JPH0749731A - Portable computer - Google Patents

Portable computer

Info

Publication number
JPH0749731A
JPH0749731A JP5197328A JP19732893A JPH0749731A JP H0749731 A JPH0749731 A JP H0749731A JP 5197328 A JP5197328 A JP 5197328A JP 19732893 A JP19732893 A JP 19732893A JP H0749731 A JPH0749731 A JP H0749731A
Authority
JP
Japan
Prior art keywords
charging
battery
voltage
current
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5197328A
Other languages
Japanese (ja)
Inventor
Hironori Ito
裕紀 伊藤
Yuichiro Hino
裕一郎 日野
Naoki Tashiro
直樹 田代
Masahiko Hagiwara
昌彦 萩原
Keiichi Mitsui
圭一 三井
Tomohiko Uchida
朋彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Computer Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Computer Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Computer Engineering Corp filed Critical Toshiba Corp
Priority to JP5197328A priority Critical patent/JPH0749731A/en
Publication of JPH0749731A publication Critical patent/JPH0749731A/en
Priority to US08/853,415 priority patent/US5825155A/en
Priority to US09/009,422 priority patent/US5903131A/en
Priority to US09/257,060 priority patent/US6064179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Sources (AREA)
  • Calculators And Similar Devices (AREA)

Abstract

PURPOSE:To attain long time operation based upon a lithium ion secondary battery in a portable computer using the lithium ion secondary battery as a main power supply source at the time of battery driving. CONSTITUTION:This portable computer is provided with a battery pack 11 constituted of serially connecting m (e.g. 3) group batteries 11a to 11c each of which is constituted of connecting n (e.g. 3) lithium ion secondary batteries in parallel, a voltage monitoring circuit 16B for monitoring the voltage of terminal electrodes TA, TB, Pa, Pb of respective group batteries 11a to 11c and a charging circuit 16A for individually and properly charging respective group batteries 11a, 11b, 11c with electricity in accordance with monitored results to attain a main power supply source for battery driving based upon a lithium ion secondary battery pack with large capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池単セルを直列
接続して構成した組電池をバッテリ動作時の主電源供給
源とするポータブルコンピュータ、及びポータブルコン
ピュータに設けられる二次電池電源回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable computer which uses an assembled battery constituted by connecting secondary battery single cells in series as a main power supply source during battery operation, and a secondary battery power supply circuit provided in the portable computer. Regarding

【0002】[0002]

【従来の技術】従来、携帯型パーソナルコンピュータの
バッテリィ動作用電池としては、ニッケル・カドミウム
(Ni−Cd)二次電池、或いはニッケル水素(Ni−
MH)二次電池が一般的であった。しかし、機器の高性
能化に伴い、容量の大きな二次電池の要求が高まってき
た。そこで、リチウム・イオン二次電池をバッテリィ動
作用電源として用いることが考えられる。
2. Description of the Related Art Conventionally, as a battery operating battery of a portable personal computer, a nickel-cadmium (Ni-Cd) secondary battery or a nickel-hydrogen (Ni-) battery has been used.
MH) secondary batteries were common. However, as the performance of devices has increased, the demand for secondary batteries with a large capacity has increased. Therefore, it is conceivable to use a lithium-ion secondary battery as a power source for battery operation.

【0003】しかしながら、リチウム・イオン二次電池
は、セル単体の端子電圧が3〜4Vと、Ni−CdやN
i−MH等の電池に比べて高く、従って、従来のように
多数の低電圧大容量単セルを直列接続して用いることが
できず、大容量化が困難である等の問題があった。
However, in the lithium ion secondary battery, the terminal voltage of the cell alone is 3 to 4 V, and Ni-Cd or N
The cost is higher than that of a battery such as i-MH. Therefore, there is a problem that a large number of low-voltage large-capacity single cells cannot be connected in series as in the conventional case and it is difficult to increase the capacity.

【0004】又、単体のリチウム二次電池、或いはその
組電池、又はそれらを用いた電池パックを複数組装着で
きる従来の充電回路に於いては、図8(a)に示すよう
な充電方式を採っていた。
Further, in a conventional charging circuit in which a single lithium secondary battery, an assembled battery thereof, or a plurality of battery packs using them can be mounted, a charging system as shown in FIG. I was collecting.

【0005】即ち、先ず1パック目の二次電池(Batt
1)を充電対象に定電流で充電を開始し(定電流充
電)、その電池電圧が上昇して規定電圧に到達した後、
定電圧で充電を継続する(定電圧充電)。
That is, first, the secondary battery of the first pack (Batt
1) Start charging with constant current to the charging target (constant current charging), and after the battery voltage rises to reach the specified voltage,
Continue charging at constant voltage (constant voltage charging).

【0006】定電圧充電状態では充電電流が徐々に小さ
くなり、ある規定値以下になった時点で満充電とする。
1パック目の二次電池(Batt 1)の満充電検知後、次の
2パック目の二次電池(Batt 2)を上記1パック目の二
次電池充電と同様に充電する。
In the constant voltage charging state, the charging current gradually decreases, and is fully charged when it becomes less than a certain specified value.
After the full charge of the secondary battery (Batt 1) of the first pack is detected, the next secondary battery (Batt 2) of the second pack is charged in the same manner as the secondary battery charge of the first pack.

【0007】しかしながら上記したような従来の充電方
式に於いては、先に充電開始した電池パックの満充電を
検知するまで次の電池パックの充電は開始されない。そ
れ故、複数の電池パックの総充電時間は、(電池の充電
時間)×(電池パック数)となる。
However, in the conventional charging system as described above, the charging of the next battery pack is not started until the full charge of the battery pack which has been started first is detected. Therefore, the total charging time of the plurality of battery packs is (battery charging time) × (number of battery packs).

【0008】リチウム二次電池は、定電圧充電モードに
なると、その電池特性から充電電流は徐々に小さくな
る。これに伴い電流供給能力に余裕が生じるが、上記し
た従来の方式では、この分の電力を次の充電に使用する
ことができないという無駄も生じていた。
When the lithium secondary battery enters the constant voltage charging mode, the charging current gradually decreases due to its battery characteristics. Along with this, there is a margin in the current supply capacity, but in the above-described conventional method, there is a waste that this amount of power cannot be used for the next charging.

【0009】又、従来では、定電圧充電の必要がある二
次電池の充電を行なう場合、図10に示すように、先ず
定電流充電を開始し、充電オン時の電池電圧52が目標
値51になったことを検出したA点で定電圧充電に切り
替わる。その後、充電電流53は徐々に減少し、電池自
体の電圧50が目標値51と同電位になって充電電流が
流れなくなるまで(即ち満充電になるまで)定電圧充電
が行なわれる。
Further, in the conventional case, when charging a secondary battery which needs constant voltage charging, as shown in FIG. 10, first, constant current charging is started, and the battery voltage 52 at the time of charging ON is a target value 51. It is switched to constant voltage charging at point A when it is detected that After that, the charging current 53 gradually decreases, and constant voltage charging is performed until the voltage 50 of the battery itself becomes the same potential as the target value 51 and the charging current stops flowing (that is, until full charge).

【0010】このように、従来では、充電オン時の電池
電圧が目標値51になったとき、定電流充電から定電圧
充電に切り替わる。このときの電池電圧は、電池の内部
抵抗等の電圧降下を含んだ値なので、電池は未だ満充電
にはなっておらず、定電圧充電に切り替わってから満充
電になるまで更に長い時間が必要であった。
As described above, conventionally, when the battery voltage at the time of charging on reaches the target value 51, the constant current charging is switched to the constant voltage charging. Since the battery voltage at this time is a value that includes the voltage drop due to the internal resistance of the battery, etc., the battery is not yet fully charged, and it takes a longer time from switching to constant voltage charging until it is fully charged. Met.

【0011】又、従来では、リチウム・イオン二次電池
を直列接続した組電池に於いて、充電時の各二次電池の
電圧ばらつきの補正を以下のように行なっていた。即
ち、2個の二次電池を直列接続した組電池を例に採る
と、組電池電圧の1/2を増幅器に入力して、その出力
を直列接続された二次電池の接続点に与え、増幅器の出
力電圧を組電池全電圧の1/2にする。増幅器の出力は
組電池内の電流制限抵抗を介して二次電池間に接続す
る。これにより増幅器の出力電圧と二次電池接続点との
間の電位差、抵抗値により補正電流が流れる。
Further, conventionally, in an assembled battery in which lithium ion secondary batteries are connected in series, the voltage variation of each secondary battery during charging is corrected as follows. That is, taking an assembled battery in which two secondary batteries are connected in series, 1/2 of the assembled battery voltage is input to the amplifier and its output is given to the connection point of the secondary batteries connected in series. The output voltage of the amplifier is halved of the total voltage of the assembled battery. The output of the amplifier is connected between the secondary batteries via the current limiting resistor in the assembled battery. As a result, a correction current flows due to the potential difference between the output voltage of the amplifier and the secondary battery connection point and the resistance value.

【0012】しかしながら上記した従来の構成による電
池電圧測定手段に於いては次のような問題があった。即
ち、組電池外部から組電池内部の各二次電池の電池電圧
を測定すると、組電池内部の電流制限抵抗に発生する電
圧降下を含んだ値を測定するため、正確な電池電圧が測
定できないという問題があった。
However, the above-mentioned conventional battery voltage measuring means has the following problems. That is, when the battery voltage of each secondary battery inside the assembled battery is measured from the outside of the assembled battery, the value including the voltage drop that occurs in the current limiting resistance inside the assembled battery is measured, so that the accurate battery voltage cannot be measured. There was a problem.

【0013】又、従来では、2個以上の二次電池を直列
接続する組電池に於いて、以下のような問題があった。
これを図14を参照して説明する。即ち、図14に於い
て、101は組電池の出力端子であり、この端子101
を経由して電池が充放電される。102,103は電池
である。104は電池電圧監視回路でり、電池102か
ら電力供給を受けて動作する。105は電池電圧監視回
路であり、電池103から電力供給を受けて動作する。
106は充放電のオン/オフを行なうスイッチであり、
電池電圧監視回路104,105によって制御される。
Further, conventionally, there has been the following problem in an assembled battery in which two or more secondary batteries are connected in series.
This will be described with reference to FIG. That is, in FIG. 14, 101 is an output terminal of the assembled battery.
The battery is charged and discharged via. 102 and 103 are batteries. A battery voltage monitoring circuit 104 operates by receiving power supply from the battery 102. Reference numeral 105 denotes a battery voltage monitoring circuit, which operates by receiving power supply from the battery 103.
106 is a switch for turning on / off the charging / discharging,
It is controlled by the battery voltage monitoring circuits 104 and 105.

【0014】ここでは2個の電池を直列接続した組電池
を例に説明する。電池の種類によっては過放電、過充電
に弱いため、直列接続した各セル(電池102,10
3)の電圧を常時監視する必要がある。
Here, an assembled battery in which two batteries are connected in series will be described as an example. Since some cells are vulnerable to over-discharge and over-charge, each cell connected in series (batteries 102, 10
It is necessary to constantly monitor the voltage of 3).

【0015】この図14に示す回路に於いて、それぞれ
の電池電圧監視回路104,105を等しく作っても、
回路を構成する素子のばらつき等で、その電池電圧監視
回路104,105の消費電流ID 、IE は等しくなら
ない。つまり電池102,103から電池電圧監視回路
104,105に供給される電流が異なることになる。
その電流差が僅かであっても、電池電圧監視回路10
4,105には、常時、電流が流れるため、時間経過に
従ってそれぞれの電池102,103の容量差が大きく
なってしまう。特に電池電圧が電池の残存容量に比例す
る電池、例えばリチウム電池では、それぞれの電池電圧
の差が大きくなってしまう。
In the circuit shown in FIG. 14, even if the battery voltage monitoring circuits 104 and 105 are made equal,
The consumption currents ID and IE of the battery voltage monitoring circuits 104 and 105 are not equal due to variations in the elements forming the circuit. That is, the currents supplied from the batteries 102 and 103 to the battery voltage monitoring circuits 104 and 105 are different.
Even if the current difference is small, the battery voltage monitoring circuit 10
Since a current always flows through the batteries 4 and 105, the capacity difference between the batteries 102 and 103 increases as time passes. Particularly in a battery in which the battery voltage is proportional to the remaining capacity of the battery, for example, a lithium battery, the difference between the battery voltages becomes large.

【0016】ところで、図14の回路は以下のように動
作する。充電時は、電池102,103のいずれか一方
の電池電圧が、電池の種類によって決まっている最大許
容電圧に達すると、電池電圧監視回路104、あるいは
電池電圧監視回路105がこれを検知する。このとき、
充放電オン/オフスイッチ106によって充電を停止さ
せ、過充電を防止する。
By the way, the circuit of FIG. 14 operates as follows. During charging, when the battery voltage of one of the batteries 102 and 103 reaches the maximum allowable voltage determined by the type of battery, the battery voltage monitoring circuit 104 or the battery voltage monitoring circuit 105 detects this. At this time,
Charging / discharging on / off switch 106 stops charging to prevent overcharging.

【0017】放電時は、電池102,103のいずれか
一方の電池電圧が、電池の種類によって決まっている最
小許容電圧に達すると、電池電圧監視回路104、ある
いは電池電圧監視回路105がこれを検知する。このと
き、充放電オン/オフスイッチ106によって放電を停
止させ、過放電を防止する。
At the time of discharging, when the battery voltage of one of the batteries 102 and 103 reaches the minimum allowable voltage determined by the type of battery, the battery voltage monitoring circuit 104 or the battery voltage monitoring circuit 105 detects this. To do. At this time, the charging / discharging on / off switch 106 stops the discharging to prevent over-discharging.

【0018】上記した従来の組電池充放電制御手段に於
いては、電池電圧監視回路104,105の消費電流差
によって生じる電池容量差、つまり、電池電圧に差があ
ると、充電時には、電池の容量が多い方が先に最大許容
電圧に達し、過充電防止のため充電が停止するため、他
の電池は満充電されないという不具合が生じる。又、放
電時には、電池の容量が少ない方が先に最小許容電圧に
達し、過放電防止のため放電が停止するため、他の電池
は残存容量がかなりある状態で放電が停止し、性能を十
分に発揮できないという不具合が生じる。更にこれらが
繰り返されると、それぞれの電池容量差が拡大し、組電
池から取り出せる容量が更に少なくなっていくという不
具合があった。
In the above-mentioned conventional assembled battery charge / discharge control means, if there is a difference in battery capacity caused by a difference in current consumption of the battery voltage monitoring circuits 104 and 105, that is, a battery voltage, the battery is not charged during charging. As the capacity increases, the maximum allowable voltage is reached first, and charging is stopped to prevent overcharging, which causes a problem that other batteries are not fully charged. In addition, during discharge, the battery with the smaller capacity reaches the minimum allowable voltage first, and the discharge is stopped to prevent over-discharge, so that the discharge of other batteries is stopped with a considerable remaining capacity, and the performance is sufficient. There is a problem that it can not be demonstrated to the full. Further, if these steps are repeated, there is a problem that the difference in battery capacities increases, and the capacity that can be taken out from the assembled battery becomes smaller.

【0019】又、従来、二次電池単セルを直列接続して
なる複数種の組電池(即ち、電池電圧、容量等を異にす
る複数種の組電池)のうちの任意の組電池が実装可能な
ポータブルコンピュータに於いては、実装組電池の種類
を識別し、その識別に応じて制御を変更する手段を備え
たものと、特性の差を無視するものとがあった。
Further, conventionally, an arbitrary assembled battery of a plurality of kinds of assembled batteries (that is, a plurality of kinds of assembled batteries having different battery voltages, capacities, etc.) formed by connecting secondary battery single cells in series is mounted. Among possible portable computers, there are one that is provided with a means for identifying the type of the assembled battery pack and that changes the control according to the identification, and one that ignores the difference in characteristics.

【0020】このうち、実装された組電池の種類を識別
する構成に於いては、その識別に固有の機械式スイッチ
を必要とし、コスト面で高価となるとともに、機械式ス
イッチの実装スペースを確保しなければならないため、
装置構成が繁雑し、かつ大型化するという問題があっ
た。又、電池全体の電圧を検出して電池の種類を識別す
る手段もあるが、この手段は、電池電圧が異なる場合の
み有効であり、同電圧異容量の電池の違いは検出不能で
ある。又、端子を複数設け、その何れかの端子に電池電
圧を出力して電池の種類を認識する構成もあるが、この
手段は、信号が増加すると、インターフェイスが繁雑に
なり、コンピュータ装置本体、及び組電池のコスト上昇
を招き、製品コストが大幅に上昇するという問題があっ
た。
Among these, in the structure for identifying the type of the assembled battery pack, a unique mechanical switch is required for the identification, which is expensive in terms of cost and secures a mounting space for the mechanical switch. Because I have to
There is a problem that the device configuration becomes complicated and the device becomes large. There is also a means for detecting the voltage of the entire battery to identify the type of the battery, but this means is effective only when the battery voltages are different, and the difference between batteries having the same voltage and different capacities cannot be detected. There is also a configuration in which a plurality of terminals are provided and a battery voltage is output to any one of the terminals to recognize the type of the battery. However, this means that when the number of signals increases, the interface becomes complicated and the computer device main body, and There is a problem that the cost of the assembled battery is increased and the product cost is significantly increased.

【0021】[0021]

【発明が解決しようとする課題】上述したように従来で
は、リチウム・イオン二次電池をバッテリィ主電源とし
て用いようとすると、セル単体の端子電圧が、Ni−C
dやNi−MH等の電池に比して高く、従って、従来の
ように多数の低電圧大容量単セルを直列に接続して用い
ることができず、大容量化が困難である等の問題があっ
た。
As described above, conventionally, when a lithium ion secondary battery is used as a battery main power source, the terminal voltage of the cell unit is Ni--C.
It is higher than batteries such as d and Ni-MH, and therefore a large number of low-voltage large-capacity single cells cannot be connected in series as in the conventional case, and it is difficult to increase the capacity. was there.

