

さらに詳細に説明すれば、正相電流検出回路(8a)(二
つの正相検出回路(8a)(8b)は同じ構成なので、正相
検出回路(8a)のみの構成を説明する)は、回線(5a)
のA相,B相,C相に流れる電流a,b,cをCT(81)
(82)(83)により検出し、CT(81)により検出された
aはそのまま加算器(84)に供給され、b,cは、
それぞれ120度進相器(85)、240度進相器(86)を介し
て加算器(86)に供給される。そして、上記加算器(8
6)において、 11=(a+αb+αc)/3 12=(a+αb+αc)/3 {但し、α=ej120゜である} なる演算を行ない、正相電流11,12をトランス
(9)に出力する。
More specifically, the positive-phase current detection circuit (8a) (the two positive-phase detection circuits (8a) and (8b) have the same configuration, so only the positive-phase detection circuit (8a) will be described). (5a)
CT (81) for the currents a, b and c flowing in the A, B and C phases of
(A) detected by (82) and (83) and detected by CT (81) are directly supplied to the adder (84), and b and c are
They are supplied to the adder (86) via the 120-degree phase advancer (85) and the 240-degree phase advancer (86), respectively. Then, the adder (8
In 6), 11 = (a + αb + α 2 c) / 3 12 = (a + αb + α 2 c) / 3 { where, alpha = e is j120 °} becomes performs operation, a positive phase current 11, 12 transformer (9) Output.

A/D変換部(10)は、アナログデータである正相電流1
1,12を所定のサンプリング周期でディジタルデータに
変換してデータメモリ(11)に供給している。
The A / D converter (10) uses the positive phase current 1 that is analog data.
1, 12 are converted into digital data at a predetermined sampling cycle and supplied to the data memory (11).

データメモリ(11)は各回線(5a)(5b)の正相電流
11,12に関するデータが常時供給され、このデータを
格納するものである。メモリとしては、例えば、一般
の、半導体メモリ等が使用される。
Data memory (11) is the positive phase current of each line (5a) (5b)
The data regarding 11,12 is always supplied, and this data is stored. As the memory, for example, a general semiconductor memory or the like is used.

短絡検出部(12)は、正相電流11,12の大きさと所
定の閾値とを比較し正相電流11,12のいずれかの大
きさが所定の閾値以上になった場合に短絡故障と判定
し、CPU(14)に短絡故障発生の旨の信号を出力するも
のである。尚、母線に接続されるPTにより線間電圧を検
出し、これを短絡故障発生の旨の信号とすることも可能
である。
The short-circuit detection section (12) compares the magnitudes of the positive-phase currents 11 and 12 with a predetermined threshold value and determines that a short-circuit failure occurs when either magnitude of the positive-phase currents 11 and 12 exceeds a predetermined threshold value. The CPU (14) outputs a signal indicating that a short circuit has occurred. It is also possible to detect the line voltage by the PT connected to the bus and use this as a signal indicating that a short-circuit fault has occurred.

上記CPU(14)は、補正係数γ1と、正相電流の大きさ
|11|,|12|から得られる正相電流分流比|1i|/
(|11|+|12|)(但し、i=1または2)とを乗
算等して、送電端から短絡故障点までの距離を算出す
る。そして、算出した距離が2回線分岐点(4)以遠で
あれば、さらに算出した距離に補正係数γ2,γ3を乗算
等して2回線2回線分岐点(4)から短絡故障点までの
距離を算出するものである。
The CPU (14) uses the correction coefficient γ1 and the positive-phase current diversion ratio | 1i | / obtained from the magnitude | 11 |, | 12 | of the positive-phase current.
(| 11 | + | 12 |) (where i = 1 or 2) is multiplied to calculate the distance from the power transmission end to the short-circuit fault point. If the calculated distance is longer than the two-circuit branch point (4), the calculated distance is further multiplied by the correction factors γ2 and γ3 to calculate the distance from the two-circuit two-circuit branch point (4) to the short-circuit fault point. It is to be calculated.

上記補正係数γ1,γ2,γ3、および送電端から短絡故障
点までの距離算出過程を説明する。
The process of calculating the correction factors γ1, γ2, γ3 and the distance from the power transmission end to the short-circuit fault point will be described.

まず、上記第1図の3端子系を簡略化する。即ち、第1
図の3端子系において、負荷(3a)(3b)(7)に流れ
る電流が故障電流と比較して小さいことから、負荷(3
a)(3b)(7)と回線(5a)(5b)を切り離して取り
扱うことができる。また、単回線(6)の何れので短絡
故障が発生しても、2回線端子(A,B,C)における正相
電流の分流比は同じであるので、送電端から見た場合に
おける短絡故障による正相電流は、当該単回線と2回線
との接続点で発生したものと見なすことができ、単回線
(6)を省略して取り扱うことができる。従って、上記
第1図の3端子系送電線の正相回路は第2図に示される
回路図で示すことができる。
First, the three-terminal system shown in FIG. 1 is simplified. That is, the first
In the three-terminal system shown in the figure, the load (3a) (3b) (7) has a smaller current than the fault current.
It is possible to handle a) (3b) (7) and lines (5a) (5b) separately. In addition, even if a short circuit fault occurs in any of the single lines (6), the shunt ratio of the positive-phase current in the two line terminals (A, B, C) is the same, so a short circuit fault from the viewpoint of the power transmission end. The positive-phase current due to can be regarded as occurring at the connection point between the single line and the two lines, and can be handled by omitting the single line (6). Therefore, the positive-phase circuit of the three-terminal transmission line of FIG. 1 can be shown by the circuit diagram shown in FIG.

そして、第2図の正相電流等を次のように設定する。Then, the positive phase current and the like in FIG. 2 are set as follows.

x;2回線端子Aと2回線分岐点(4)との間の回線(5
a)に短絡故障が発生した場合における端子Aと短絡故
障点との距離 la;2回線端子Aから2回線分岐点(4)との距離 lb;2回線分岐点(4)と端子Bとの距離 lc;2回線分岐点(4)と端子Cとの距離 1;各線路の単位長当りの正相インピーダンス 11;2回線端子Aから回線(5a)側に流れる正相電流 12;2回線端子Aから回線(5b)側に流れる正相電流 11′;2回線端子Bから回線(5a)に流れる正相電流 12′;2回線端子Bから回線(5b)に流れる正相電流 11″;2回線端子Cから回線(5a)に流れる正相電流 12′;2回線端子Cから回線(5b)に流れる正相電流 1f;短絡故障点から流出する正相電流 1f′;回線(5b)に短絡故障点と対称に設定される仮
想短絡点から流出する仮想正相電流 1;2回線端子Aと大地間の電位差 1′;2回線端子Bと大地間の電位差 1″;2回線端子Cと大地間の電位差 ここで、送電端側で分る値はla,lb,lc,1,11,12の
みである。
x; The line between the two-line terminal A and the two-line branch point (4) (5
Distance between terminal A and short-circuit fault point when a short-circuit fault occurs in a) la; Distance between two-line terminal A and two-line branch point (4) lb; Two-line branch point (4) and terminal B Distance lc; Distance between two-line branch point (4) and terminal C 1; Positive-phase impedance per unit length of each line 11; Two-line current flowing from line terminal A to line (5a) 12; Two-line terminal Positive phase current flowing from A to the line (5b) side 11 '; 2 Positive phase current flowing from line terminal B to the line (5a) 12'; 2 Positive phase current flowing from line terminal B to line (5b) 11 "; 2 Positive phase current 12 'flowing from line terminal C to line (5a); 2 Positive phase current 1f flowing from line terminal C to line (5b); Positive phase current 1f' flowing out from the fault point; Short circuit to line (5b) Virtual positive-phase current flowing out from a virtual short-circuit point that is set symmetrically with the fault point 1; 2 Potential difference between line terminal A and ground 1 '; 2 Line potential difference between terminal B and ground 1 "; 2 lines Here the potential difference between hand C and ground, the value seen in the power transmission end side la, lb, lc, is only 1, 11, 12.

上記正相回路を電圧降下則(キルヒホッフ第2法則)、
電流連続則(キルヒホッフ第1法則)に基いて解析し、
第3図に示される正相差電流等価回路の基になる式を求
め、さらに、正相差電流等価回路に基いて、送電端Aか
ら2回線分岐点(4)までの間に短絡故障が発生した場
合における送電端から短絡故障点までの距離x、および
補正係数γ1を求める。
The positive-phase circuit is a voltage drop law (Kirchhoff's second law),
Analysis based on the current continuity law (Kirchhoff's first law),
The equation that forms the basis of the positive phase difference current equivalent circuit shown in FIG. 3 was obtained, and based on the positive phase difference current equivalent circuit, a short-circuit fault occurred between the power transmission end A and the two-circuit branch point (4). In this case, the distance x from the power transmission end to the short-circuit fault point and the correction coefficient γ1 are obtained.