【0022】本発明は上記実情に鑑みなされたもので、
リチウム・イオン二次電池を主電源供給源として長時間
動作を可能にしたポータブルコンピュータを提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a portable computer that can operate for a long time by using a lithium ion secondary battery as a main power supply source.

【0023】又、単体のリチウム二次電池、或いはその
組電池等を用いた電池パックを複数組装着できる従来の
充電回路に於いては、1パック目の二次電池の定電圧充
電による満充電検知後、次の2パック目の二次電池を充
電を開始する構成であることから、先に充電開始した電
池パックの満充電を検知するまで次の電池パックの充電
が開始されず、総充電時間が長く、かつ充電用電力の無
駄が生じて、充電能率が悪いという問題があった。
Further, in a conventional charging circuit in which a plurality of battery packs using a single lithium secondary battery or a battery pack thereof can be mounted, a full charge by constant voltage charging of the secondary battery of the first pack is made. After the detection, the next secondary battery of the second pack is charged, so the next battery pack will not be charged until the full charge of the previously started battery pack is detected, and the total charge There is a problem that the charging efficiency is poor because the time is long and the charging power is wasted.

【0024】本発明は上記実情に鑑みなされたもので、
充電中のリチウム二次電池が定電圧充電へ切り替わり、
ある定めた充電電力以下になると、充電中の電池パック
の満充電検出前に電源の余剰電力を利用して次の電池パ
ックの充電を開始し、一時的に複数の電池パックを並行
して充電することにより、複数の電池パックの総充電時
間を短縮し、かつ余剰電力を有効に利用することのでき
る充電回路を提供することを目的とする。
The present invention has been made in view of the above circumstances,
The rechargeable lithium secondary battery switches to constant voltage charging,
When the charging power falls below a certain charging power, the surplus power of the power supply is used to start charging the next battery pack before the full charge of the battery pack being charged is detected, and multiple battery packs are temporarily charged in parallel. By doing so, it is an object of the present invention to provide a charging circuit capable of shortening the total charging time of a plurality of battery packs and effectively utilizing the surplus power.

【0025】又、従来では、定電圧充電の必要がある二
次電池の充電を行なう場合、図10に示すように、先ず
定電流充電を開始し、充電オン時の電池電圧52が目標
値51になったことを検出したA点で定電圧充電に切り
替わる。その後、充電電流53は徐々に減少し電流が流
れなくなるまで(即ち満充電になるまで)定電圧充電が
行なわれる。このように、従来では、充電オン時の電池
電圧が目標値51になったとき、定電流充電から定電圧
充電に切り替わる。このときの電池電圧は、電池の内部
抵抗等の電圧降下を含んだ値なので、電池は未だ満充電
にはなっておらず、定電圧充電に切り替わってから満充
電になるまで更に長い時間が必要であった。
Further, in the conventional case, when charging a secondary battery which requires constant voltage charging, as shown in FIG. 10, constant current charging is first started and the battery voltage 52 at the time of charging ON is a target value 51. It is switched to constant voltage charging at point A when it is detected that After that, the charging current 53 gradually decreases, and constant voltage charging is performed until the current stops flowing (that is, until full charging). As described above, conventionally, when the battery voltage at the time of charging on reaches the target value 51, the constant current charging is switched to the constant voltage charging. Since the battery voltage at this time is a value that includes the voltage drop due to the internal resistance of the battery, etc., the battery is not yet fully charged, and it takes a longer time from switching to constant voltage charging until it is fully charged. Met.

【0026】本発明は上記実情に鑑みなされたもので、
定電圧充電の必要がある二次電池の充電を行なう充電装
置に於いて、二次電池を急速充電することのできる二次
電池の急速充電方式を提供することを目的とする。
The present invention has been made in view of the above situation,
An object of the present invention is to provide a secondary battery rapid charging system capable of rapidly charging a secondary battery in a charging device for charging a secondary battery that requires constant voltage charging.

【0027】又、従来の構成による電池電圧測定手段に
於いては、組電池外部から組電池内部の各二次電池の電
池電圧を測定すると、組電池内部の電流制限抵抗に発生
する電圧降下を含んだ値を測定するため、正確な電池電
圧が測定できないという問題があった。
In the conventional battery voltage measuring means, when the battery voltage of each secondary battery inside the assembled battery is measured from outside the assembled battery, the voltage drop generated in the current limiting resistance inside the assembled battery is detected. Since the included value is measured, there is a problem that an accurate battery voltage cannot be measured.

【0028】本発明は上記実情に鑑みなされたもので、
組電池を構成する個々の二次電池の電圧の差を補正する
回路に於いて、各二次電池の電圧を正確に測定すること
ができ、これにより過充電、過放電を確実に防止するこ
とができる、組電池の電池電圧測定装置を提供すること
を目的とする。
The present invention has been made in view of the above circumstances,
In the circuit that corrects the voltage difference between the individual secondary batteries that make up the battery pack, the voltage of each secondary battery can be measured accurately, and overcharge and overdischarge can be reliably prevented. It is an object of the present invention to provide a battery voltage measuring device for an assembled battery that is capable of

【0029】又、従来の構成による組電池充放電制御手
段に於いては、直列接続された二次電池の電池電圧に差
があると、充電時には、電池の容量が多い方が先に最大
許容電圧に達し、過充電防止のため充電が停止するた
め、他の電池は満充電されないという不具合が生じ、
又、放電時には、電池の容量が少ない方が先に最小許容
電圧に達し、過放電防止のため放電が停止するため、他
の電池は残存容量がかなりある状態で放電が停止し、性
能を十分に発揮できないという不具合が生じる。更にこ
れらが繰り返されると、それぞれの電池容量差が拡大
し、組電池から取り出せる容量が更に少なくなっていく
という不具合があった。
Further, in the battery pack charge / discharge control means according to the conventional structure, if there is a difference in the battery voltage of the secondary batteries connected in series, the one having a larger battery capacity is allowed the maximum at the time of charging. Since the voltage is reached and charging is stopped to prevent overcharge, other batteries will not be fully charged.
In addition, during discharge, the battery with the smaller capacity reaches the minimum allowable voltage first, and the discharge is stopped to prevent over-discharge, so that the discharge of other batteries is stopped with a considerable remaining capacity, and the performance is sufficient. There is a problem that it can not be demonstrated to the full. Further, if these steps are repeated, there is a problem that the difference in battery capacities increases, and the capacity that can be taken out from the assembled battery becomes smaller.

【0030】本発明は上記実情に鑑みなされたもので、
二次電池セルを直列接続した組電池に於いて、それぞれ
の二次電池セルの消費電流を等しくすることができ、こ
れにより電池の性能を最大限に発揮することができる二
次電池の放電制御方式を提供することを目的とする。
The present invention has been made in view of the above circumstances,
In an assembled battery in which rechargeable battery cells are connected in series, the current consumption of each rechargeable battery cell can be made equal, and thereby the discharge performance of the rechargeable battery can be maximized. The purpose is to provide a scheme.

【0031】又、従来、二次電池単セルを直列接続して
なる複数種の組電池のうちの任意の組電池が実装可能な
ポータブルコンピュータに於ける、実装組電池の種類識
別機構は機械式スイッチを必要とし、コスト面で高価と
なるとともに、機械式スイッチの実装スペースを確保し
なければならないため、装置構成が繁雑し、かつ大型化
するという問題があった。
Further, conventionally, in a portable computer in which an arbitrary assembled battery of a plurality of assembled batteries formed by connecting secondary battery single cells in series can be mounted, the type identifying mechanism of the mounted assembled battery is a mechanical type. There is a problem that a switch is required, the cost is high, and a mechanical switch mounting space must be secured, which complicates the device configuration and increases the size.

【0032】本発明は上記実情に鑑みなされたもので、
複数の二次電池単セルを直列接続した複数種の組電池か
ら任意種類の組電池を実装可能とするポータブルコンピ
ュータに於いて、最小信号数で簡単かつ安価に実装組電
池の種類識別機能を実現できる複数種の組電池を使用可
能としたポータブルコンピュータを提供することを目的
とする。
The present invention has been made in view of the above circumstances,
In a portable computer that can mount any type of assembled battery from multiple types of assembled batteries in which multiple secondary battery single cells are connected in series, the type identification function of the assembled battery can be realized easily and inexpensively with the minimum number of signals. An object of the present invention is to provide a portable computer that can use a plurality of types of assembled batteries that can be used.

【0033】[0033]

【課題を解決するための手段及び作用】本発明は、n本
(n=2〜4)のリチウム・イオン二次電池を並列接続
した組電池をm個(m=3〜4)直列接続した電池パッ
クと、各組電池の端子電圧をモニタするモニタ回路と、
このモニタ結果によって適宜各組電池を個別に充電する
充電回路とを設けて、大容量のリチウム・イオン二次電
池パックによるバッテリィ駆動時の主電源供給源を実現
することを特徴とする。
According to the present invention, m (m = 3 to 4) battery packs in which n (n = 2 to 4) lithium ion secondary batteries are connected in parallel are connected in series. A battery pack and a monitor circuit that monitors the terminal voltage of each battery pack,
A charging circuit that appropriately charges each battery pack according to the monitoring result is provided to realize a main power supply source when a battery is driven by a large-capacity lithium ion secondary battery pack.

【0034】即ち、本発明は、リチウム・イオン二次電
池単セルがn個並列接続された組電池をm組直列接続し
て構成した電池パックと、この電池パックを充電する充
電回路とを具備し、上記電池パックをバッテリ動作時の
主電源供給源としたことを特徴とする。
That is, the present invention is provided with a battery pack constituted by connecting n sets of lithium-ion secondary battery single cells connected in parallel to each other in series, and a charging circuit for charging the battery pack. The battery pack is used as a main power supply source during battery operation.

【0035】このような構成とすることにより、リチウ
ム・イオン二次電池を使い、大容量の組電池を構成でき
るので、リチウム・イオン二次電池をバッテリ動作時の
主電源供給源とした、比較的消費電力の大きな、又は、
長時間使用が可能なパーソナルコンピュータを構築でき
る。
With this structure, a lithium-ion secondary battery can be used to form a large-capacity assembled battery. Therefore, the lithium-ion secondary battery was used as the main power supply source during battery operation. Large power consumption, or
It is possible to build a personal computer that can be used for a long time.

【0036】又、本発明は、単体のリチウム二次電池あ
るいはその組電池、またはそれらを用いた電池パックを
充電する定電圧定電流電源と、電源の供給電力を検出す
る抵抗と、その供給電力が或る定めた充電電流以下にな
ると一時的に2本の電池を並行して充電するために電池
の充電電流を制御するシリーズレギュレータ、又はスイ
ッチングレギュレータを具備して充電回路を構成したも
ので、これにより、充電中のリチウム二次電池が定電圧
充電へ切り替わり、ある定めた充電電力以下になると、
充電中の電池パックの満充電検出前に電源の余剰電力を
利用して次の電池パックの充電を開始し、一時的に複数
の電池パックを並行して充電することにより、余剰電力
を有効利用して複数の電池パックの総充電時間を短縮す
ることができる。
The present invention also provides a constant-voltage constant-current power supply for charging a single lithium secondary battery or an assembled battery thereof, or a battery pack using them, a resistor for detecting the power supply of the power supply, and the power supply thereof. The charging circuit is configured by including a series regulator or a switching regulator that controls the charging current of the batteries in order to temporarily charge two batteries in parallel when becomes less than a predetermined charging current. As a result, the lithium secondary battery being charged switches to constant voltage charging, and when the charging power falls below a certain specified charging power,
Effective use of surplus power by starting to charge the next battery pack by using the surplus power of the power supply before the full charge of the battery pack being charged is detected and temporarily charging multiple battery packs in parallel As a result, the total charging time of a plurality of battery packs can be shortened.

【0037】又、本発明は、電池を充電する電源と、電
池電圧を測定する電池電圧測定部と、電池電圧が目標値
(第1の目標値、及び第2の目標値)に達したか否かを
それぞれ判定する電池電圧判定部と、この判定部の判定
内容に従い充電をオン/オフ制御する充電オン/オフ制
御部とを備えて、電池電圧が第1の目標値(連続定電流
充電から断続定電流充電へ切り換えるための電池電圧目
標値)より低い場合は連続で充電し、電池電圧が第1の
目標値より高くなった場合は、一定周期で充電をオン/
オフして、この充電オフ時の電池電圧が第2の目標値
(充電オフ時の電池電圧目標値)より高くなった時、満
充電と判定することにより、定電圧充電の必要がある二
次電池の充電を行なう充電装置に於いて、二次電池を急
速充電することができる。
Further, according to the present invention, the power source for charging the battery, the battery voltage measuring unit for measuring the battery voltage, and whether the battery voltage has reached the target value (first target value and second target value). A battery voltage determination unit that determines whether or not each of the battery voltage is determined, and a charging on / off control unit that controls charging on / off according to the determination content of the determination unit, and the battery voltage has a first target value (continuous constant current charging). To the intermittent constant current charging), the battery is continuously charged when the battery voltage is higher than the first target value.
When the battery voltage is turned off and the battery voltage at the time of charging off becomes higher than the second target value (the battery voltage target value at the time of charging off), it is determined that the battery is fully charged, so that the secondary battery that needs constant voltage charging A secondary battery can be rapidly charged in a charging device that charges a battery.

【0038】又、本発明は、二次電池相互の接続点
(B)に電流制限素子又は電流制限回路を介して充放電
用の電源回路が接続される接続点(C)を電源端子とし
てもつ、2個以上の二次電池を直列接続した組電池に於
いて、各二次電池の電圧を測定する電池電圧測定回路
と、接続点(B)から接続点(C)、あるいは接続点
(C)から接続点(B)に流れる電流(補正電流)をオ
ン/オフできるスイッチ手段と、補正電流をゼロにした
後、ある一定時間後に各二次電池の電圧を測定する手段
とを具備してなるもので、これにより、組電池を構成す
る個々の二次電池の電圧の差を補正する回路に於いて、
各二次電池の電圧を正確に測定でき、過充電、過放電を
確実に防止することができる。
Further, according to the present invention, the connection point (C) where the charging / discharging power supply circuit is connected to the connection point (B) between the secondary batteries via the current limiting element or the current limiting circuit is used as the power supply terminal. In an assembled battery in which two or more secondary batteries are connected in series, a battery voltage measuring circuit for measuring the voltage of each secondary battery and a connection point (B) to a connection point (C) or a connection point (C ) To turn on / off the current (correction current) flowing from the connection point (B) to the connection point (B), and means for measuring the voltage of each secondary battery after a certain period of time after the correction current is set to zero. In this way, in the circuit that corrects the difference in voltage of each secondary battery that constitutes the assembled battery,
The voltage of each secondary battery can be accurately measured, and overcharge and overdischarge can be reliably prevented.

【0039】又、本発明は、2セル以上が直列接続され
る組電池の各セルそれぞれから電力供給される負荷があ
る形態、又はセルの電圧に応じて消費電流が変化する負
荷がある形態に於いて、電池同士の接続点と負荷同士の
接続点を結ぶ回路の電流(中性線電流)を検知する回路
手段と、その検知信号によって各電池セルの放電電流を
制御する回路手段と、その回路が負荷と並列接続される
回路手段とを具備して、中性線電流が0A(ゼロアンペ
ア)になるよう制御することにより、各電池セルの放電
電流(消費電流)を等しくして、電池の性能を最大限に
発揮することができるようにしたことを特徴とする。
The present invention also provides a form in which there is a load to which power is supplied from each cell of an assembled battery in which two or more cells are connected in series, or a form in which the consumption current changes according to the voltage of the cell. In this, circuit means for detecting the current (neutral wire current) of the circuit connecting the connection point between the batteries and the connection point between the loads, and circuit means for controlling the discharge current of each battery cell by the detection signal, A circuit is provided with a circuit means connected in parallel with the load, and the neutral line current is controlled to be 0 A (zero amperes) to equalize the discharge current (consumption current) of each battery cell, It is characterized by making it possible to maximize the performance of.

【0040】又、本発明は、二次電池単セルを直列接続
してなる複数種の組電池のうちの任意の組電池が実装可
能なポータブルコンピュータに於いて、組電池の種別毎
に二次電池単セルの直列接続点位置を特定した電圧検出
端をもつ組電池と、この組電池の電圧検出端より得られ
る電圧により実装された組電池の種別を認識する手段と
を具備してなる構成として、最小信号数で簡単かつ安価
に、複数種の組電池を使用可能とすることができる。
Further, according to the present invention, in a portable computer in which an arbitrary assembled battery of a plurality of kinds of assembled batteries formed by connecting secondary battery single cells in series can be mounted, the secondary battery is classified according to the type of assembled battery. A structure comprising an assembled battery having a voltage detection end that specifies the series connection point position of the battery single cell, and means for recognizing the type of the assembled battery based on the voltage obtained from the voltage detection end of this assembled battery As a result, it is possible to use a plurality of types of assembled batteries easily and inexpensively with the minimum number of signals.

【0041】[0041]

【実施例】以下図面を参照して本発明の実施例を説明す
る。先ず図1及び図2を参照して本発明の第1実施例を
説明する。図1は本発明の第1実施例による装置全体の
外観構成及び構成要素の配置状態を示す斜視図である。
Embodiments of the present invention will be described below with reference to the drawings. First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing the external configuration of the entire apparatus according to the first embodiment of the present invention and the arrangement of components.

【0042】図2は上記第1実施例に於ける要部の回路
構成を示すブロック図である。図1に於いて、11はリ
チウム・イオン二次電池を用いた電池パックであり、バ
ッテリ動作時の主電源供給源である。12は電源PCB
(電源用印刷配線基板)であり、バッテリの充電制御、
システムへの電源の供給等を行なう。13はシステムP
CBであり、CPU、RAM、ROM等のチップを搭載
し、システムの制御を行なう。14は表示装置(フラッ
トパネルディスプレイ)であり、処理結果等を表示す
る。15はキーボードであり、データ、コマンド等の入
力に供される。
FIG. 2 is a block diagram showing the circuit arrangement of the essential parts of the first embodiment. In FIG. 1, 11 is a battery pack using a lithium-ion secondary battery, which is a main power supply source during battery operation. 12 is a power supply PCB
(Printed wiring board for power supply), battery charge control,
Supply power to the system. 13 is system P
The CB is equipped with chips such as a CPU, RAM, and ROM, and controls the system. A display device (flat panel display) 14 displays processing results and the like. A keyboard 15 is used for inputting data, commands and the like.

【0043】図2は本発明の第1実施例による要部の構
成を示すブロック図であり、図1と同一部分に同一符号
を付している。図2に於いて、11はリチウム・イオン
二次電池を用いて構成された、バッテリィ駆動時の主電
源供給源となる電池パックである。11a,11b,1
1cは電池パック11の主要構成要素をなすリチウム・
イオン二次電池による組電池であり、ここではリチウム
・イオン二次電池単セルをそれぞれ3個並列接続した、
3組の組電池11a,11b,11cをそれぞれ直列接
続することにより電池パック11の電源が構成される。
FIG. 2 is a block diagram showing the structure of the essential parts according to the first embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals. In FIG. 2, reference numeral 11 denotes a battery pack which is constituted by using a lithium ion secondary battery and serves as a main power supply source when the battery is driven. 11a, 11b, 1
1c is lithium, which is a main component of the battery pack 11.
It is an assembled battery of ion secondary batteries, and here, three lithium ion secondary battery single cells are connected in parallel,
The power source of the battery pack 11 is configured by connecting the three battery packs 11a, 11b, 11c in series.

【0044】TA,TB,Pa,Pbはそれぞれ電池パ
ック11の電源端子であり、このうち、TA,TBは充
電用電極、Pa,Pbは電圧監視用電極である。この電
源端子TA,TB、及び電圧監視用電極Pa,Pbの各
端子電圧が、それぞれシステムPCB13を介して電源
PCB(電源用印刷配線基板)12の電圧監視回路16
Bに入力され、電池(組電池11a,11b,11c)
の端子電圧が監視される。
TA, TB, Pa and Pb are power supply terminals of the battery pack 11, respectively, of which TA and TB are charging electrodes and Pa and Pb are voltage monitoring electrodes. The terminal voltages of the power supply terminals TA and TB and the voltage monitoring electrodes Pa and Pb are respectively supplied to the voltage monitoring circuit 16 of the power supply PCB (power supply printed wiring board) 12 via the system PCB 13.
Input to B, battery (battery pack 11a, 11b, 11c)
The terminal voltage of is monitored.

【0045】12は電源PCB(電源用印刷配線基板)
であり、電池パック11の充電制御、システムの電源供
給等を行なう回路構成要素が実装される。ここでは外部
商用交流電源17を入力電源として電池パック11を充
電する充電回路16A、及び電圧監視回路16Bのみを
示している。
12 is a power supply PCB (printed wiring board for power supply)
The circuit components for controlling the charging of the battery pack 11 and supplying power to the system are mounted. Here, only the charging circuit 16A for charging the battery pack 11 with the external commercial AC power supply 17 as an input power supply and the voltage monitoring circuit 16B are shown.

【0046】16Aは電源PCB(電源用印刷配線基
板)12に実装された充電回路であり、外部商用交流電
源を入力電源として電池パック11を充電制御する。1
6Bは同じく電源PCB(電源用印刷配線基板)12に
実装された電圧監視回路であり、電池パック11の端子
電圧をモニタし、その結果を充電回路16Aに伝える。
A charging circuit 16A is mounted on a power supply PCB (printed wiring board for power supply) 12 and controls charging of the battery pack 11 using an external commercial AC power supply as an input power supply. 1
6B is a voltage monitoring circuit also mounted on the power supply PCB (printed wiring board for power supply) 12, monitors the terminal voltage of the battery pack 11, and transmits the result to the charging circuit 16A.

【0047】図1に示す実施例のポータブルコンピュー
タに於いては、電池パック11より出力される放電され
る電力(電池パック11の蓄積電源)が電源PCB12
で適当な電圧に変換された後、システムPCB13に供
給される。この電力により、システムPCB13は、例
えばキーボード15より入力されたデータを表示装置1
4に表示する等の制御を行なう。
In the portable computer of the embodiment shown in FIG. 1, the discharged power output from the battery pack 11 (accumulated power source of the battery pack 11) is the power source PCB 12.
After being converted into an appropriate voltage by, it is supplied to the system PCB 13. Due to this power, the system PCB 13 displays the data input from the keyboard 15, for example.
Control such as displaying on the screen 4 is performed.

【0048】次に図2を参照して本発明の第1実施例に
於ける動作を説明する。図2に於いて、電池パック11
は、リチウム・イオン二次電池単セルを3個並列に接続
して組電池を構成し、その3組の組電池11a,11
b,11cを直列に接続することによって構成される。
Next, the operation of the first embodiment of the present invention will be described with reference to FIG. In FIG. 2, the battery pack 11
Is an assembled battery in which three lithium-ion secondary battery single cells are connected in parallel, and the three assembled batteries 11a, 11
It is configured by connecting b and 11c in series.

【0049】この電池パック11の放電時に於いては、
電源端子TA,TBを介してシステムに電力が供給され
る。一方、電池パック11の充電時に於いては、充電回
路16Aが外部商用交流電源17を入力電源(例えばA
C100V)として、適当な電圧、電流にて、電源端子
TA,TBを介して電池パック11の各組電池11a,
11b,11cを充電する。
At the time of discharging the battery pack 11,
Power is supplied to the system via the power supply terminals TA and TB. On the other hand, when the battery pack 11 is being charged, the charging circuit 16A uses the external commercial AC power source 17 as an input power source (for example, A
C100V), each battery pack 11a of the battery pack 11 via the power supply terminals TA and TB at an appropriate voltage and current,
11b and 11c are charged.

【0050】ここで、何らかの原因により、組電池11
a,11b,11cの端子電圧が異なった場合は、電源
端子TA,TB、及び電圧監視用電極Pa,Pbの各端
子電圧が電圧監視回路16Bで検出できるので、電圧監
視回路16Bの検出内容に従い、充電回路16Aが端子
電圧を同じくするよう、4つの電極(電源端子TA,T
B、及び電圧監視用電極Pa,Pb)を介して、個別に
充電制御を行なう。
Here, for some reason, the assembled battery 11
When the terminal voltages of a, 11b, and 11c are different, the terminal voltages of the power supply terminals TA and TB and the voltage monitoring electrodes Pa and Pb can be detected by the voltage monitoring circuit 16B. Therefore, according to the detection content of the voltage monitoring circuit 16B. , Four electrodes (power supply terminals TA, T so that the charging circuit 16A has the same terminal voltage).
B, and the voltage monitoring electrodes Pa, Pb) are individually controlled for charging.

【0051】例えば組電池11aのみ、端子電圧が低い
場合は、電源端子TA、及び電圧監視用電極Paを介し
て、他の組電池11b,11cより多く電流を流すこと
により、各組電池11a,11b,11cを同じ電圧に
することができる。
For example, when only the assembled battery 11a has a low terminal voltage, a larger current is passed through the assembled battery 11a, 11c through the power supply terminal TA and the voltage monitoring electrode Pa, so that each assembled battery 11a, 11b and 11c can have the same voltage.

【0052】尚、上記した実施例では、リチウム・イオ
ン二次電池単セルを3個並列に接続した組電池を3組直
列に接続して電池パック11を構成しているが、これに
限らず、組電池のセル数と組電池の直列接続段数を、例
えば、2×3、2×4、3×4、4×3等としても上記
実施例と同様の放充電制御が可能である。
In the above embodiment, the battery pack 11 is constructed by connecting three battery packs in which three lithium-ion secondary battery single cells are connected in parallel to each other in series, but the present invention is not limited to this. Even if the number of cells of the assembled battery and the number of serially connected stages of the assembled battery are set to, for example, 2 × 3, 2 × 4, 3 × 4, 4 × 3, etc., discharge control similar to that in the above embodiment can be performed.

【0053】上記したような構成により、リチウム・イ
オン二次電池を用いて大容量の電池パック11を構成で
きるので、画面表示機能、及び外部記憶アクセス機構等
をもつ比較的消費電力の大きなポータブルコンピュータ
に於いても二次電池による長時間動作が可能となる。
With the above-described configuration, the large capacity battery pack 11 can be constructed using the lithium-ion secondary battery, so that a portable computer having a screen display function, an external storage access mechanism, etc., and relatively large power consumption. Also in this case, it is possible to operate the secondary battery for a long time.

【0054】次に図3乃至図8を参照して本発明の第2
実施例を説明する。図3は本発明の第2実施例(1)の
構成を示す回路図である。図3に於いて、21は定電圧
定電流電源であり、予め設定された電源の電流制限値
(Icc)に従う出力電流制限機能をもつ。
Next, referring to FIGS. 3 to 8, the second embodiment of the present invention will be described.
An example will be described. FIG. 3 is a circuit diagram showing the configuration of the second embodiment (1) of the present invention. In FIG. 3, reference numeral 21 is a constant-voltage constant-current power source, which has an output current limiting function according to a preset current limit value (Icc) of the power source.

【0055】22は定電圧定電流電源21の電源出力端
と二次電池(Batt1)26との間の充電電流路に介在さ
れたスイッチ(SW1)である。23は二次電池(Batt
2)27のシリーズレギュレーション制御信号路に介在
されたスイッチ(SW2)である。この各スイッチ(S
W1,SW2)22,23は、それぞれ、図示しない電
源制御部から出力される制御信号(CSa)によりオン
/オフ制御されるもので、二次電池(Batt1)26の充
電開始時にオン、満充電時にオフとなる。
Reference numeral 22 is a switch (SW1) interposed in the charging current path between the power source output terminal of the constant voltage constant current power source 21 and the secondary battery (Batt1) 26. 23 is a secondary battery (Batt
2) A switch (SW2) interposed in the 27 series regulation control signal path. Each switch (S
W1, SW2) 22 and 23 are on / off controlled by a control signal (CSa) output from a power supply control unit (not shown), and are turned on and fully charged at the start of charging the secondary battery (Batt1) 26. Sometimes turned off.

【0056】24は定電圧定電流電源21の電源出力端
と二次電池(Batt2)27との間の充電電流路に介在さ
れたスイッチ(SW3)であり、図示しない電源制御部
から出力される制御信号(CSb)によりオン/オフ制
御されるもので、二次電池(Batt1)26の満充電時に
オンとなり、二次電池(Batt2)27の満充電時にオフ
となる。
Reference numeral 24 is a switch (SW3) interposed in the charging current path between the power source output terminal of the constant voltage / constant current power source 21 and the secondary battery (Batt2) 27, and is output from a power source control unit (not shown). It is on / off controlled by a control signal (CSb), and is turned on when the secondary battery (Batt1) 26 is fully charged and turned off when the secondary battery (Batt2) 27 is fully charged.

【0057】25は充電電流をシリーズレギュレーショ
ンするトランジスタ(TR1)であり、スイッチ(SW
2)23がオン状態にあるとき、増幅器(Error Amp)
31の出力に従って二次電池(Batt2)27の充電電流
をシリーズレギュレーションする。
Reference numeral 25 is a transistor (TR1) for series regulating the charging current, which is a switch (SW).
2) Amplifier (Error Amp) when 23 is on
According to the output of 31, the charging current of the secondary battery (Batt2) 27 is series-regulated.

【0058】26,27はそれぞれポータブルコンピュ
ータ本体のバッテリィ電源をなす二次電池(Batt1,Ba
tt2)であり、ここではリチウム・イオン電池(セル、
又は組電池)が用いられ、充電制御回路からの制御信号
(CSa,CSb)に従い、充電時は、先に二次電池
(Batt1)26が充電され、次に二次電池(Batt2)2
7が充電される。
Reference numerals 26 and 27 denote secondary batteries (Batt1, Ba) that form the battery power source of the portable computer main body.
tt2), here is a lithium-ion battery (cell,
Alternatively, the secondary battery (Batt1) 26 is charged first and then the secondary battery (Batt2) 2 according to the control signals (CSa, CSb) from the charge control circuit.
7 is charged.

【0059】28,29はそれぞれ電池電圧センス回路
であり、それぞれ個別に二次電池(Batt1,Batt2)2
6,27の電圧を検出する。この電池電圧センス回路2
8,29で検出された電池電圧は定電圧定電流電源21
に帰還されて充電時の電池電圧制御に供される。
Numerals 28 and 29 are battery voltage sensing circuits respectively, and the secondary batteries (Batt1, Batt2) 2 are individually provided.
The voltages of 6 and 27 are detected. This battery voltage sense circuit 2
The battery voltage detected at 8, 29 is the constant voltage constant current power supply 21.
It is fed back to and used for battery voltage control during charging.

【0060】30は電源の供給電流を検出するための固
定抵抗(RS )であり、両端に発生した電圧が、基準電
圧(V REF)32とともに、増幅器(Error Amp)31
に入力される。
Reference numeral 30 is a fixed resistor (RS) for detecting the supply current of the power supply, and the voltage generated at both ends together with the reference voltage (V REF) 32 and the amplifier (Error Amp) 31.
Entered in.

【0061】31は二次電池(Batt2)27をシリーズ
レギュレーションするための増幅器(Error Amp)であ
り、固定抵抗(RS )30の両端に発生した電圧が基準
電圧(V REF)32に等しくなるように二次電池(Batt
2)27をシリーズレギュレーションする。
Reference numeral 31 is an amplifier (Error Amp) for series-regulating the secondary battery (Batt2) 27 so that the voltage generated across the fixed resistor (RS) 30 becomes equal to the reference voltage (V REF) 32. Secondary battery (Batt
2) Regulate the 27 series.

【0062】32は基準電圧(V REF)であり、固定抵
抗(RS )30で発生した電圧と比較するための基準と
なる電圧を発生する。ここで上記図3に示す第2実施例
(1)の動作を図7及び図8を参照して説明する。
Reference numeral 32 is a reference voltage (V REF) which generates a reference voltage for comparison with the voltage generated by the fixed resistance (RS) 30. Here, the operation of the second embodiment (1) shown in FIG. 3 will be described with reference to FIGS. 7 and 8.

【0063】図7は2つの二次電池(Batt1,Batt2)
26,27の各充電シーケンスを各段階毎に対比しなが
ら示す図であり、[]内の数値により、図8(b)の充
電動作タイミングに対応付けられている。図7に於い
て、「CC」は定電流充電期間、「CV」は定電圧充電
期間を示している。
FIG. 7 shows two secondary batteries (Batt1, Batt2).
It is a figure which compares and compares each charge sequence of 26 and 27 for every step, and is matched with the charge operation timing of FIG.8 (b) with the numerical value in []. In FIG. 7, “CC” indicates a constant current charging period and “CV” indicates a constant voltage charging period.

【0064】図8は2つの二次電池(Batt1,Batt2)
26,27の充電動作を本発明の第2実施例と従来技術
と対比して示す充電動作説明図であり、図(a)に従来
技術の充電動作、図(b)に本発明の第2実施例による
充電動作を示している。図8に於いて、Iccは定電圧定
電流電源21の電流制限値、IHCは負荷電流制限値、I
FCは満充電電流値である。
FIG. 8 shows two secondary batteries (Batt1, Batt2).
It is a charging operation explanatory view showing the charging operation of Nos. 26 and 27 in comparison with the second embodiment of the present invention and the related art. FIG. 7A is a charging operation according to the related art, and FIG. The charge operation by the Example is shown. In FIG. 8, Icc is the current limit value of the constant voltage / constant current power supply 21, IHC is the load current limit value, IHC
FC is the full charge current value.

【0065】図3に示す第2実施例(1)の構成に於い
ては、2つの二次電池(Batt1,Batt2)26,27の
優先充電順位が固定であり、ここでは二次電池(Batt
1)26が先に(優先して)充電される。
In the configuration of the second embodiment (1) shown in FIG. 3, the priority charging order of the two secondary batteries (Batt1, Batt2) 26, 27 is fixed.
1) 26 is charged first (priority).

【0066】制御信号(CSa)により、スイッチ(S
W1)22、及びスイッチ(SW2)23がオンされる
ことにより、先に充電する二次電池(Batt1)26の充
電が開始される。ここでの充電は、定電圧定電流電源2
1の電流制限値1ccに従う定電流充電(CC)である。
この際、負荷電流制限値(IHC)を以下のように設定し
ておくことによって、増幅器(Error Amp)31から
は、トランジスタ(TR1)25に、二次電池(Batt
2)27を充電させないような信号が出力される。
By the control signal (CSa), the switch (S
When the W1) 22 and the switch (SW2) 23 are turned on, the charging of the secondary battery (Batt1) 26 to be charged first is started. The charging here is performed by the constant voltage constant current power supply 2
Constant current charging (CC) according to the current limit value 1 cc of 1.
At this time, by setting the load current limit value (IHC) as follows, the amplifier (Error Amp) 31 is connected to the transistor (TR1) 25 and the secondary battery (Batt).
2) A signal that does not charge 27 is output.

【0067】即ち、[Icc=V REF(基準電圧32)/
RS (固定抵抗30)=IHC]と設定しておくことによ
って、上記した二次電池(Batt1)26の定電流充電時
に於いては、トランジスタ(TR1)25を介して二次
電池(Batt2)27へ充電電流が流れるようなレベルの
ゲート信号が出力されない。
That is, [Icc = V REF (reference voltage 32) /
By setting RS (fixed resistance 30) = IHC], during the constant current charging of the secondary battery (Batt1) 26 described above, the secondary battery (Batt2) 27 is passed through the transistor (TR1) 25. A gate signal with a level that allows charging current to flow is not output.