2回線端子Aと2回線端子Bとの間の電位差を算出す
れば、 1)回線(5a)側では、 1−1′=x1 11+ (la−x)1(11−1f)− lb1 11′となる。
The potential difference between the two-line terminal A and the two-line terminal B is calculated as follows: 1) On the line (5a) side, 1-1 '= x1 11+ (la-x) 1 (11-1f) -lb1 11' Becomes

2)回線(5b)側では、 1−1′=x1 12+ (la−x)1(12−1f′)− lb1 12′となる。2) On the line (5b) side, 1-1 '= x1 12+ (la-x) 1 (12-1f')-lb1 12 '.

上記回線(5a)側と回線(5b)側の電圧降下式同士を減
算すれば、 0=x1(11−12)+ (la−x)1[(11−12)− (1f−1f′)]−lb1(11′−12′)とな
る。そして、1を消去し、 11−12=Δ1、11′−12′=Δ1′ 1f−1f′=Δ1f となる差電流で上記減算式を示すと、 0=xΔ1+(la−x)[Δ1−Δ1f] −lbΔ1′ と変形できる。従って、 laΔ1−lbΔ1′ =(la−x)Δ1f …1 を導き出せる。
By subtracting the voltage drop equations on the line (5a) side and the line (5b) side, 0 = x1 (11-12) + (la-x) 1 [(11-12)-(1f-1f ') ] -Lb1 (11'-12 '). Then, when 1 is erased and the above subtraction formula is shown by the difference current such that 11-12 = Δ1, 11′-12 ′ = Δ1 ′ 1f−1f ′ = Δ1f, 0 = xΔ1 + (la−x) [Δ1- It can be transformed into Δ1f] −lbΔ1 ′. Therefore, laΔ1-lbΔ1 ′ = (la−x) Δ1f ... 1 can be derived.

2回線端子Bと2回線端子Cとの間の電位差を電圧降
下則に基いて算出すれば、 lbΔ1′−lcΔ1″=0 …2 を導き出せる。
If the potential difference between the two-line terminal B and the two-line terminal C is calculated based on the voltage drop law, lbΔ1′−lcΔ1 ″ = 0 ... 2 can be derived.

電流連続則に基いて各回線(5a)(5b)から流出する
正相電流を求めれば、 11+11′+11″=1f 12+12′+12″=1f′ となる。そして、両式の差をとり、 Δ1+Δ1′+Δ1″=Δ1f …3 を導き出せる。従って、第2図の正相回路を上記1,2,3
式に基いてさらに簡略化した正相差電流等価回路で示す
ことができる。(第3図A参照)。
If the positive-phase current flowing out from each line (5a) (5b) is calculated based on the current continuity law, it becomes 11 + 11 '+ 11 "= 1f 12 + 12' + 12" = 1f '. Then, by taking the difference between the two equations, it is possible to derive Δ1 + Δ1 ′ + Δ1 ″ = Δ1f ... 3. Therefore, the positive-phase circuit of FIG.
This can be shown by a further simplified positive phase difference current equivalent circuit based on the equation. (See Figure 3A).

第3図Aの正相差電流等価回路に基いて、送電端Aか
ら2回線分岐点(4)までの間に短絡故障が発生した場
合における送電端から短絡故障点までの距離x、および
補正係数γ1を求める。
Based on the positive phase difference current equivalent circuit of FIG. 3A, the distance x from the power transmission end to the short-circuit fault point and the correction coefficient when a short-circuit fault occurs between the power transmission end A and the two-circuit branch point (4) Calculate γ1.

(1),(2),(3)式から Δ1=[1−{(lb+lc)x/(la lb+lb lc+la l
c)}]Δ1f が得られる。そして、Δ1=11−12, Δ1f=1f−1f′(但し、仮想電流1f′は0)で
あり、さらに、短絡故障点から流出する正相電流1f
は、各回線(5a)(5b)の正相電流の和 (11+12=1f)であることを考慮すれば 211={2−(la+lb)/(la lb+lb lc+la l
c)}Δ1f 212={(la+lb)/(la lb+lb lc+la lc)}Δ
1f となる。この両式に基づいて正相電流分流比は下式4,
4′に示すことができる。
From equations (1), (2), and (3), Δ1 = [1-{(lb + lc) x / (la lb + lb lc + la l
c)}] Δ1f is obtained. Then, Δ1 = 11-12, Δ1f = 1f-1f '(however, the virtual current 1f' is 0), and further, the positive phase current 1f flowing out from the short-circuit fault point.
Is the sum of the positive-phase currents of each line (5a) (5b) (11 + 12 = 1f), 211 = {2- (la + lb) / (la lb + lb lc + la l
c)} Δ1f 212 = {(la + lb) / (la lb + lb lc + la lc)} Δ
It will be 1f. Based on these equations, the positive-phase current diversion ratio is
4'can be shown.