【0068】二次電池(Batt1)26の充電が進み、定
電圧モードへ移行すると、充電電流は電池の特性によっ
て小さくなる。この電流が負荷電流制限値(IHC)にな
ると、固定抵抗(RS )30での電圧降下が基準電圧
(V REF)32に等しくなるよう、即ち、二次電池(Ba
tt1)26と二次電池(Batt2)27との充電電流の和
が負荷電流制限値(IHC)になるように、増幅器(Erro
r Amp)31が、トランジスタ(TR1)25をシリー
ズレギュレーションする。
When the charging of the secondary battery (Batt1) 26 progresses and shifts to the constant voltage mode, the charging current becomes small due to the characteristics of the battery. When this current reaches the load current limit value (IHC), the voltage drop across the fixed resistor (RS) 30 becomes equal to the reference voltage (V REF) 32, that is, the secondary battery (Ba).
Amplifier (Erro) so that the sum of the charging currents of tt1) 26 and secondary battery (Batt2) 27 becomes the load current limit value (IHC).
r Amp) 31 regulates the transistor (TR1) 25 in series.

【0069】つまり、2本の二次電池(Batt1,Batt
2)26,27を並行して充電しているときは、定電圧
定電流電源21からの供給電流は、常に、IHCで、二次
電池(Batt1)26の充電電流が減った分だけ、二次電
池(Batt2)27に充電される。また、[Icc>IHC]
であるので、定電圧定電流電源21は、その電源の特性
上、定電圧モードで動作することから、二次電池(Batt
1)26の電位が下がることはない。
That is, two secondary batteries (Batt1, Batt
2) While charging 26 and 27 in parallel, the current supplied from the constant voltage / constant current power supply 21 is always IHC, and the charging current of the secondary battery (Batt1) 26 is reduced by two times. The secondary battery (Batt2) 27 is charged. Also, [Icc> IHC]
Since the constant voltage / constant current power supply 21 operates in the constant voltage mode due to the characteristics of the power supply, the secondary battery (Batt
1) The potential of 26 never drops.

【0070】電池電圧センス回路28は、二次電池(Ba
tt1)26の電圧を検出し、定電圧定電流電源21に帰
還することで、充電時の電池電圧を正確に制御できる。
二次電池(Batt1)26が満充電になると、制御信号
(CSa)により、スイッチ(SW1)22、及びスイ
ッチ(SW2)23がオフし、制御信号(CSb)によ
り、スイッチ(SW3)24がオンして、二次電池(Ba
tt2)27を定電流充電する。
The battery voltage sensing circuit 28 includes a secondary battery (Ba
By detecting the voltage of tt1) 26 and feeding it back to the constant voltage / constant current power supply 21, the battery voltage during charging can be accurately controlled.
When the secondary battery (Batt1) 26 is fully charged, the control signal (CSa) turns off the switch (SW1) 22 and the switch (SW2) 23, and the control signal (CSb) turns on the switch (SW3) 24. Then, the secondary battery (Ba
tt2) Charge 27 with constant current.

【0071】このような充電制御により、定電圧定電流
電源21の余剰電力を有効に利用して、一時的に複数の
電池パックを並行して充電させることが可能となり、図
8の(a)と(b)の対比から明らかなように、2つの
二次電池(Batt1,Batt2)26,27の総充電時間を
短縮できる。
By such charging control, it becomes possible to effectively use the surplus power of the constant voltage / constant current power source 21 to temporarily charge a plurality of battery packs in parallel, and as shown in FIG. As is clear from the comparison between (b) and (b), the total charging time of the two secondary batteries (Batt1, Batt2) 26, 27 can be shortened.

【0072】図4は本発明の第2実施例(2)の構成を
示す回路図である。図4に於いて、21は定電圧定電流
電源であり、予め設定された電源の電流制限値(Icc)
に従う出力電流制限機能をもつ。
FIG. 4 is a circuit diagram showing the configuration of the second embodiment (2) of the present invention. In FIG. 4, reference numeral 21 is a constant voltage constant current power source, and a preset current limit value (Icc) of the power source.
It has the output current limiting function according to.

【0073】22は定電圧定電流電源21の電源出力端
と二次電池(Batt1)26との間の充電電流路に介在さ
れたスイッチ(SW1)であり、図示しない電源制御部
から出力される制御信号(CSa)によりオン/オフ制
御されるもので、二次電池(Batt1)26の充電開始時
にオンとなり、満充電時にオフとなる。
Reference numeral 22 is a switch (SW1) interposed in the charging current path between the power source output terminal of the constant voltage / constant current power source 21 and the secondary battery (Batt1) 26, and is output from a power source control unit (not shown). It is on / off controlled by a control signal (CSa), and is turned on when charging of the secondary battery (Batt1) 26 is started and turned off when fully charged.

【0074】24は定電圧定電流電源21の電源出力端
と二次電池(Batt2)27との間の充電電流路に介在さ
れたスイッチ(SW3)であり、図示しない電源制御部
から出力される制御信号(CSb)によりオン/オフ制
御されるもので、二次電池(Batt1)26の満充電時に
オンとなり、二次電池(Batt2)27の満充電時にオフ
となる。
Reference numeral 24 is a switch (SW3) interposed in the charging current path between the power supply output terminal of the constant voltage / constant current power supply 21 and the secondary battery (Batt2) 27, and is output from a power supply control unit (not shown). It is on / off controlled by a control signal (CSb), and is turned on when the secondary battery (Batt1) 26 is fully charged and turned off when the secondary battery (Batt2) 27 is fully charged.

【0075】26,27はそれぞれポータブルコンピュ
ータ本体のバッテリィ電源をなす二次電池(Batt1,Ba
tt2)であり、ここではリチウム・イオン電池(セル、
又は組電池)が用いられ、充電制御回路からの制御信号
(CSa,CSa)に従い、充電時は、先に二次電池
(Batt1)26が充電され、次に二次電池(Batt2)2
7が充電される。
Reference numerals 26 and 27 denote secondary batteries (Batt1, Ba) that form the battery power source of the portable computer main body.
tt2), here is a lithium-ion battery (cell,
Alternatively, the secondary battery (Batt1) 26 is charged first, and then the secondary battery (Batt2) 2 according to the control signals (CSa, CSa) from the charge control circuit.
7 is charged.

【0076】28,29はそれぞれ電池電圧センス回路
であり、二次電池(Batt1,Batt2)26,27の電圧
を検出する。この電池電圧センス回路10,11で検出
された電池電圧は定電圧定電流電源21に帰還されて充
電時の電池電圧制御に供される。
Reference numerals 28 and 29 denote battery voltage sensing circuits, which detect the voltages of the secondary batteries (Batt1, Batt2) 26 and 27. The battery voltage detected by the battery voltage sensing circuits 10 and 11 is fed back to the constant voltage / constant current power source 21 and used for battery voltage control during charging.

【0077】30は電源の供給電流を検出するための固
定抵抗(RS )であり、両端に発生した電圧が、基準電
圧(V REF)32とともに、増幅器(Error Amp)31
に入力される。
Reference numeral 30 is a fixed resistor (RS) for detecting the supply current of the power source, and the voltage generated at both ends together with the reference voltage (V REF) 32 and the amplifier (Error Amp) 31
Entered in.

【0078】31は固定抵抗(RS )30の両端に発生
した電圧と基準電圧(V REF)32とを入力し差動増幅
する増幅器(Error Amp)であり、固定抵抗(RS )3
0の両端に発生した電圧が基準電圧(V REF)32に等
しくなるように、オン/オフ時間比制御回路35を制御
する。
Reference numeral 31 is an amplifier (Error Amp) for differentially amplifying by inputting the voltage generated across the fixed resistor (RS) 30 and the reference voltage (V REF) 32, and the fixed resistor (RS) 3
The on / off time ratio control circuit 35 is controlled so that the voltage generated at both ends of 0 becomes equal to the reference voltage (V REF) 32.

【0079】32は基準電圧(V REF)であり、固定抵
抗(RS )30で発生した電圧と比較するための基準と
なる電圧を発生する。33はDC−DCコンバータであ
り、オン/オフ時間比制御回路35の出力に従ってトラ
ンジスタ(TR1)をオン/オフ制御し、二次電池(Ba
tt2)27の充電電流をスイッチングレギュレーション
する。
Reference numeral 32 is a reference voltage (V REF) which generates a reference voltage for comparison with the voltage generated by the fixed resistance (RS) 30. Reference numeral 33 denotes a DC-DC converter, which controls the transistor (TR1) to be turned on / off according to the output of the on / off time ratio control circuit 35, and the secondary battery (Ba
tt2) Switching regulation of 27 charging current.

【0080】34は増幅器(Error Amp)31とオン/
オフ時間比制御回路35との間の信号路に介在されたス
イッチ(SW2)であり、制御信号(CSa)によりオ
ン/オフ制御されるもので、二次電池(Batt1)26の
充電開始時にオン、満充電時にオフとなる。
34 is ON / OFF with the amplifier (Error Amp) 31
A switch (SW2) interposed in a signal path with the off-time ratio control circuit 35, which is on / off controlled by a control signal (CSa), and is turned on when charging of the secondary battery (Batt1) 26 is started. , Turns off when fully charged.

【0081】35はオン/オフ時間比制御回路であり、
増幅器(Error Amp)31の出力に従ってDC−DCコ
ンバータ33のオン/オフ(ON/OFF)時間比を制
御する。
Reference numeral 35 is an on / off time ratio control circuit,
The on / off time ratio of the DC-DC converter 33 is controlled according to the output of the amplifier (Error Amp) 31.

【0082】ここで図4に示す第2実施例(2)の動作
を説明する。図4に示す第2実施例(2)の構成に於い
ても、上記した図3に示す第2実施例(1)の場合と同
様に、2つの二次電池(Batt1,Batt2)26,27の
優先充電順位が固定であり、ここでは二次電池(Batt
1)26が先に(優先して)充電される。
The operation of the second embodiment (2) shown in FIG. 4 will be described here. Also in the configuration of the second embodiment (2) shown in FIG. 4, two secondary batteries (Batt1, Batt2) 26, 27 are provided as in the case of the second embodiment (1) shown in FIG. 3 described above. Has a fixed priority charging order, and here the secondary battery (Batt
1) 26 is charged first (priority).

【0083】制御信号(CSa)により、スイッチ(S
W1)22、及びスイッチ(SW2)34がオンされる
ことにより、先に充電する二次電池(Batt1)26の充
電が開始される。ここでの充電は、定電圧定電流電源2
1の電流制限値1ccに従う定電流充電(CC)である。
この際、負荷電流制限値(IHC)を[Icc=V REF(基
準電圧32)/RS (固定抵抗30)=IHC]として設
定しておくことにより、増幅器(Error Amp)31から
は、オン/オフ時間比制御回路35に、二次電池(Batt
2)27を充電させないような信号が出力される。即
ち、上記した二次電池(Batt1)26の定電流充電時に
於いては、オン/オフ時間比制御回路35より、DC−
DCコンバータ33のトランジスタ(TR1)をスイッ
チング動作する信号が出力されない。
By the control signal (CSa), the switch (S
When the W1) 22 and the switch (SW2) 34 are turned on, the charging of the secondary battery (Batt1) 26 to be charged first is started. The charging here is performed by the constant voltage constant current power supply 2
Constant current charging (CC) according to the current limit value 1 cc of 1.
At this time, by setting the load current limit value (IHC) as [Icc = V REF (reference voltage 32) / RS (fixed resistance 30) = IHC], the amplifier (Error Amp) 31 turns on / off. The off-time ratio control circuit 35 includes a secondary battery (Batt
2) A signal that does not charge 27 is output. That is, during the constant current charging of the secondary battery (Batt1) 26, the on / off time ratio control circuit 35 controls the DC-
A signal for switching the transistor (TR1) of the DC converter 33 is not output.

【0084】二次電池(Batt1)26の充電が進み、定
電圧モードへ移行すると、充電電流は電池の特性によっ
て小さくなる。この電流が負荷電流制限値(IHC)にな
ると、固定抵抗(RS )30での電圧降下が基準電圧
(V REF)32に等しくなるよう、即ち、定電圧定電流
電源21からの供給電流が負荷電流制限値(IHC)にな
るように、増幅器(Error Amp)31からオン/オフ時
間比制御回路35へ制御信号が出力される。
When the charging of the secondary battery (Batt1) 26 progresses and shifts to the constant voltage mode, the charging current becomes small due to the characteristics of the battery. When this current reaches the load current limit value (IHC), the voltage drop at the fixed resistor (RS) 30 becomes equal to the reference voltage (V REF) 32, that is, the current supplied from the constant voltage constant current power supply 21 becomes the load. A control signal is output from the amplifier (Error Amp) 31 to the on / off time ratio control circuit 35 so that the current limit value (IHC) is reached.

【0085】この増幅器(Error Amp)31から出力さ
れる制御信号に従い、オン/オフ時間比制御回路35が
DC−DCコンバータ33のスイッチングレギュレーシ
ョンを行なう。
According to the control signal output from the amplifier (Error Amp) 31, the on / off time ratio control circuit 35 performs the switching regulation of the DC-DC converter 33.

【0086】つまり、2本の電池(二次電池(Batt1)
26、及び二次電池(Batt2)27)を並行して充電し
ているときは、定電圧定電流電源21からの供給電流
は、常に、IHCで、二次電池(Batt1)26の充電電流
が減った分だけ、二次電池(Batt2)27に充電され
る。また、[Icc>IHC]であるので、定電圧定電流電
源21は、その電源の特性上、定電圧モードで動作する
ことから、二次電池(Batt1)26の電位が下がること
はない。
That is, two batteries (secondary battery (Batt1))
26 and the secondary battery (Batt2) 27) are charged in parallel, the current supplied from the constant voltage constant current power source 21 is always IHC, and the charging current of the secondary battery (Batt1) 26 is The secondary battery (Batt2) 27 is charged by the reduced amount. Since [Icc> IHC], the constant-voltage constant-current power supply 21 operates in the constant-voltage mode due to the characteristics of the power supply, so that the potential of the secondary battery (Batt1) 26 does not decrease.

【0087】電池電圧センス回路28は、二次電池(Ba
tt1)26の電圧を検出し、定電圧定電流電源21に帰
還することで、充電時の電池電圧を正確に制御できる。
二次電池(Batt1)26が満充電になると、制御信号
(CSa)により、スイッチ(SW1)22、及びスイ
ッチ(SW2)34がオフし、制御信号(CSb)によ
り、スイッチ(SW3)24がオンして、二次電池(Ba
tt2)27を定電流充電する。
The battery voltage sense circuit 28 includes a secondary battery (Ba
By detecting the voltage of tt1) 26 and feeding it back to the constant voltage / constant current power supply 21, the battery voltage during charging can be accurately controlled.
When the secondary battery (Batt1) 26 is fully charged, the control signal (CSa) turns off the switch (SW1) 22 and the switch (SW2) 34, and the control signal (CSb) turns on the switch (SW3) 24. Then, the secondary battery (Ba
tt2) Charge 27 with constant current.

【0088】このような充電制御により、定電圧定電流
電源21の余剰電力を有効に利用して、一時的に複数の
電池パックを並行して充電させることが可能となり、図
8の(a)と(b)の対比から明らかなように、2つの
二次電池(Batt1,Batt2)26,27の総充電時間を
短縮できる。
By such charging control, it becomes possible to effectively use the surplus power of the constant voltage / constant current power supply 21 to temporarily charge a plurality of battery packs in parallel, and as shown in FIG. As is clear from the comparison between (b) and (b), the total charging time of the two secondary batteries (Batt1, Batt2) 26, 27 can be shortened.

【0089】図5は本発明の第2実施例(3)の構成を
示す回路図である。図5に於いて、21は定電圧定電流
電源であり、予め設定された電源の電流制限値(Icc)
に従う出力電流制限機能をもつ。
FIG. 5 is a circuit diagram showing the configuration of the second embodiment (3) of the present invention. In FIG. 5, reference numeral 21 denotes a constant voltage constant current power source, and a preset current limit value (Icc) of the power source.
It has the output current limiting function according to.

【0090】22は定電圧定電流電源21の電源出力端
と充電優先切換回路36aとの間の充電電流路に介在さ
れたスイッチ(SW1)であり、図示しない電源制御部
から出力される制御信号(CSa)によりオン/オフ制
御されるもので、先に充電する二次電池(二次電池(Ba
tt1)26、又は二次電池(Batt2)27)の充電開始
時にオンとなり、満充電時にオフとなる。
Reference numeral 22 denotes a switch (SW1) interposed in the charging current path between the power supply output terminal of the constant voltage / constant current power supply 21 and the charging priority switching circuit 36a, which is a control signal output from a power supply control unit (not shown). (CSa) is on / off controlled, and the secondary battery (secondary battery (Ba
tt1) 26 or the secondary battery (Batt 2) 27) turns on when charging starts and turns off when fully charged.

【0091】23は二次電池(Batt2)27のシリーズ
レギュレーション制御信号路に介在されたスイッチ(S
W2)であり、電源制御部から出力される制御信号(C
Sa)によりオン/オフ制御されるもので、二次電池
(Batt1)26の充電開始時にオン、満充電時にオフと
なる。
Reference numeral 23 denotes a switch (S) interposed in the series regulation control signal path of the secondary battery (Batt2) 27.
W2), which is a control signal (C
It is on / off controlled by Sa) and is turned on when the secondary battery (Batt1) 26 starts to be charged and turned off when fully charged.

【0092】24は定電圧定電流電源21の電源出力端
と充電優先切換回路36aとの間の充電電流路に介在さ
れたスイッチ(SW3)であり、図示しない電源制御部
から出力される制御信号(CSb)によりオン/オフ制
御されるもので、先に充電した二次電池(二次電池(Ba
tt1)26、又は二次電池(Batt2)27)の満充電時
にオンとなり、後に充電した二次電池の満充電時にオフ
となる。
Reference numeral 24 denotes a switch (SW3) interposed in the charging current path between the power source output terminal of the constant voltage / constant current power source 21 and the charging priority switching circuit 36a, which is a control signal output from a power source control unit (not shown). On / off control is performed by (CSb), and the secondary battery (secondary battery (Ba
tt1) 26 or the secondary battery (Batt2) 27) turns on when fully charged, and turns off when the secondary battery charged later is fully charged.