2|12|/(|11|+|12|) =(lb+lc)x/(la lb+lb lc+la lc) …4 2|11|/(|11|+|12|) =2−{(lb+lc)x/(la lb+lb lc+la lc)} …
4′ ここで、4,4′式の中の (la lb+lb lc+la lc)/(lb+lc) は固定値であるから、これを補正係数γ1とする。そし
て、送電端側で検出される正相電流の大きさ|11|,|
12|を、下式 xi=2γ1|1n|/(|11|+|12|){(但し、i=
1または2である。} に代入して送電端から短絡故障点までの距離xを算出す
れば、 x1=2{la+lb lc/(lb+lc)}−x、 x2=x なる解が得られる。上記x1およびx2の内、小さい値(距
離)は、この場合はx2であり、2回線分岐点(4)まで
の距離laよりも小さく、送電端Aから短絡故障点までの
距離を与えることが分る。尚、短絡回線はxiの大きな値
を与えるi回線側である。
2 | 12 | / (| 11 | + | 12 |) = (lb + lc) x / (la lb + lb lc + la lc)… 4 2 | 11 | / (| 11 | + | 12 |) = 2-{(lb + lc) x / (La lb + lb lc + la lc)}…
4 ′ Here, (la lb + lb lc + la lc) / (lb + lc) in the equation 4,4 ′ is a fixed value, and this is defined as the correction coefficient γ1. Then, the magnitude of the positive-phase current detected at the transmitting end side | 11 |, |
12 | is expressed by the following equation xi = 2γ1 | 1n | / (| 11 | + | 12 |) {(however, i =
1 or 2. } To calculate the distance x from the power transmission end to the short-circuit fault point, a solution of x1 = 2 {la + lb lc / (lb + lc)} − x, x2 = x is obtained. Of the above x1 and x2, the smaller value (distance) is x2 in this case, which is smaller than the distance la to the two-circuit branch point (4) and may give the distance from the power transmission end A to the short-circuit fault point. I understand. The short circuit line is the i line side that gives a large value of xi.

第3図Bの正相差電流等価回路に基いて、2回線分岐
点(4)から受電端Bまでの間に短絡故障が発生した場
合における2回線分岐点(4)から短絡故障点までの距
離x′、および補正係数γ2を求める。
Based on the positive phase difference current equivalent circuit of FIG. 3B, the distance from the 2-line branch point (4) to the short-circuit fault point when a short-circuit fault occurs between the 2-line branch point (4) and the power receiving end B. x ′ and the correction coefficient γ2 are obtained.

上記と同様にして laΔ1−lbΔ1′=−x′Δ1f …5 laΔ1−lcΔ1″=0 …6 Δ1+Δ1′+Δ1″=Δ1f …7 が導かれ、上式5,6,7により Δ1={lc(lb−x′)/(la lb+lb lc+la l
c)}Δ1f が求められる。さらに、1f=11+12であるから、
正相電流分流比は、下式8,8′で表される。
In the same manner as above, laΔ1-lbΔ1 ′ = − x′Δ1f… 5 laΔ1-lcΔ1 ″ = 0… 6 Δ1 + Δ1 ′ + Δ1 ″ = Δ1f… 7 is derived, and Δ1 = {lc (lb (lb −x ′) / (la lb + lb lc + la l
c)} Δ1f is obtained. Furthermore, since 1f = 11 + 12,
The positive-phase current diversion ratio is expressed by the following equations 8 and 8 '.