【0093】25は充電電流をシリーズレギュレーショ
ンするトランジスタ(TR1)であり、スイッチ(SW
2)23がオン状態にあるとき、増幅器(Error Amp)
31の出力に従って、二次電池(Batt1)26、又は二
次電池(Batt2)27の充電電流をシリーズレギュレー
ションする。
Numeral 25 is a transistor (TR1) for series regulation of the charging current, which is a switch (SW
2) Amplifier (Error Amp) when 23 is on
According to the output of 31, the charging current of the secondary battery (Batt1) 26 or the secondary battery (Batt2) 27 is series-regulated.

【0094】26,27はそれぞれポータブルコンピュ
ータ本体のバッテリィ電源をなす二次電池(Batt1,Ba
tt2)であり、ここではリチウム・イオン電池(セル、
又は組電池)が用いられ、充電優先切換回路36aの優
先順位に従って充電される。
Reference numerals 26 and 27 denote secondary batteries (Batt1, Ba) that form the battery power source of the portable computer main body.
tt2), here is a lithium-ion battery (cell,
Or a battery pack) is used, and the battery is charged according to the priority order of the charge priority switching circuit 36a.

【0095】28,29はそれぞれ電池電圧センス回路
であり、それぞれ個別に二次電池(Batt1,Batt2)2
6,27の電圧を検出する。この電池電圧センス回路1
0,11で検出された電池電圧は定電圧定電流電源21
に帰還されて充電時の電池電圧制御に供される。
Numerals 28 and 29 are battery voltage sensing circuits, respectively, and the secondary batteries (Batt1, Batt2) 2 are individually provided.
The voltages of 6 and 27 are detected. This battery voltage sense circuit 1
The battery voltage detected at 0 and 11 is the constant voltage constant current power supply 21.
It is fed back to and used for battery voltage control during charging.

【0096】30は電源の供給電流を検出するための固
定抵抗(RS )であり、両端に発生した電圧が、基準電
圧(V REF)32とともに、増幅器(Error Amp)31
に入力される。
Reference numeral 30 is a fixed resistor (RS) for detecting the supply current of the power supply, and the voltage generated at both ends together with the reference voltage (V REF) 32 and the amplifier (Error Amp) 31.
Entered in.

【0097】31は二次電池(Batt2)27をシリーズ
レギュレーションするための制御用増幅器(Error Am
p)であり、固定抵抗(RS )30の両端に発生した電
圧が基準電圧(V REF)32に等しくなるように二次電
池(Batt1)26、又は、二次電池(Batt2)27をシ
リーズレギュレーションする。
Reference numeral 31 denotes a control amplifier (Error Am for series regulation of the secondary battery (Batt2) 27.
p) and the series regulation of the secondary battery (Batt1) 26 or the secondary battery (Batt2) 27 so that the voltage generated across the fixed resistance (RS) 30 becomes equal to the reference voltage (V REF) 32. To do.

【0098】32は基準電圧(V REF)であり、固定抵
抗(RS )30で発生した電圧と比較するための基準と
なる電圧を発生する。36aは2回路2接点のスイッチ
回路により構成される充電優先切換回路であり、二次電
池(Batt1)26を優先的に充電する場合は、A側に、
又、二次電池(Batt2)27を優先的に充電する場合
は、B側に、それぞれ切り換えられる。
Reference numeral 32 is a reference voltage (V REF) which generates a reference voltage for comparison with the voltage generated by the fixed resistor (RS) 30. Reference numeral 36a denotes a charge priority switching circuit configured by a switch circuit having two circuits and two contacts, and when the secondary battery (Batt1) 26 is charged with priority, the charge is switched to the A side.
When the secondary battery (Batt2) 27 is preferentially charged, it is switched to the B side.

【0099】ここで図5に示す第2実施例(3)の動作
を説明する。図5に示す第2実施例(3)の構成に於い
ては、2つの二次電池(Batt1,Batt2)26,27の
優先充電順位が固定化されず、充電優先切換回路36a
により任意に充電順位を設定できる。
The operation of the second embodiment (3) shown in FIG. 5 will be described here. In the configuration of the second embodiment (3) shown in FIG. 5, the priority charging order of the two secondary batteries (Batt1, Batt2) 26, 27 is not fixed, and the charging priority switching circuit 36a.
The charging order can be set arbitrarily by.

【0100】即ち、ここでは充電優先切換回路36aを
操作して、優先的に充電させる(先に充電させる)電池
(二次電池(Batt1)26、又は二次電池(Batt2)2
7)を決める。
That is, in this case, the battery (secondary battery (Batt1) 26 or secondary battery (Batt2) 2) 2 which is preferentially charged (first charged) is operated by operating the charging priority switching circuit 36a.
Decide 7).

【0101】例えば二次電池(Batt1)26を優先的に
(先行して)充電する場合は、充電優先切換回路36a
をA側に切り換える。その後、制御信号(CSa)によ
り、スイッチ(SW1)22、及びスイッチ(SW2)
34がオンされることにより、定電圧定電流電源21の
出力電源がスイッチ(SW1)22、及び充電優先切換
回路36aを介して二次電池(Batt1)26に供給され
て、充電優先切換回路36aで設定された優先順位に従
い、二次電池(Batt1)26の充電が開始される。ここ
での充電は、定電圧定電流電源21の電流制限値1ccに
従う定電流充電(CC)である。この際、負荷電流制限
値(IHC)を以下のように設定しておくことによって、
増幅器(Error Amp)31からは、トランジスタ(TR
1)25に、二次電池(Batt2)27を充電させないよ
うな信号が出力される。即ち、[Icc=V REF(基準電
圧32)/RS (固定抵抗30)=IHC]と設定してお
くことによって、上記した二次電池(Batt1)26の定
電流充電時に於いては、トランジスタ(TR1)25を
介して二次電池(Batt2)27へ充電電流が流れるよう
なレベルのゲート信号が出力されない。
For example, when the secondary battery (Batt1) 26 is charged preferentially (prior to), the charging priority switching circuit 36a
To A side. After that, by the control signal (CSa), the switch (SW1) 22 and the switch (SW2)
When 34 is turned on, the output power of the constant voltage / constant current power supply 21 is supplied to the secondary battery (Batt1) 26 via the switch (SW1) 22 and the charging priority switching circuit 36a, and the charging priority switching circuit 36a. Charging of the secondary battery (Batt1) 26 is started in accordance with the priority order set in. The charging here is constant current charging (CC) according to the current limit value 1 cc of the constant voltage constant current power supply 21. At this time, by setting the load current limit value (IHC) as follows,
From the amplifier (Error Amp) 31, the transistor (TR
1) A signal that does not charge the secondary battery (Batt 2) 27 is output to 25. That is, by setting [Icc = V REF (reference voltage 32) / RS (fixed resistance 30) = IHC], the above-mentioned secondary battery (Batt1) 26 is charged with a transistor ( A gate signal having a level such that a charging current flows through the TR1) 25 to the secondary battery (Batt 2) 27 is not output.

【0102】二次電池(Batt1)26の充電が進み、定
電圧モードへ移行すると、充電電流は電池の特性によっ
て小さくなる。この電流が負荷電流制限値(IHC)にな
ると、固定抵抗(RS )30での電圧降下が基準電圧
(V REF)32に等しくなるよう、即ち、二次電池(Ba
tt1)26と二次電池(Batt2)27との充電電流の和
が負荷電流制限値(IHC)になるように、増幅器(Erro
r Amp)31が、トランジスタ(TR1)25をシリー
ズレギュレーションする。
When the charging of the secondary battery (Batt1) 26 progresses and shifts to the constant voltage mode, the charging current becomes smaller due to the characteristics of the battery. When this current reaches the load current limit value (IHC), the voltage drop across the fixed resistor (RS) 30 becomes equal to the reference voltage (V REF) 32, that is, the secondary battery (Ba).
Amplifier (Erro) so that the sum of the charging currents of tt1) 26 and secondary battery (Batt2) 27 becomes the load current limit value (IHC).
r Amp) 31 regulates the transistor (TR1) 25 in series.

【0103】つまり、2本の二次電池(Batt1,Batt
2)26,27を並行して充電しているときは、定電圧
定電流電源21からの供給電流は、常に、IHCで、二次
電池(Batt1)26の充電電流が減った分だけ、二次電
池(Batt2)27に充電される。また、[Icc>IHC]
であるので、定電圧定電流電源21は、その電源の特性
上、定電圧モードで動作することから、二次電池(Batt
1)26の電位が下がることはない。
In other words, two secondary batteries (Batt1, Batt
2) While charging 26 and 27 in parallel, the current supplied from the constant voltage / constant current power supply 21 is always IHC, and the charging current of the secondary battery (Batt1) 26 is reduced by two times. The secondary battery (Batt2) 27 is charged. Also, [Icc> IHC]
Since the constant voltage / constant current power supply 21 operates in the constant voltage mode due to the characteristics of the power supply, the secondary battery (Batt
1) The potential of 26 never drops.

【0104】この際、電池電圧センス回路28は二次電
池(Batt1)26の電圧を常時検出し、定電圧定電流電
源21に帰還することで、充電時の電池電圧が正確に制
御される。
At this time, the battery voltage sensing circuit 28 constantly detects the voltage of the secondary battery (Batt 1) 26 and feeds it back to the constant voltage / constant current power supply 21, whereby the battery voltage during charging is accurately controlled.

【0105】二次電池(Batt1)26が満充電になる
と、制御信号(CSa)により、スイッチ(SW1)2
2、及びスイッチ(SW2)23がオフし、制御信号
(CSb)により、スイッチ(SW3)24がオンし
て、二次電池(Batt2)27を定電流充電する。
When the secondary battery (Batt1) 26 is fully charged, the control signal (CSa) causes the switch (SW1) 2
2 and the switch (SW2) 23 are turned off, and the control signal (CSb) turns on the switch (SW3) 24 to charge the secondary battery (Batt2) 27 with a constant current.

【0106】上記した動作は2つの二次電池(Batt1,
Batt2)26,27のうち、二次電池(Batt1)26を
優先して先に充電するよう、充電優先切換回路36aを
A側に切換設定した場合であるが、充電優先切換回路3
6aをB側に切換設定した場合は、充電対象が切り替わ
り、上記同様の動作で二次電池(Batt2)27が優先し
て先に充電される。
The above operation is performed by using two secondary batteries (Batt1,
Of the Batt2) 26 and 27, the charging priority switching circuit 36a is switched to the A side so that the secondary battery (Batt1) 26 is preferentially charged first.
When 6a is switched to the B side, the charging target is switched, and the secondary battery (Batt2) 27 is preferentially charged first by the same operation as above.

【0107】このような充電制御により、定電圧定電流
電源21の余剰電力を有効に利用して、一時的に複数の
電池パックを並行して、かつ任意の順で充電させること
が可能となり、図8の(a)と(b)の対比から明らか
なように、2つの二次電池(Batt1,Batt2)26,2
7の総充電時間を短縮できる。
By such charge control, it becomes possible to effectively use the surplus power of the constant voltage / constant current power supply 21 to temporarily charge a plurality of battery packs in parallel and in any order. As is clear from the comparison between (a) and (b) of FIG. 8, the two secondary batteries (Batt1, Batt2) 26, 2
The total charging time of 7 can be shortened.

【0108】図6は本発明の第2実施例(4)の構成を
示す回路図である。図6に於いて、21は定電圧定電流
電源であり、予め設定された電源の電流制限値(Icc)
に従う出力電流制限機能をもつ。
FIG. 6 is a circuit diagram showing the configuration of the second embodiment (4) of the present invention. In FIG. 6, reference numeral 21 is a constant voltage constant current power source, and a preset current limit value (Icc) of the power source.
It has the output current limiting function according to.

【0109】22は定電圧定電流電源21の電源出力端
と充電優先切換回路36bとの間の充電電流路に介在さ
れたスイッチ(SW1)であり、電源制御部から出力さ
れる制御信号(CSa)によりオン/オフ制御されるも
ので、先に充電する二次電池(二次電池(Batt1)2
6、又は二次電池(Batt2)27)の充電開始時にオン
となり、満充電時にオフとなる。
Reference numeral 22 denotes a switch (SW1) interposed in the charging current path between the power source output terminal of the constant voltage / constant current power source 21 and the charging priority switching circuit 36b, which is a control signal (CSa) output from the power source controller. ) Is controlled on / off by a secondary battery (secondary battery (Batt1) 2 that is charged first).
6 or the secondary battery (Batt2) 27) is turned on at the start of charging and turned off when fully charged.

【0110】24は定電圧定電流電源21の電源出力端
と充電優先切換回路36bとの間の充電電流路に介在さ
れたスイッチ(SW3)であり、電源制御部から出力さ
れる制御信号(CSb)によりオン/オフ制御されるも
ので、先に充電した二次電池(二次電池(Batt1)2
6、又は二次電池(Batt2)27)の満充電時にオンと
なり、後に充電した二次電池の満充電時にオフとなる。
Reference numeral 24 denotes a switch (SW3) interposed in the charging current path between the power source output terminal of the constant voltage / constant current power source 21 and the charging priority switching circuit 36b, which is a control signal (CSb) output from the power source controller. ) Is turned on / off by the secondary battery (secondary battery (Batt1) 2
6, or when the secondary battery (Batt2) 27) is fully charged, it is turned on, and when the secondary battery charged later is fully charged, it is turned off.

【0111】26,27はバッテリィ駆動が可能なポー
タブルコンピュータ本体のバッテリィ動作時に於ける主
電源供給源となる二次電池(Batt1,Batt2)であり、
ここではリチウム・イオン電池(セル、又は組電池)が
用いられ、充電優先切換回路36bの優先順位に従って
充電される。
Reference numerals 26 and 27 are secondary batteries (Batt1, Batt2) which are main power supply sources during battery operation of the portable computer main body capable of battery drive.
Here, a lithium ion battery (cell or assembled battery) is used, and is charged according to the priority order of the charge priority switching circuit 36b.

【0112】28,29はそれぞれ電池電圧センス回路
であり、二次電池(Batt1,Batt2)26,27の電圧
を検出する。この電池電圧センス回路28,29で検出
された電池電圧は定電圧定電流電源21に帰還されて充
電時の電池電圧制御に供される。
28 and 29 are battery voltage sensing circuits, respectively, which detect the voltages of the secondary batteries (Batt1, Batt2) 26 and 27. The battery voltage detected by the battery voltage sensing circuits 28 and 29 is fed back to the constant voltage / constant current power source 21 and used for battery voltage control during charging.

【0113】30は電源の供給電流を検出するための固
定抵抗(RS )であり、両端に発生した電圧が、基準電
圧(V REF)32とともに、増幅器(Error Amp)31
に入力される。
Reference numeral 30 is a fixed resistor (RS) for detecting the supply current of the power source, and the voltage generated at both ends together with the reference voltage (V REF) 32 and the amplifier (Error Amp) 31
Entered in.

【0114】31は固定抵抗(RS )30の両端に発生
した電圧と基準電圧(V REF)32とを入力し差動増幅
する増幅器(Error Amp)であり、固定抵抗(RS )3
0の両端に発生した電圧が基準電圧(V REF)32に等
しくなるように、オン/オフ時間比制御回路35を制御
する。
Reference numeral 31 is an amplifier (Error Amp) for inputting the voltage generated across the fixed resistor (RS) 30 and the reference voltage (V REF) 32 and differentially amplifying it, and the fixed resistor (RS) 3
The on / off time ratio control circuit 35 is controlled so that the voltage generated at both ends of 0 becomes equal to the reference voltage (V REF) 32.

【0115】32は基準電圧(V REF)であり、固定抵
抗(RS )30で発生した電圧と比較するための基準と
なる電圧を発生する。33はDC−DCコンバータであ
り、オン/オフ時間比制御回路35の出力に従ってトラ
ンジスタ(TR1)をオン/オフ制御し、二次電池(Ba
tt1)26、又は、二次電池(Batt2)27の充電電流
をスイッチングレギュレーションする。
Reference numeral 32 is a reference voltage (V REF) which generates a reference voltage for comparison with the voltage generated by the fixed resistor (RS) 30. Reference numeral 33 denotes a DC-DC converter, which controls the transistor (TR1) to be turned on / off according to the output of the on / off time ratio control circuit 35, and the secondary battery (Ba
The charging current of the tt1) 26 or the secondary battery (Batt2) 27 is switching-regulated.

【0116】34は増幅器(Error Amp)31とオン/
オフ時間比制御回路35との間の信号路に介在されたス
イッチ(SW2)であり、制御信号(CSa)によりオ
ン/オフ制御されるもので、先に充電する二次電池(二
次電池(Batt1)26、又は二次電池(Batt2)27)
の充電開始時にオンとなり、満充電時にオフとなる。
34 is on / off with the amplifier (Error Amp) 31
A switch (SW2) interposed in a signal path with the off-time ratio control circuit 35, which is on / off controlled by a control signal (CSa), and is a secondary battery (secondary battery (secondary battery (secondary battery (secondary battery (secondary battery Batt1) 26 or secondary battery (Batt2) 27)
Turns on when charging starts and turns off when fully charged.

【0117】35はオン/オフ時間比制御回路35であ
り、増幅器(Error Amp)31の出力に従ってDC−D
Cコンバータ33のオン/オフ(ON/OFF)時間比
を制御する。
Reference numeral 35 denotes an on / off time ratio control circuit 35, which operates according to the output of the amplifier (Error Amp) 31 to generate a DC-D signal.
The on / off time ratio of the C converter 33 is controlled.