2|12|/(|11|+|12|) ={la(lb+lc)+lcx′}/ (la lb+lb lc+la lc) …8 211/(11+12) =2−{la(lb+lc)+lcx′}/ (la lb+lb lc+la lc) …8′ 上記8,8′式から先に説明した補正係数γ1を用いて、 x1=2γ1|11|/(|11|+|12|) =la+lc(2lb−x′)/(lb+lc) x2=2γ1|12|/(|11|+|12|) =la+lcx′/(lb+lc) が得られるが、これらの値のx miniを与える解は、この
場合はx2であり、2回線分岐点までの距離laよりも大き
い。従って、受電端Bまでの間に短絡故障が発生した場
合における2回線分岐点(4)から短絡故障点までの距
離x′はx miniを与える式から求められる。
2 | 12 | / (| 11 | + | 12 |) = {la (lb + lc) + lcx ′} / (la lb + lb lc + la lc)… 8 211 / (11 + 12) = 2- {la (lb + lc) + lcx ′} / ( la lb + lb lc + la lc) ... 8'Using the correction coefficient γ1 described above from the formula 8,8 ', x1 = 2γ1 | 11 | / (| 11 | + | 12 |) = la + lc (2lb-x') / (Lb + lc) x2 = 2γ1 | 12 | / (| 11 | + | 12 |) = la + lcx '/ (lb + lc), but the solution that gives x mini of these values is x2 in this case, Greater than the distance la to the two-way junction. Therefore, when a short circuit fault occurs up to the power receiving end B, the distance x ′ from the two-circuit branch point (4) to the short circuit fault point can be obtained from the equation giving x mini.

即ち、x2を与える式を変形して、 x′=(x mini−la)(lb+lc)/lc とし、(lb+lc)/lcを補正係数γ2とすることによ
り、 x′=(x mini−la)γ2 …9 なる一般式9を得ることができる。
In other words, by modifying the equation that gives x2, x '= (x mini-la) (lb + lc) / lc and (lb + lc) / lc as the correction coefficient γ2, x' = (x mini-la) It is possible to obtain the general formula 9 that is γ 2 ...

第3図Cの正相差電流等価回路に基いて、2回線分岐
点(4)から受電端Cまでの間に短絡故障が発生した場
合における2回線分岐点(4)から短絡故障点までの距
離x″、および補正係数γ3を求める。
Based on the positive phase difference current equivalent circuit of FIG. 3C, the distance from the 2-line branch point (4) to the short-circuit fault point when a short-circuit fault occurs between the 2-line branch point (4) and the power receiving end C. x ″ and the correction coefficient γ3 are obtained.

上記と同様にして laΔ1−lbΔ1′=0 …10 laΔ1−lcΔ1″=−x″Δ1f …11 Δ1+Δ1′+Δ1″=Δ1f …12 が導かれる。In the same manner as described above, laΔ1-lbΔ1 ′ = 0 ... 10 laΔ1-lcΔ1 ″ = − x ″ Δ1f ... 11 Δ1 + Δ1 ′ + Δ1 ″ = Δ1f ... 12 are derived.

次いで、上記と同様に計算を行なうと、 x1=2γ1|11|/(|11|+|12|) =la+lb(2lc−x″)/(lb+lc) x2=2γ1|12|/(|11|+|12|) =la+lbx″/(lb+lc) が得られるが、これらの値のx miniを与える解は、この
場合はx2であり、2回線分岐点までの距離laよりも大き
い。従って、受電端Cまでの間に短絡故障が発生した場
合における2回線分岐点(4)から短絡故障点までの距
離x″はx miniを与える式から求められる。
Then, the same calculation as above is performed. X1 = 2γ1 | 11 | / (| 11 | + | 12 |) = la + lb (2lc−x ″) / (lb + lc) x2 = 2γ1 | 12 | / (| 11 | + | 12 |) = la + lbx ″ / (lb + lc) is obtained, but the solution that gives x mini of these values is x2 in this case, which is larger than the distance la to the two-circuit branch point. Therefore, the distance x ″ from the two-circuit branch point (4) to the short-circuit fault point when a short-circuit fault occurs up to the power receiving end C can be obtained from the equation giving x mini.

即ち、x2を与える式を変形して、 x″=(x mini−la)(lb+lc)/lb とし、(lb+lc)/lcを補正係数γ3とすることによ
り、 x″=(x mini−la)γ3 …(13) なる一般式(13)を得ることができる。
In other words, by modifying the equation that gives x2, x ″ = (x mini−la) (lb + lc) / lb, and (lb + lc) / lc as the correction coefficient γ3, x ″ = (x mini−la) It is possible to obtain the general formula (13) as γ3 (13).

以上のように、上記において説明した一般式(9)に
より、2回線分岐点(4)と2回線端子Bとの間に短絡
故障が発生した場合における2回線分岐点(4)から短
絡故障点までの距離を求めることができ、一方、にお
いて説明した一般式(13)により、2回線分岐点(4)
と2回線端子Cとの間に地絡故障が発生した場合におけ
る2回線分岐点(4)から短絡故障点までの距離を求め
ることができる。
As described above, according to the general formula (9) explained above, when a short circuit fault occurs between the two circuit branch point (4) and the two circuit terminal B, the short circuit fault point from the two circuit branch point (4) It is possible to obtain the distance to the two-way branch point (4) according to the general formula (13) explained in
The distance from the 2-line branch point (4) to the short-circuit fault point when a ground fault occurs between the 2-line terminal C and the 2-line terminal C can be obtained.

但し、送電端側では、短絡故障が2回線端子B側および
2回線端子C側の何れの側で発生しているのか分からな
い。しかし、何れの側に発生していも、2回線分岐点
(4)から短絡故障点までの距離は特定されるから、容
易に短絡故障点を見出だすことができる。
However, on the power transmission end side, it is not known which side of the two-line terminal B side and the two-line terminal C side the short-circuit fault has occurred. However, whichever side has occurred, the distance from the two-circuit branch point (4) to the short-circuit fault point is specified, so that the short-circuit fault point can be easily found.

第4図はCPU(14)により短絡故障点を標定するための
フローチャートを示し、ステップにおいて短絡検出部
(12)からの短絡故障点算出指令信号により処理フロー
をスタートする。
FIG. 4 shows a flowchart for locating a short-circuit fault point by the CPU (14), and in step, the processing flow is started by the short-circuit fault point calculation command signal from the short-circuit fault detection section (12).

ステップにおいて、正相電流分流比と補正係数とを乗
算する。即ち、下式の計算を実行する。
In the step, the positive phase current diversion ratio is multiplied by the correction coefficient. That is, the calculation of the following formula is executed.

xi=2γ1|11|/(|11|+|12|) {但し、iは1または2であり、回線(5a)(5b)の添
字を示す} ステップにおいて、演算値x1とx2の内から小さい方の
演算値x miniを取り出す。
xi = 2γ1 | 11 | / (| 11 | + | 12 |) {where i is 1 or 2 and indicates the subscript of lines (5a) and (5b)} In the step, from the calculated values x1 and x2 Take out the smaller calculated value x mini.

ステップにおいて、演算値x miniが、送電端から分岐
点(4)までの距離laよりも大きいか否かを判別し、演
算値x miniが距離laよりも小さいと判別した場合には、
ステップにおいて、演算値x miniを送電端から短絡故
障点までの距離を算出すると共に、演算値x miniを与え
ない回線側に短絡故障が発生していると標定する。
In the step, it is judged whether or not the calculated value x mini is larger than the distance la from the power transmission end to the branch point (4), and when it is judged that the calculated value x mini is smaller than the distance la,
In the step, the calculated value x mini is calculated as the distance from the power transmission end to the short-circuit fault point, and the short circuit fault is located on the line side that does not give the calculated value x mini.

逆に、上記ステップにおいて、演算値x miniが距離la
よりも大きいと判別した場合、即ち分岐点から受電端間
での間に短絡故障が発生している判別した場合には、ス
テップにおいて、演算値x miniを与えない回線側に短
絡故障が発生していると標定すると共に、 x′=(x mini−la)γ2式に基いて2回線分岐点
(4)と2回線端子Bとの間に発生している場合におけ
る2回線分岐点(4)から短絡故障点間での距離を算出
し、ステップにおいて、演算値x miniを与えない回線
側に短絡故障が発生していると標定すると共に、x″=
(x mini−la)γ3式に基いて2回線端子Cとの間に発
生している場合における2回線分岐点(4)から短絡故
障点までの距離を算出する。
Conversely, in the above step, the calculated value x mini is the distance la
If it is determined that the short circuit fault occurs between the branch point and the power receiving end, in the step, a short circuit fault occurs on the line side that does not give the calculated value x mini. And the two-line branch point (4) when it occurs between the two-line branch point (4) and the two-line terminal B based on the equation x ′ = (x mini-la) γ2. The distance between the short-circuit fault points is calculated from, and in the step, it is determined that the short-circuit fault has occurred on the line side that does not give the calculated value x mini, and x ″ =
Based on the (x mini-la) γ3 formula, the distance from the two-circuit branch point (4) to the short-circuit fault point when it occurs between the two-circuit terminals C is calculated.