【0118】36bは2回路2接点のスイッチ回路によ
り構成される充電優先切換回路であり、二次電池(Batt
1)26を優先的に充電する場合は、A側に、又、二次
電池(Batt2)27を優先的に充電する場合は、B側
に、それぞれ切り換えられる。
Reference numeral 36b is a charge priority switching circuit composed of a switch circuit having two circuits and two contacts.
1) 26 is preferentially charged, and the secondary battery (Batt2) 27 is preferentially charged, and B is switched.

【0119】ここで図6に示す第2実施例(4)の動作
を説明する。図6に示す第2実施例(4)の構成に於い
ても、図5に示す第2実施例(3)の場合と同様に、2
つの二次電池(Batt1,Batt2)26,27の優先充電
順位が固定化されず、充電優先切換回路36bにより任
意に充電順位を設定できる。
The operation of the second embodiment (4) shown in FIG. 6 will be described here. Also in the configuration of the second embodiment (4) shown in FIG. 6, as in the case of the second embodiment (3) shown in FIG.
The priority charging order of the two secondary batteries (Batt1, Batt2) 26 and 27 is not fixed, and the charging priority switching circuit 36b can arbitrarily set the charging priority.

【0120】即ち、ここでは充電優先切換回路36bを
操作して、優先的に充電させる(先に充電させる)電池
(二次電池(Batt1)26、又は二次電池(Batt2)2
7)を決める。
That is, in this case, the battery (secondary battery (Batt1) 26 or secondary battery (Batt2) 2) 2 which is preferentially charged (first charged) is operated by operating the charging priority switching circuit 36b.
Decide 7).

【0121】例えば二次電池(Batt1)26を優先的に
(先行して)充電する場合は、充電優先切換回路36b
をA側に切り換える。その後、制御信号(CSa)によ
り、スイッチ(SW1)22、及びスイッチ(SW2)
34がオンされることにより、定電圧定電流電源21の
出力電源がスイッチ(SW1)22、及び充電優先切換
回路36bを介して二次電池(Batt1)26に供給され
て、充電優先切換回路36bで設定された優先順位に従
い、二次電池(Batt1)26の充電が開始される。ここ
での充電は、定電圧定電流電源21の電流制限値1ccに
従う定電流充電(CC)である。この際、負荷電流制限
値(IHC)を[Icc=V REF(基準電圧32)/RS
(固定抵抗30)=IHC]と設定しておくことによっ
て、増幅器(Error Amp)31からは、オン/オフ時間
比制御回路35に、二次電池(Batt2)27を充電させ
ないような信号が出力される。即ち、上記した二次電池
(Batt1)26の定電流充電時に於いては、オン/オフ
時間比制御回路35より、DC−DCコンバータ33の
トランジスタ(TR1)をスイッチング動作する信号が
出力されない。
For example, when the secondary battery (Batt1) 26 is charged preferentially (prior to), the charging priority switching circuit 36b is used.
To A side. After that, by the control signal (CSa), the switch (SW1) 22 and the switch (SW2)
When 34 is turned on, the output power of the constant voltage / constant current power supply 21 is supplied to the secondary battery (Batt1) 26 via the switch (SW1) 22 and the charging priority switching circuit 36b, and the charging priority switching circuit 36b. Charging of the secondary battery (Batt1) 26 is started in accordance with the priority order set in. The charging here is constant current charging (CC) according to the current limit value 1 cc of the constant voltage constant current power supply 21. At this time, the load current limit value (IHC) is changed to [Icc = V REF (reference voltage 32) / RS
By setting (fixed resistance 30) = IHC], the amplifier (Error Amp) 31 outputs a signal to the on / off time ratio control circuit 35 so as not to charge the secondary battery (Batt2) 27. To be done. That is, during the constant current charging of the secondary battery (Batt1) 26, the ON / OFF time ratio control circuit 35 does not output a signal for switching the transistor (TR1) of the DC-DC converter 33.

【0122】二次電池(Batt1)26の充電が進み、定
電圧モードへ移行すると、充電電流は電池の特性によっ
て小さくなる。この電流が負荷電流制限値(IHC)にな
ると、固定抵抗(RS )30での電圧降下が基準電圧
(V REF)32に等しくなるよう、即ち、定電圧定電流
電源21からの供給電流が負荷電流制限値(IHC)にな
るように、増幅器(Error Amp)31からオン/オフ時
間比制御回路35へ制御信号が出力される。
When the charging of the secondary battery (Batt1) 26 progresses and shifts to the constant voltage mode, the charging current becomes small due to the characteristics of the battery. When this current reaches the load current limit value (IHC), the voltage drop at the fixed resistor (RS) 30 becomes equal to the reference voltage (V REF) 32, that is, the current supplied from the constant voltage constant current power supply 21 becomes the load. A control signal is output from the amplifier (Error Amp) 31 to the on / off time ratio control circuit 35 so that the current limit value (IHC) is reached.

【0123】この増幅器(Error Amp)31から出力さ
れる制御信号に従い、オン/オフ時間比制御回路35が
DC−DCコンバータ33のスイッチングレギュレーシ
ョンを行なう。
According to the control signal output from the amplifier (Error Amp) 31, the on / off time ratio control circuit 35 performs the switching regulation of the DC-DC converter 33.

【0124】つまり、2本の電池(二次電池(Batt1)
26、及び二次電池(Batt2)27)を並行して充電し
ているときは、定電圧定電流電源21からの供給電流
は、常に、IHCで、二次電池(Batt1)26の充電電流
が減った分だけ、二次電池(Batt2)27に充電され
る。また、[Icc>IHC]であるので、定電圧定電流電
源21は、その電源の特性上、定電圧モードで動作する
ことから、二次電池(Batt1)26の電位が下がること
はない。
That is, two batteries (secondary battery (Batt1))
26 and the secondary battery (Batt2) 27) are charged in parallel, the current supplied from the constant voltage constant current power source 21 is always IHC, and the charging current of the secondary battery (Batt1) 26 is The secondary battery (Batt2) 27 is charged by the reduced amount. Since [Icc> IHC], the constant-voltage constant-current power supply 21 operates in the constant-voltage mode due to the characteristics of the power supply, so that the potential of the secondary battery (Batt1) 26 does not decrease.

【0125】電池電圧センス回路28は、二次電池(Ba
tt1)26の電圧を検出し、定電圧定電流電源21に帰
還することで、充電時の電池電圧を正確に制御できる。
二次電池(Batt1)26が満充電になると、制御信号
(CSa)により、スイッチ(SW1)22、及びスイ
ッチ(SW2)34がオフし、制御信号(CSb)によ
り、スイッチ(SW3)24がオンして、二次電池(Ba
tt2)27を定電流充電する。
The battery voltage sense circuit 28 includes a secondary battery (Ba
By detecting the voltage of tt1) 26 and feeding it back to the constant voltage / constant current power supply 21, the battery voltage during charging can be accurately controlled.
When the secondary battery (Batt1) 26 is fully charged, the control signal (CSa) turns off the switch (SW1) 22 and the switch (SW2) 34, and the control signal (CSb) turns on the switch (SW3) 24. Then, the secondary battery (Ba
tt2) Charge 27 with constant current.

【0126】又、電池(Batt1)27を優先して先に充
電する際は、充電優先切換回路36bをB側に切換設定
することにより、上記同様の動作で二次電池(Batt2)
27が優先して先に充電される。
When the battery (Batt1) 27 is preferentially charged first, the charging priority switching circuit 36b is switched to the B side so that the secondary battery (Batt2) operates in the same manner as above.
27 is preferentially charged first.

【0127】このような充電制御により、定電圧定電流
電源21の余剰電力を有効に利用して、一時的に複数の
電池パックを並行して、かつ任意の順で充電させること
が可能となり、図8の(a)と(b)の対比から明らか
なように、2つの二次電池(Batt1,Batt2)26,2
7の総充電時間を短縮できる。
By such charge control, it becomes possible to effectively use the surplus power of the constant voltage / constant current power supply 21 to temporarily charge a plurality of battery packs in parallel and in any order. As is clear from the comparison between (a) and (b) of FIG. 8, the two secondary batteries (Batt1, Batt2) 26, 2
The total charging time of 7 can be shortened.

【0128】上記した第2実施例は、ポータブルコンピ
ュータ本体のバッテリィ電源をなすリチウム・イオン二
次電池を例に示したが、これに限らず、バッテリィ電源
を備えた、例えばワードプロセッサ等、他の電子機器に
於いても、又、リチウム・イオン以外の定電圧充電する
二次電池を用いた機器に於いても、上記した充電制御を
実現できる。
The above-described second embodiment has been described by taking the lithium-ion secondary battery as a battery power source of the portable computer main body as an example, but the present invention is not limited to this, and other electronic devices such as a word processor equipped with a battery power source are provided. The above-mentioned charge control can be realized in equipment as well as in equipment using a secondary battery for constant voltage charging other than lithium ion.

【0129】次に、図9(a),(b)を参照して本発
明の第3実施例を説明する。この第3実施例は、二次電
池45を充電する電源41と、電池電圧を測定する電池
電圧判定部44と、電池電圧が目標値(連続定電流充電
から断続定電流充電へ切り換えるための電池電圧目標値
46、及び充電オフ時の電池電圧目標値48)に達した
か否かを判定する電池電圧判定部43と、この電池電圧
判定部43の判定内容に従い充電をオン/オフ制御する
充電オン/オフ制御部42とを備えて、電池電圧が目標
値46より低い場合は連続で定電流充電し、電池電圧が
目標値46より高くなった場合は、一定周期で定電流充
電をオン/オフ制御して、その充電オフ時の電池電圧が
目標値48より高くなった時、満充電と判定することに
より、定電圧充電の必要がある二次電池の充電を行なう
充電装置に於いて、二次電池を急速充電することを特徴
とする。
Next, a third embodiment of the present invention will be described with reference to FIGS. 9 (a) and 9 (b). In the third embodiment, a power source 41 that charges a secondary battery 45, a battery voltage determination unit 44 that measures a battery voltage, and a battery voltage that is a target value (a battery for switching from continuous constant current charging to intermittent constant current charging). A battery voltage determination unit 43 that determines whether or not the target voltage value 46 and the target battery voltage value 48 at the time of charging off are reached, and charging that controls charging on / off according to the determination content of the battery voltage determination unit 43. An ON / OFF control unit 42 is provided, and constant current charging is continuously performed when the battery voltage is lower than the target value 46, and constant current charging is turned ON / OFF at a constant cycle when the battery voltage is higher than the target value 46. In a charging device for performing charging of a secondary battery that needs constant voltage charging by performing off control and determining that the battery voltage at the time of charging off is higher than a target value 48, it is determined that the battery is fully charged. Recharge the secondary battery quickly. The features.

【0130】図9(a),(b)は本発明の第3実施例
の構成を示す回路図である。図9に於いて、41は二次
電池45の充電を行なう定電圧定電流電源であり、電池
電圧判定部43からの信号に従い、充電オン・オフ制御
部42を介して、二次電池45を定電流充電、又は定電
圧充電する。即ち、電池電圧判定部43からの信号に従
い、図9(b)に示すB点までは定電流充電を行ない、
それ以降は定電圧充電を行なう。この際、定電流充電時
に於いては充電時の電池電圧が目標値46を越えても目
標値46より高い電圧を発生して定電流充電を行なう。
FIGS. 9A and 9B are circuit diagrams showing the configuration of the third embodiment of the present invention. In FIG. 9, reference numeral 41 denotes a constant voltage / constant current power supply for charging the secondary battery 45, which is operated in accordance with a signal from the battery voltage determination unit 43 to charge the secondary battery 45 via the charging on / off control unit 42. Charge with constant current or constant voltage. That is, according to the signal from the battery voltage determination unit 43, constant current charging is performed up to point B shown in FIG.
After that, constant voltage charging is performed. At this time, during constant current charging, constant voltage charging is performed by generating a voltage higher than the target value 46 even if the battery voltage during charging exceeds the target value 46.

【0131】42は充電をオン・オフ制御する充電オン
・オフ制御部であり、電池電圧判定部43からの信号に
従い、充電時の電池電圧が目標値46を越えた際に、所
定のオン/オフ周期で断続的な定電流充電を行なう。
Reference numeral 42 denotes a charging on / off control section for controlling the charging on / off, and when a battery voltage at the time of charging exceeds a target value 46, a predetermined on / off control is performed according to a signal from the battery voltage determination section 43. Intermittent constant current charging is performed in the off cycle.

【0132】43は二次電池45の電池電圧が目標値4
6,48に達したか否かをそれぞれ判定する電池電圧判
定部であり、その判定した信号を定電圧定電流電源4
1、及び充電オン・オフ制御部42に送る。
43, the battery voltage of the secondary battery 45 is the target value 4
6, a battery voltage determination unit that determines whether or not the voltage has reached 6, 48, and outputs the determined signal to the constant voltage constant current power source 4
1 and the charging on / off control unit 42.

【0133】44は二次電池45の電池電圧を測定する
電池電圧判定部であり、測定電圧値を電池電圧判定部4
3に送る。又、46は連続定電流充電から断続定電流充
電へ切り換えるための電池電圧目標値(以下第1の目標
値と称す)、47aは充電オン時の電池電圧、47bは
充電オフ時の電池電圧、48は充電オフ時の電池電圧目
標値(以下第2の目標値と称す)である(尚、ここでは
第1の目標値46と第2の目標値48とが同電位に設定
された場合を例示している)。49は定電流充電時の充
電電流である。
Reference numeral 44 denotes a battery voltage determination unit for measuring the battery voltage of the secondary battery 45, and the measured voltage value is used as the battery voltage determination unit 4
Send to 3. Further, 46 is a battery voltage target value for switching from continuous constant current charging to intermittent constant current charging (hereinafter referred to as a first target value), 47a is a battery voltage when charging is on, 47b is a battery voltage when charging is off, Reference numeral 48 denotes a battery voltage target value (hereinafter referred to as a second target value) at the time of charging off (here, the case where the first target value 46 and the second target value 48 are set to the same potential). Exemplify). 49 is a charging current at the time of constant current charging.

【0134】ここで第3実施例の動作を説明する。二次
電池45の充電開始時に於いては、定電圧定電流電源4
1の電源が充電オン・オフ制御部42を介し連続して二
次電池45に供給され、定電流充電が開始される。この
際、二次電池45の端子電圧は、電池電圧測定部44で
測定され、電池電圧判定部43に入力される。
The operation of the third embodiment will be described here. At the start of charging the secondary battery 45, the constant voltage constant current power source 4
The power supply No. 1 is continuously supplied to the secondary battery 45 via the charging on / off control unit 42, and constant current charging is started. At this time, the terminal voltage of the secondary battery 45 is measured by the battery voltage measuring unit 44 and input to the battery voltage determining unit 43.

【0135】電池電圧判定部43は、先ず、電池電圧測
定部44から入力された電池電圧が第1の目標値46に
達したか否かを判断して、以下のような充電制御を行な
い、二次電池45を急速充電する。
The battery voltage determining unit 43 first determines whether or not the battery voltage input from the battery voltage measuring unit 44 has reached the first target value 46, and performs the following charging control. The secondary battery 45 is rapidly charged.

【0136】即ち、充電を開始したときの電池電圧が、
同図(b)の点aに示す電圧であったとする。この値
は、第1の目標値46より低いため、引き続き、連続給
電による定電流充電を行なう。
That is, the battery voltage at the start of charging is
It is assumed that the voltage is at the point a in FIG. Since this value is lower than the first target value 46, constant current charging by continuous power feeding is continuously performed.

【0137】二次電池45の充電が進むに従って電池電
圧は上昇する。この電池電圧の上昇で、同電圧が第1の
目標値46に達すると(同図(b)の点b)、電池電圧
判定部43は、その状態検知に伴い、充電オン・オフ制
御部42に、定電流充電のオン・オフを繰り返す動作制
御信号を出力する。
The battery voltage rises as the charging of the secondary battery 45 progresses. When the battery voltage rises to the first target value 46 (point b in FIG. 7B) due to the increase in the battery voltage, the battery voltage determination unit 43 causes the charging on / off control unit 42 to detect the state. Then, an operation control signal that repeatedly turns on and off the constant current charging is output.

【0138】充電のオン・オフが繰り返される定電流モ
ードに移行すると、電池電圧判定部43は、電池電圧測
定部44から入力される、充電オフ中の電池電圧を判定
し、このときの電圧が、第2の目標値48に達している
か否かを判定する。達していなければ引き続き、充電オ
ン・オフを継続する。
When shifting to the constant current mode in which charging is turned on and off repeatedly, the battery voltage determination unit 43 determines the battery voltage during charging off, which is input from the battery voltage measurement unit 44, and the voltage at this time is determined. , And determines whether or not the second target value 48 has been reached. If not reached, charging continues on / off.

【0139】更に充電が進行し、充電オフ時の電池電圧
が、第2の目標値48に達すると(同図(b)の点
c)、電池電圧判定部43は、定電圧定電流電源41
に、第2の目標値48と同じ電圧を出力されるための
(即ち定電圧充電のための)動作制御信号を出力する。
When the charging further progresses and the battery voltage when the charging is turned off reaches the second target value 48 (point c in the same figure (b)), the battery voltage determination unit 43 determines that the constant voltage constant current power source 41
Then, an operation control signal for outputting the same voltage as the second target value 48 (that is, for constant voltage charging) is output.

【0140】このうような充電制御により、二次電池4
5を図10に示した従来技術に比し急速に充電できる。
尚、上記した実施例に於いては、第1の目標値46と第
2の目標値48とを同じ電圧値にしているが、それぞれ
ことなる電圧値であってもよい。又、上記した充電制御
は、リチウム・イオン二次電池に限らず、定電圧充電す
る必要がある他の二次電池に於いても適用できる。
By such charge control, the secondary battery 4
5 can be charged more rapidly than in the prior art shown in FIG.
Although the first target value 46 and the second target value 48 have the same voltage value in the above-described embodiment, they may have different voltage values. Further, the charge control described above can be applied not only to the lithium-ion secondary battery but also to other secondary batteries that require constant voltage charging.

【0141】次に図11を参照して本発明の第4実施例
を説明する。この第4実施例は、二次電池相互の接続点
(B)に電流制限素子又は電流制限回路を介して充放電
用の電源回路が接続される接続点(C)を電源端子とし
てもつ、2個以上の二次電池を直列接続した組電池に於
いて、各二次電池の電圧を測定する電池電圧測定回路
と、接続点(B)から接続点(C)、あるいは接続点
(C)から接続点(B)に流れる電流(補正電流)をオ
ン/オフできるスイッチ手段と、補正電流をゼロにした
後、ある一定時間後に各二次電池の電圧を測定する手段
とを具備してなる構成として、組電池を構成する個々の
二次電池の電圧の差を補正する回路に於ける各二次電池
の電圧測定精度の向上を図ったもので、これにより過充
電、過放電を確実に防止することができる。
Next, a fourth embodiment of the present invention will be described with reference to FIG. This fourth embodiment has a connection point (C) where a charging / discharging power supply circuit is connected via a current limiting element or a current limiting circuit at a connection point (B) between secondary batteries as a power supply terminal. In an assembled battery in which two or more secondary batteries are connected in series, a battery voltage measuring circuit for measuring the voltage of each secondary battery, from the connection point (B) to the connection point (C), or from the connection point (C) A structure comprising a switch means for turning on / off the current (correction current) flowing to the connection point (B) and a means for measuring the voltage of each secondary battery after a certain period of time after the correction current is set to zero. As a result, the accuracy of the voltage measurement of each secondary battery in the circuit that corrects the difference in voltage between the individual secondary batteries that make up the battery pack is improved, which ensures overcharging and overdischarging. can do.

【0142】図11に於いて、61,62は相互に直列
接続された組電池内の二次電池であり、その各電池電圧
をそれぞれV1,V2とする。63は直列接続された二
次電池61,62の接続点(B)と充放電端子(C)と
の間に設けられた固定抵抗(R1)であり、二次電池6
1,62の充放電を制限している。64は上記二次電池
61,62、固定抵抗(R1)63、充放電端子
(C)、及び電源端子(TA,TB)等で構成される組
電池である。この組電池64の電源端子(TA,TB)
には外部より組電池全体の充電電源が供給される。
In FIG. 11, reference numerals 61 and 62 denote secondary batteries in an assembled battery connected in series with each other, and the respective battery voltages are V1 and V2, respectively. 63 is a fixed resistor (R1) provided between the connection point (B) of the secondary batteries 61 and 62 connected in series and the charging / discharging terminal (C).
It limits the charging and discharging of 1,62. Reference numeral 64 denotes an assembled battery including the secondary batteries 61 and 62, a fixed resistor (R1) 63, a charging / discharging terminal (C), a power supply terminal (TA, TB), and the like. Power supply terminals (TA, TB) of this assembled battery 64
Is supplied with charging power for the entire assembled battery from the outside.

【0143】65,66は組電池64の電源端子(T
A,TB)間に接続された、それぞれが同一の抵抗値で
なる固定抵抗(R2,R3)である。この固定抵抗(R
2,R3)65,66の接続点(A)は、組電池64の
全電池電圧を2等分した電圧値となる。
Reference numerals 65 and 66 denote power supply terminals (T
A and TB are fixed resistors (R2, R3) connected to each other and having the same resistance value. This fixed resistance (R
2, R3) 65, 66 has a connection point (A) with a voltage value obtained by dividing the total battery voltage of the assembled battery 64 into two equal parts.

【0144】67は固定抵抗(R2,R3)65,66
の接続点(A)の電圧値を増幅する増幅度1の増幅器で
あり、固定抵抗(R2,R3)65,66の接続点と同
じ電圧を出力する。
67 is a fixed resistor (R2, R3) 65, 66
It is an amplifier with an amplification factor of 1 for amplifying the voltage value of the connection point (A), and outputs the same voltage as the connection point of the fixed resistors (R2, R3) 65, 66.

【0145】68,69は組電池64の電源端子(T
A,TB)と充放電端子(C)との間に介在された電圧
測定回路であり、二次電池61,62それぞれの電圧を
測定し、その測定した電圧値を外部出力信号73,74
として外部に出力する。
68 and 69 are power supply terminals (T
A, TB) and a charging / discharging terminal (C), which is a voltage measuring circuit, measures the voltage of each of the secondary batteries 61, 62, and outputs the measured voltage value to an external output signal 73, 74.
To the outside.

【0146】70は増幅器67の出力端と組電池64の
充放電端子(C)との間に介在されたスイッチであり、
増幅器67と固定抵抗(R1)63を電気的にオン/オ
フする。
Reference numeral 70 is a switch interposed between the output end of the amplifier 67 and the charging / discharging terminal (C) of the assembled battery 64,
The amplifier 67 and the fixed resistor (R1) 63 are electrically turned on / off.

【0147】71はスイッチ70をオン/オフ制御する
スイッチ制御回路であり、充電中の二次電池61,62
の電圧を測定する際に、電圧チェック信号72によりス
イッチ70をオフする。また、スイッチ70をオフして
から、ある一定時間経過後に電圧測定を行なうように、
電圧測定回路68,69に信号を出力する。
Reference numeral 71 denotes a switch control circuit for controlling ON / OFF of the switch 70, which is a secondary battery 61, 62 being charged.
The switch 70 is turned off by the voltage check signal 72 when the voltage is measured. In addition, after the switch 70 is turned off, the voltage should be measured after a certain time has passed.
The signal is output to the voltage measuring circuits 68 and 69.

【0148】72は外部からスイッチ制御回路71に供
給される電圧チェック信号であり、二次電池61,62
の電圧を測定する際に有意となる。73,74は電圧測
定回路68,69で測定した各電圧値を外部へ出力する
外部出力信号である。
Reference numeral 72 denotes a voltage check signal supplied to the switch control circuit 71 from the outside, and the secondary battery 61, 62.
It becomes significant when measuring the voltage. Reference numerals 73 and 74 are external output signals for outputting each voltage value measured by the voltage measuring circuits 68 and 69 to the outside.

【0149】ここで第4実施例の動作を説明する。固定
抵抗(R2,R3)65,66の接続点(A)には、組
電池64の1/2の電圧が発生する。
The operation of the fourth embodiment will be described here. At the connection point (A) of the fixed resistors (R2, R3) 65, 66, half the voltage of the assembled battery 64 is generated.

【0150】上記接続点(A)の電圧は増幅器67に入
力される。増幅器67は接続点(A)と同じ電圧を出力
する。増幅器67の出力は、スイッチ70、組電池64
の充放電端子(C)、固定抵抗(R1)63をそれぞれ
経由して、二次電池61,62の接続点(B)に接続さ
れる。
The voltage at the connection point (A) is input to the amplifier 67. The amplifier 67 outputs the same voltage as the connection point (A). The output of the amplifier 67 is the switch 70 and the assembled battery 64.
Via the charging / discharging terminal (C) and the fixed resistor (R1) 63, respectively, to be connected to the connection point (B) of the secondary batteries 61 and 62.

【0151】通常の充電時は、スイッチ制御回路71に
有意の電圧チェック信号72が供給されておらず、従っ
てスイッチ70がオン状態にあり、充電電源が、電源端
子(TA,TB)、及び充放電端子(C)を介して組電
池64の二次電池61,62に供給され、二次電池6
1,62が充電される。
During normal charging, the significant voltage check signal 72 is not supplied to the switch control circuit 71, therefore the switch 70 is in the ON state, and the charging power source is connected to the power source terminals (TA, TB) and charging. It is supplied to the secondary batteries 61 and 62 of the assembled battery 64 via the discharge terminal (C), and the secondary battery 6
1, 62 are charged.

【0152】二次電池61,62の電圧(V1,V2)
が[V1>V2]であるとき、接続点(A)の電圧は、
組電池全体の電圧の1/2の電圧よりも高くなる。この
とき、増幅器67から、スイッチ70、組電池64の充
放電端子(C)、電流制限用固定抵抗(R1)63をそ
れぞれ経由して、二次電池61,62の接続点(B)に
補正電流が流れ、この電流分、二次電池62の充電電流
が二次電池61より多くなり、二次電池61,62の電
位差を少なくする。
Voltage of secondary batteries 61, 62 (V1, V2)
Is [V1> V2], the voltage at the connection point (A) is
It is higher than half the voltage of the whole assembled battery. At this time, correction is made from the amplifier 67 to the connection point (B) of the secondary batteries 61 and 62 via the switch 70, the charging / discharging terminal (C) of the assembled battery 64, and the current limiting fixed resistor (R1) 63, respectively. A current flows, and the charging current of the secondary battery 62 becomes larger than that of the secondary battery 61 by the amount of this current, and the potential difference between the secondary batteries 61 and 62 is reduced.

【0153】二次電池61,62の電圧が、[V1<V
2]であるときは、上記した充電時とは逆に動作するこ
とで、二次電池61,62の電位差を少なくする。上記
充電時に於いて、電圧測定回路68,69が出力する二
次電池61,62の電圧は、電流制限用固定抵抗(R
1)63に生じる電位差を含んでいる。従って二次電池
61,62の接続点(B)の電池電圧を測定する際は、
電流制限用固定抵抗(R1)63の電圧降下を含んだ値
を測定することになり、正確な電池電圧を測定できな
い。本発明はこの不都合を解消したものである。
The voltage of the secondary batteries 61, 62 is [V1 <V
2], the potential difference between the secondary batteries 61 and 62 is reduced by operating in the reverse of the above charging. During the charging, the voltage of the secondary batteries 61 and 62 output by the voltage measuring circuits 68 and 69 is the fixed resistor for current limiting (R
1) Includes the potential difference generated at 63. Therefore, when measuring the battery voltage at the connection point (B) of the secondary batteries 61 and 62,
Since the value including the voltage drop of the current limiting fixed resistor (R1) 63 is measured, an accurate battery voltage cannot be measured. The present invention eliminates this inconvenience.

【0154】上記充電中に、二次電池61,62の電圧
を測定する場合は、有意の電圧チェック信号72をスイ
ッチ制御回路71に供給し、スイッチ70をスイッチオ
フする。
When measuring the voltages of the secondary batteries 61 and 62 during the charging, a significant voltage check signal 72 is supplied to the switch control circuit 71 and the switch 70 is switched off.

【0155】これにより、増幅器67と、電流制限用固
定抵抗(R1)63が接続された充放電端子(C)との
間の回路(電流路)が断たれて、固定抵抗(R1)63
に生じていた電位差がなくなり、正確な電池電圧が測定
できるが、電池電流が変化しても電池電圧は追随しない
ので、補正電流がゼロになってから一定時間経過後に電
圧測定を行なう。即ち、スイッチ制御回路71は、電圧
チェック信号72に従い、スイッチ70をオフした後、
一定時間を経て、電圧測定回路68,69に測定信号を
出力する。
As a result, the circuit (current path) between the amplifier 67 and the charging / discharging terminal (C) to which the current limiting fixed resistor (R1) 63 is connected is cut off, and the fixed resistor (R1) 63 is cut off.
Since the potential difference generated in 1 is eliminated and the battery voltage can be measured accurately, the battery voltage does not follow even if the battery current changes, so the voltage is measured after a fixed time has elapsed since the correction current became zero. That is, the switch control circuit 71 turns off the switch 70 according to the voltage check signal 72,
After a certain period of time, the measurement signal is output to the voltage measuring circuits 68 and 69.

【0156】これにより電圧測定回路68,69は、補
正電流がゼロになってから一定時間経過後に二次電池6
1,62の電圧測定を行なった、正確な電圧値を外部出
力信号73、74として外部に出力することができる。
As a result, the voltage measuring circuits 68 and 69 cause the secondary battery 6 to operate after a fixed time has elapsed since the correction current became zero.
It is possible to output accurate voltage values obtained by measuring the voltages of 1, 62 to the outside as external output signals 73, 74.

【0157】このようにして、組電池64を構成する二
次電池61,62の電圧を正確に測定することにより、
過充電、過放電を防止することができる。次に、図12
及び図13を参照して本発明の第5実施例を説明する。
In this way, by accurately measuring the voltages of the secondary batteries 61 and 62 constituting the assembled battery 64,
Overcharge and overdischarge can be prevented. Next, FIG.
A fifth embodiment of the present invention will be described with reference to FIGS.

【0158】本発明の第5実施例は、2セル以上が直列
接続される組電池の各セルそれぞれから電力供給される
負荷がある形態、又はセルの電圧に応じて消費電流が変
化する負荷がある形態に於いて、直列接続された電池相
互の接続点と負荷相互の接続点を結ぶ回路の電流(中性
線電流)を検知する回路手段と、その検知信号によって
各電池セルの放電電流を制御する回路手段と、その回路
が負荷と並列接続される回路手段とを具備して、中性線
電流が0A(ゼロアンペア)になるよう制御することに
より、各電池セルの放電電流(消費電流)を等しくし
て、電池の性能を最大限に発揮することができるように
したことを特徴とする。
The fifth embodiment of the present invention has a configuration in which there is a load supplied with power from each cell of an assembled battery in which two or more cells are connected in series, or a load whose current consumption changes according to the voltage of the cell. In one form, circuit means for detecting the current (neutral wire current) of the circuit connecting the connection points of batteries connected in series and the connection point of loads, and the discharge current of each battery cell is detected by the detection signal. By controlling the neutral line current to 0 A (zero amperes) by providing a circuit means for controlling and a circuit means in which the circuit is connected in parallel with the load, the discharge current (consumption current) of each battery cell ) Are equalized so that the battery performance can be maximized.

【0159】図12は本発明の第5実施例(1)の構成
を示す回路図である。図12に於いて、81,82は互
に直列接続された二次電池である。83は二次電池8
1,82相互の接続点(Bj)と負荷86,87相互の
接続点(Lj)との間を接続する中性線に介在された電
流検知回路であり、中性線に流れる電流を検知する。
FIG. 12 is a circuit diagram showing the configuration of the fifth embodiment (1) of the present invention. In FIG. 12, 81 and 82 are secondary batteries connected in series with each other. 83 is a secondary battery 8
1, 82 is a current detection circuit interposed in a neutral line connecting a mutual connection point (Bj) and a load 86, 87 mutual connection point (Lj), and detects a current flowing through the neutral line. .

【0160】84は二次電池81の放電電流制御回路で
あり、電流検知回路83の制御情報によって消費電流が
変化する(IF <IG のときに電流が流れる)。85は
二次電池82の放電電流制御回路であり、電流検知回路
83の制御情報によって消費電流が変化する(IF >I
G のときに電流が流れる)。
Reference numeral 84 denotes a discharge current control circuit for the secondary battery 81, the consumption current of which changes according to the control information of the current detection circuit 83 (current flows when IF <IG). Reference numeral 85 denotes a discharge current control circuit for the secondary battery 82, the consumption current of which changes according to the control information of the current detection circuit 83 (IF> I
Current flows when G).

【0161】86は二次電池81の負荷(A)である。
この負荷86に流れる電流をIF とする。87は二次電
池82の負荷(B)である。この負荷に流れる電流をI
G とする。
Reference numeral 86 is a load (A) of the secondary battery 81.
The current flowing through the load 86 is IF. 87 is the load (B) of the secondary battery 82. The current flowing through this load is I
Let G.

【0162】ここで図12に示す第5実施例(1)の動
作を説明する。二次電池81,82の負荷86,87に
流れる電流IF 、IG に差があると、その差分が中性線
に流れる。この電流を電流検知回路83によって検知す
る。
Now, the operation of the fifth embodiment (1) shown in FIG. 12 will be described. If there is a difference between the currents IF and IG flowing through the loads 86 and 87 of the secondary batteries 81 and 82, the difference flows through the neutral line. This current is detected by the current detection circuit 83.

【0163】この検知情報をもとに、放電電流制御回路
84,85の消費電流を変化させ、中性線に流れる電流
を0Aにすることにより、各二次電池81,82の放電
電流を等しくする。
Based on this detection information, the consumption currents of the discharge current control circuits 84 and 85 are changed so that the current flowing through the neutral line becomes 0 A, so that the discharge currents of the respective secondary batteries 81 and 82 become equal. To do.

【0164】この動作を具体的に説明する。 IF <Id のとき このときの中性線には、「IG −IF 」の電流が、二次
電池81,82相互の接続点Bjから負荷86,87相
互の接続点Ljに向かって流れる。
This operation will be specifically described. When IF <Id At this time, the current "IG-IF" flows through the neutral line from the connection point Bj between the secondary batteries 81 and 82 to the connection point Lj between the loads 86 and 87.

【0165】電流検知回路83は、この電流の大きさと
方向を検知し、放電電流制御回路84に中性線電流が0
Aになるような大きさの電流を流すよう指示を出す(こ
のとき、放電電流制御回路85には、電流を流さないよ
うに指示を出す)。
The current detection circuit 83 detects the magnitude and direction of this current, and the discharge current control circuit 84 detects that the neutral wire current is 0.
A command is issued to flow a current having a value of A (at this time, the discharge current control circuit 85 is instructed not to flow a current).

【0166】IF >Id のとき このときの中性線には、「IF −IG 」の電流が、上記
とは逆に接続点Ljから接続点Bjに向かって流れる。
When IF> Id The current "IF-IG" flows in the neutral line at this time from the connection point Lj to the connection point Bj, contrary to the above.

【0167】電流検知回路83は、この電流の大きさと
方向を検知し、放電電流制御回路85に中性線電流が0
Aになるような大きさの電流を流すよう指示を出す(こ
のとき、放電電流制御回路84には、電流を流さないよ
うに指示を出す)。
The current detection circuit 83 detects the magnitude and direction of this current, and the discharge current control circuit 85 detects that the neutral wire current is 0.
A command is issued to flow a current having a value of A (at this time, the discharge current control circuit 84 is instructed not to flow a current).

【0168】このように、中性線電流が0A(ゼロアン
ペア)になるよう制御することにより、各二次電池8
1,82の放電電流(消費電流)を等しくして、電池の
性能を最大限に発揮することができる。
In this way, by controlling the neutral line current to be 0 A (zero ampere), each secondary battery 8
By making the discharge currents (consumption currents) of 1 and 82 equal, the battery performance can be maximized.

【0169】図13(a)は本発明の第5実施例(2)
の構成を示す回路図であり、同図(b),(c),
(d)はそれぞれ同図(a)に示す第5実施例(2)の
動作説明図である。
FIG. 13A shows a fifth embodiment (2) of the present invention.
2 is a circuit diagram showing the configuration of FIG.
FIG. 7D is an operation explanatory view of the fifth embodiment (2) shown in FIG.

【0170】図13に於いて、91、92は互に直列接
続された二次電池である。93は二次電池91,92相
互の接続点(Bj)と負荷94,95相互の接続点(L
j)との間を接続する中性線に介在された、入力インピ
ーダンスが著しく高い、増幅度1の増幅器である。94
は二次電池91の電圧に応じて消費電流が変化する負荷
であり、例えば、二次電池91の電圧を監視する回路で
ある。95は二次電池92の電圧に応じて消費電流が変
化する負荷であり、例えば、二次電池92の電圧を監視
する回路である。
In FIG. 13, 91 and 92 are secondary batteries connected in series with each other. 93 is a connection point (Bj) between the secondary batteries 91 and 92 and a load connection point (Lj) between the loads 94 and 95.
It is an amplifier having an extremely high input impedance and having an amplification factor of 1, which is interposed in a neutral wire connecting between j) and j). 94
Is a load whose current consumption changes according to the voltage of the secondary battery 91, and is, for example, a circuit which monitors the voltage of the secondary battery 91. Reference numeral 95 denotes a load whose current consumption changes according to the voltage of the secondary battery 92, and is, for example, a circuit which monitors the voltage of the secondary battery 92.

【0171】本来、負荷94,95は、図13(b)に
示すように、それぞれの二次電池91,92と並列に接
続される。ところが、同図(a)に示すように、二次電
池91,92と負荷94,95との間に増幅度1の増幅
器93を設けても、接続点Bjと接続点Ljは同じ電圧
であるため、同図(b)の動作と何ら変わりない(機能
的には同じ)。
Originally, the loads 94 and 95 are connected in parallel with the respective secondary batteries 91 and 92, as shown in FIG. 13B. However, as shown in FIG. 9A, even if the amplifier 93 having the amplification factor of 1 is provided between the secondary batteries 91 and 92 and the loads 94 and 95, the connection point Bj and the connection point Lj have the same voltage. Therefore, there is no difference from the operation of FIG. 11B (functionally the same).

【0172】同図(b)の場合の負荷94,95の消費
電流ID 、IE は、それぞれの二次電池91,92から
供給されるため、ID ≠IE の場合、電池の放電電流に
差が生じるが、同図(a)ではID とIE の差の電流は
増幅器93から供給される。この増幅器93の電源は二
次電池91,92の直列回路から供給されるため、電池
の放電電流は同じで差は生じない。
The current consumptions ID and IE of the loads 94 and 95 in the case of FIG. 11B are supplied from the secondary batteries 91 and 92, respectively. Therefore, if ID ≠ IE, the discharge currents of the batteries are different. Although generated, the current of the difference between ID and IE is supplied from the amplifier 93 in FIG. Since the power source of the amplifier 93 is supplied from the series circuit of the secondary batteries 91 and 92, the discharge currents of the batteries are the same and there is no difference.

【0173】これを具体的に説明する。 ID >IE のとき 負荷94の消費電流をID 、負荷95の消費電流をIE
とすると、同図(c)に示すように、ライン2に、その
差分(ID −IE )が図示矢印方向に流れる。従って、
ライン4にはIE +(ID −IE )=ID の大きさの電
流が流れ、ライン5とライン4の電流は等しい。
This will be specifically described. When ID> IE, the current consumption of the load 94 is ID and the current consumption of the load 95 is IE
Then, as shown in FIG. 7C, the difference (ID-IE) flows in the line 2 in the arrow direction. Therefore,
A current having a magnitude of IE + (ID-IE) = ID flows in the line 4, and the currents in the line 5 and the line 4 are equal.

【0174】ところで、増幅度1の増幅器93の入力イ
ンピーダンスは著しく大きいため、入力端子には電流が
ほとんど流れない。故に二次電池91と二次電池92の
消費電流は同じになる。
By the way, since the input impedance of the amplifier 93 having the amplification factor of 1 is extremely large, almost no current flows through the input terminal. Therefore, the consumption currents of the secondary battery 91 and the secondary battery 92 are the same.

【0175】ID <IE のとき この際は、同図(d)に示すように、上記図(c)の場
合とは逆に、負荷94,95の消費電流の差分(IE −
ID )の大きさの電流が流れる。これにより上記同様の
理由により二次電池91と二次電池92の消費電流が同
じになる。
At the time of ID <IE At this time, as shown in FIG. 7D, contrary to the case of FIG. 7C, the difference between the current consumptions of the loads 94 and 95 (IE-
A current of the magnitude (ID) flows. As a result, the secondary batteries 91 and 92 have the same current consumption for the same reason as above.

【0176】上記したような、直列接続された二次電池
の消費電流を等しく制御する機能をもつことにより、電
池の性能を最大限に発揮することができる。次に、図1
5を参照して本発明の第6実施例を説明する。
By having the function of controlling the current consumption of the secondary batteries connected in series equally as described above, the performance of the batteries can be maximized. Next, FIG.
A sixth embodiment of the present invention will be described with reference to FIG.

【0177】本発明の第6実施例は、二次電池単セルを
直列接続してなる複数種の組電池のうちの任意の組電池
が実装可能なポータブルコンピュータに於いて、組電池
の種別毎に二次電池単セルの直列接続点位置を特定した
電圧検出端をもつ組電池と、この組電池の電圧検出端よ
り得られる電圧により実装された組電池の種別を認識す
る手段とを具備してなる構成として、最小信号数で簡単
かつ安価に、複数種の組電池を使用可能としたことを特
徴とする。
The sixth embodiment of the present invention is a portable computer in which an arbitrary assembled battery of a plurality of assembled batteries in which secondary battery single cells are connected in series can be mounted. In addition, it comprises an assembled battery having a voltage detection end that specifies the series connection point position of the secondary battery single cell, and means for recognizing the type of the assembled battery based on the voltage obtained from the voltage detection end of this assembled battery. This configuration is characterized in that a plurality of types of assembled batteries can be used easily and inexpensively with a minimum number of signals.

【0178】図15は本発明の第6実施例の構成を示す
回路図である。図15に於いて、201はポータブルコ
ンピュータ本体に着脱可能なパック形式の組電池であ
り、複数の二次電池を直列接続して構成される。202
は組電池201の正(+)端子、203は組電池201
の負(+)端子であり、ポータブルコンピュータ本体に
実装されることにより、同本体の内部電源回路に回路接
続される。204は組電池201の電圧検出接点であ
り、抵抗を介して組電池(電池パック)の種類に固有の
電池接続点(a,b,…,e)に接続される。
FIG. 15 is a circuit diagram showing the structure of the sixth embodiment of the present invention. In FIG. 15, reference numeral 201 denotes a pack-type assembled battery that can be attached to and detached from the main body of the portable computer, and is constituted by connecting a plurality of secondary batteries in series. 202
Is a positive (+) terminal of the assembled battery 201, and 203 is the assembled battery 201
Is a negative (+) terminal of the portable computer and is mounted on the main body of the portable computer to be circuit-connected to the internal power supply circuit of the main body. Reference numeral 204 denotes a voltage detection contact of the assembled battery 201, which is connected via a resistor to a battery connection point (a, b, ..., E) unique to the type of assembled battery (battery pack).

【0179】205は組電池201の端子電圧を検出
し、検出した値により実装二次電池の種類を認識するハ
ードウェア(電圧検出回路)であり、例えば電源コント
ロール用のマイクロプロセッサである。
Reference numeral 205 denotes hardware (voltage detection circuit) for detecting the terminal voltage of the assembled battery 201 and recognizing the type of the mounted secondary battery based on the detected value, for example, a microprocessor for power supply control.

【0180】206は組電池201の電圧検出接点20
4を、抵抗を介し、二次電池の種類に固有の電池接続点
(a,b,…,e)に回路接続するための固定配線であ
り、二次電池(電池パック)の種類(電池電圧、容量
等)により予め定められた特定の電池接続点(a,b,
…,e)が抵抗を介し電圧検出接点204に配線接続さ
れる。
Reference numeral 206 denotes the voltage detection contact 20 of the battery pack 201.
4 is a fixed wiring for connecting the circuit 4 to a battery connection point (a, b, ..., e) specific to the type of the secondary battery through a resistor, and is a type of the secondary battery (battery pack) (battery voltage , A specific battery connection point (a, b,
, E) is connected to the voltage detection contact 204 via a resistor.

【0181】207,208はそれぞれ電圧検出回路2
05の入力信号線であり、内部でA/D変換される。こ
こで図15に示す第6実施例の動作を説明する。
Reference numerals 207 and 208 respectively denote the voltage detection circuit 2
05 input signal line, which is internally A / D converted. Here, the operation of the sixth embodiment shown in FIG. 15 will be described.

【0182】この実施例では、4セルの組電池を例に示
している。この場合、電池接続点(a,b,…,e)、
固定配線206、及び電圧検出接点204による電池の
種類判別可能数は5種類となる。固定配線206による
電池接続点(a,b,…,e)接続先は電池の種類によ
り、予め接続点a〜eの中から選択しておく。この際、
電圧検出接点204で検出される電圧は、単セル電圧の
整数倍となる。
In this embodiment, an assembled battery of 4 cells is shown as an example. In this case, the battery connection points (a, b, ..., e),
The number of battery types that can be determined by the fixed wiring 206 and the voltage detection contact 204 is five. The connection destination of the battery connection point (a, b, ..., E) by the fixed wiring 206 is selected in advance from the connection points a to e depending on the type of the battery. On this occasion,
The voltage detected by the voltage detection contact 204 is an integral multiple of the unit cell voltage.

【0183】例えば、単セルあたりの電圧を1.2Vと
すると、接続点aで検出される電圧は4.8V、接続点
bで検出される電圧は3.6V、接続点cで検出される
電圧は2.4V、接続点dで検出される電圧は1.2
V、接続点eで検出される電圧は0Vとなり、この電圧
検出接点204の電圧を判別することにより容易に電池
の種類が識別可能である。
For example, assuming that the voltage per unit cell is 1.2V, the voltage detected at the connection point a is 4.8V, the voltage detected at the connection point b is 3.6V, and the voltage detected at the connection point c. The voltage is 2.4 V and the voltage detected at the connection point d is 1.2.
The voltage detected at V and the connection point e becomes 0V, and the type of battery can be easily identified by determining the voltage at the voltage detection contact 204.

【0184】組電池201の電池電圧がローバッテリ状
態等で変化した場合に於いても、分圧比は[Vin2/
Vin1]で表され、変化しないため、組電池の種類が
識別可能である。
Even when the battery voltage of the assembled battery 201 changes in a low battery state or the like, the voltage division ratio is [Vin2 /
Vin1] and does not change, the type of assembled battery can be identified.

【0185】尚、上記実施例による電池種類の認識手段
は、ポータブルコンピュータに限らず、バッテリィドラ
イブが可能な例えばワードプロセッサ等、他の電子機器
に於いても適用可能である。又、組電池201の端子電
圧を検出して、実装二次電池の種類を認識するハードウ
ェア(電圧検出回路)も電源コントロール用のマイクロ
プロセッサに限らず、他のハードウェアであってもよ
い。
The battery type recognizing means according to the above-described embodiment is not limited to the portable computer, but can be applied to other electronic equipment such as a word processor capable of battery drive. Further, the hardware (voltage detection circuit) that detects the terminal voltage of the assembled battery 201 and recognizes the type of the mounted secondary battery is not limited to the microprocessor for controlling the power supply, and may be other hardware.

【0186】上記したような電池種類の認識機構によ
り、電池の識別に機械式のハードウェアを必要としない
ため、又、電源制御にマイクロコントローラを用いた場
合は、回路に追加される部品が抵抗1つで済むため、製
造コストが上昇せず、安価、かつ容易に実現できる。
又、組電池全体の電圧で識別を行なう場合に比較して、
電圧検出用接点で検出される電圧は、1セルあたりの電
圧の整数倍なので、正確な判別が可能である。又、電圧
検出用接点が1端子で済むため、コネクタを介して組電
池を接続する場合、従来のコネクタに+1端子されたも
のを選択すればよく、従ってコネクタの価格上昇分の製
造コスト上昇で済む。又、電池の種類を的確に認識する
ことができるため、電池の性能を最大限に引き出すこと
が可能である。
Since the battery type recognition mechanism as described above does not require mechanical hardware for battery identification, when a microcontroller is used for power supply control, parts added to the circuit are resistors. Since only one is required, the manufacturing cost does not increase, and the cost can be easily realized.
In addition, compared with the case of identifying by the voltage of the whole assembled battery,
Since the voltage detected by the voltage detection contact is an integral multiple of the voltage per cell, accurate discrimination is possible. Also, since the voltage detection contact need only have one terminal, when connecting the assembled battery via the connector, it is sufficient to select the one with +1 terminal in the conventional connector, and therefore the manufacturing cost increases due to the increase in the price of the connector. I'm done. Moreover, since the type of the battery can be accurately recognized, it is possible to maximize the performance of the battery.

【0187】[0187]

【発明の効果】以上詳記したように本発明によれば、リ
チウム・イオン二次電池を主電源供給源として長時間動
作を可能にしたポータブルコンピュータが提供できる。
又、本発明によれば、充電中のリチウム二次電池が定電
圧充電へ切り替わり、ある定めた充電電力以下になる
と、充電中の電池パックの満充電検出前に電源の余剰電
力を利用して次の電池パックの充電を開始し、一時的に
複数の電池パックを並行して充電することにより、複数
の電池パックの総充電時間を短縮し、かつ余剰電力を有
効に利用することのできる充電回路が提供できる。
As described in detail above, according to the present invention, it is possible to provide a portable computer capable of operating for a long time by using a lithium ion secondary battery as a main power supply source.
Further, according to the present invention, when the rechargeable lithium secondary battery is switched to the constant voltage charging and becomes less than a predetermined charging power, the surplus power of the power source is used before the full charge detection of the battery pack being charged. Charging that can start charging the next battery pack and temporarily charge multiple battery packs in parallel to shorten the total charging time of multiple battery packs and to effectively use the surplus power. A circuit can be provided.

【0188】又、本発明によれば、定電圧充電の必要が
ある二次電池の充電を行なう充電装置に於いて、二次電
池を急速充電することのできる二次電池の急速充電方式
が提供できる。
Further, according to the present invention, in a charging device for charging a secondary battery which requires constant voltage charging, there is provided a secondary battery rapid charging method capable of rapidly charging the secondary battery. it can.

【0189】又、本発明によれば、組電池を構成する個
々の二次電池の電圧の差を補正する回路に於いて、各二
次電池の電圧を正確に測定することができ、これにより
過充電、過放電を確実に防止することができる、組電池
の電池電圧測定装置が提供できる。
Further, according to the present invention, the voltage of each secondary battery can be accurately measured in the circuit for compensating for the difference in voltage between the individual secondary batteries forming the assembled battery. A battery voltage measuring device for an assembled battery, which can surely prevent overcharge and overdischarge, can be provided.

【0190】又、本発明によれば、二次電池セルを直列
接続した組電池に於いて、それぞれの二次電池セルの消
費電流を等しくすることができ、これにより電池の性能
を最大限に発揮することができる二次電池の放電制御方
式が提供できる。
Further, according to the present invention, in the assembled battery in which the secondary battery cells are connected in series, the consumption currents of the respective secondary battery cells can be made equal, thereby maximizing the battery performance. It is possible to provide a discharge control method for a secondary battery that can be exhibited.

【0191】又、本発明によれば、複数の二次電池単セ
ルを直列接続した複数種の組電池から任意種類の組電池
を実装可能とするポータブルコンピュータに於いて、最
小信号数で簡単かつ安価に実装組電池の種類識別機能を
実現できる複数種の組電池を使用可能としたポータブル
コンピュータが提供できる。
Further, according to the present invention, in a portable computer in which a plurality of types of assembled batteries in which a plurality of secondary battery single cells are connected in series can be mounted, any type of assembled battery can be installed easily with a minimum number of signals. It is possible to provide a portable computer that can use a plurality of types of assembled batteries that can realize the type identification function of mounted assembled batteries at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に於ける装置全体の外観構
成及び構成要素の配置状態を示す斜視図。
FIG. 1 is a perspective view showing an external configuration of an entire apparatus and an arrangement state of components according to a first embodiment of the present invention.

【図2】上記第1実施例の回路構成を示す図。FIG. 2 is a diagram showing a circuit configuration of the first embodiment.

【図3】本発明の第2実施例(1)の回路構成を示す
図。
FIG. 3 is a diagram showing a circuit configuration of a second embodiment (1) of the present invention.

【図4】本発明の第2実施例(2)の回路構成を示す
図。
FIG. 4 is a diagram showing a circuit configuration of a second embodiment (2) of the present invention.

【図5】本発明の第2実施例(3)の回路構成を示す
図。
FIG. 5 is a diagram showing a circuit configuration of a second embodiment (3) of the present invention.

【図6】本発明の第2実施例(4)の回路構成を示す
図。
FIG. 6 is a diagram showing a circuit configuration of a second embodiment (4) of the present invention.

【図7】上記第2実施例に於いて、2つの二次電池の各
充電シーケンスを各段階毎に対比しながら示す図。
FIG. 7 is a diagram showing the respective charging sequences of the two secondary batteries in the second embodiment while comparing them in stages.

【図8】上記第2実施例に於いて、2つの二次電池の充
電動作を従来技