尚、上記ステップをステップよりも、先に行わせる
ことも可能である。
It is also possible to perform the above steps before the steps.

〈発明の効果〉 以上のこの発明によれば、送電端側で検出される正相電
流の大きさ|11|,|12|と、送電線の長さに基いて設
定される補正係数γ1,γ2,γ3とを要素とする xi=2γ1|1i/(|11|+|12|) 〔IV〕 なる式により、3端子平行2回線送電における送電端か
ら短絡故障点までの距離を求めることができる。また、
2回線分岐点以遠の短絡故障に対しては、 x′=(x mini−la)γ2, x″=(x mini−la)γ3 なる2つの式に基いて、2回線分岐点と受電端との間に
故障が発生した場合における分岐点から短絡故障点まで
の距離x′,x″を求めることができる。従って、分岐誤
差の影響を考慮することなく故障点の検出を行うことが
できるという特有の効果を奏する。
<Effects of the Invention> According to the present invention described above, the correction factors γ1, which are set based on the magnitudes of the positive-phase currents | 11 | and | 12 | detected on the transmission end side and the length of the transmission line. xi = 2γ1 | 1i / (| 11 | + | 12 |) with γ2 and γ3 as elements [IV] The distance from the transmitting end to the short-circuit fault point in three-terminal parallel two-line power transmission can be obtained by the equation it can. Also,
For short-circuit faults beyond the two-circuit branch point, the two-circuit branch point and the receiving end are connected based on the two formulas x ′ = (x mini-la) γ2, x ″ = (x mini-la) γ3. It is possible to obtain the distance x ′, x ″ from the branch point to the short-circuit fault point when a fault occurs during the period. Therefore, there is a unique effect that the failure point can be detected without considering the influence of the branch error.

【図面の簡単な説明】[Brief description of drawings]

第1図は3端子平行2回線送電線、およびこの発明に係
る短絡故障点標定方法に適用される短絡故障点算出装置
を示す図、 第2図は3端子平行2回線送電線の正相回路を示す図、 第3図は正相差電流等価回路を示す図、 第4図は短絡故障点を標定するためのフローチャート、 第5図は44S方式を説明するための正相回路図。 (8a)(8b)……正相電流検出回路、 (12)……短絡検出部、 (13)……メモリ、(14)……CPU
FIG. 1 is a diagram showing a three-terminal parallel two-line power transmission line and a short-circuit fault point calculating device applied to the short-circuit fault point locating method according to the present invention. FIG. 2 is a positive-phase circuit of the three-terminal parallel two-line power transmission line. FIG. 3, FIG. 3 is a diagram showing a positive phase difference current equivalent circuit, FIG. 4 is a flow chart for locating a short-circuit fault point, and FIG. 5 is a positive phase circuit diagram for explaining the 44S system. (8a) (8b) …… Positive phase current detection circuit, (12) …… Short-circuit detector, (13) …… Memory, (14) …… CPU

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 進 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 石津 京二 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 江村 徳男 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 (72)発明者 山本 康弘 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Ito 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Kyoji Ishizu 3-chome Nakanoshima, Kita-ku, Osaka City, Osaka No.22 in Kansai Electric Power Co., Inc. Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送電端から短絡故障点までの距離を算出す
るための補正係数γ1、γ2、γ3をそれぞれ下式
〔I〕〔II〕〔III〕に基いて算出しておき、 γ1=(la lb+lb lc+la lc)/ (lb+lc) …〔I〕 γ2=(lb+lc)/lc …〔II〕 γ3=(lb+lc)/lb …〔III〕 (但し、la;送電端と2回線分岐点との距離、lb;2回線
分岐点と一方の受電端との距離、lc;2回線分岐点と他方
の受電端との距離とする。) 上記補正係数γ1と送電端側で検出される2回線の正相
電流の大きさ|11|,|12|とを要素とした下記演算式
〔IV〕に基いてx1とx2を求め、 xi=2γ1|1i|/(|11|+|12|) …〔IV〕 {但し、iは平行2回線の添字を示す} x1とx2の内から小さい方の演算値x miniとlaとを比較
し、x miniがlaよりも小さい場合には、x miniを送電端
から短絡故障点までの距離とし、 x miniが距離laよりも大きい場合には、x′=(x mini
−la)γ2式により求められるx′を、2回線分岐点と
一方の受電端との間に故障が発生した場合における分岐
点から短絡故障点までの距離とし、x″=(x mini−l
a)γ3式により求められるx″を、2回線分岐点と他
方の受電端との間に故障が発生した場合における分岐点
から短絡故障点までの距離とすることを特徴とする3端
子平行2回線送電線の短絡故障点標定方法。
1. Correction coefficients γ1, γ2, and γ3 for calculating the distance from the power transmission end to the short-circuit fault point are calculated based on the following formulas [I], [II], and [III], respectively, and γ1 = ( la lb + lb lc + la lc) / (lb + lc)… [I] γ2 = (lb + lc) / lc… [II] γ3 = (lb + lc) / lb… [III] (where la; the distance between the transmission end and the two-circuit branch point) , Lb; distance between two line branch points and one power receiving end, lc; distance between two line branch points and the other power receiving end.) The above correction coefficient γ1 and positive of two lines detected at the power transmitting end X1 and x2 are calculated based on the following formula [IV] with the magnitude of phase current | 11 |, | 12 | and as elements, and xi = 2γ1 | 1i | / (| 11 | + | 12 |)… [ IV] {however, i indicates a subscript of two parallel lines} The smaller one of x1 and x2, x mini and la, is compared, and when x mini is smaller than la, x mini is transmitted. The distance from the edge to the short-circuit fault point, x mini If larger than away la is, x '= (x mini
−la) Let x ′ obtained by the γ2 equation be the distance from the branch point to the short-circuit fault point when a fault occurs between the two-circuit branch point and one power receiving end, and x ″ = (x mini−l
a) 3-terminal parallel 2 characterized in that x ″ obtained by the γ3 equation is the distance from the branch point to the short-circuit fault point when a fault occurs between the two-circuit branch point and the other power receiving end. Method for locating short circuit faults of line transmission lines.
JP30761388A 1988-12-05 1988-12-05 Short-circuit fault location method for 3-terminal parallel 2-circuit transmission line Expired - Fee Related JPH0750146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30761388A JPH0750146B2 (en) 1988-12-05 1988-12-05 Short-circuit fault location method for 3-terminal parallel 2-circuit transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30761388A JPH0750146B2 (en) 1988-12-05 1988-12-05 Short-circuit fault location method for 3-terminal parallel 2-circuit transmission line

Publications (2)

Publication Number Publication Date
JPH02154169A JPH02154169A (en) 1990-06-13
JPH0750146B2 true JPH0750146B2 (en) 1995-05-31

Family

ID=17971141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30761388A Expired - Fee Related JPH0750146B2 (en) 1988-12-05 1988-12-05 Short-circuit fault location method for 3-terminal parallel 2-circuit transmission line

Country Status (1)

Country Link
JP (1) JPH0750146B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830328B (en) * 2012-08-23 2014-11-19 上海交通大学 Distributed fault location method for T-circuit

Also Published As

Publication number Publication date
JPH02154169A (en) 1990-06-13

Similar Documents

Publication Publication Date Title
RU2540851C2 (en) Method for selection of short-circuited phase and determination of short circuit type
US8866487B2 (en) Directional fault sectionalizing system
KR100350722B1 (en) Apparatus and method for locating fault distance in a power double circuit transmision line
EP1342095B1 (en) Fault location method and device
JPH0750146B2 (en) Short-circuit fault location method for 3-terminal parallel 2-circuit transmission line
JP4921246B2 (en) Ground fault distance relay
JPH07122651B2 (en) Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line
JPH11344525A (en) Fault point plotting device
JP2984294B2 (en) Method of locating short-circuit fault point of three-terminal parallel two-circuit transmission line
EP0155367B1 (en) Short-circuit distance relay
RU2606204C2 (en) Faults direction detection in medium voltage power supply networks
JPH06289089A (en) Fault-state specifying apparatus for power system
JPH0373825B2 (en)
JP2609331B2 (en) Accident point locator for parallel two-circuit power system
Menezes et al. Dual-Layer Based Microgrid Protection Using Voltage Synchrophasors
JPS62261078A (en) Detection of fault point for cable
JPH10132890A (en) Method and device for locating failure point
JPH08122395A (en) Method for locating fault on multiterminal transmission line
JPH08265957A (en) Matrix operation type system protector
JP3773020B2 (en) Fault location method using multi-terminal electric quantity
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP2639150B2 (en) Accident point locator for power system
Dubey et al. Locating double-line-to-ground faults using hybrid current profile approach
JP2794237B2 (en) Fault detection method for power cable lines
JP4564199B2 (en) Accident point locator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees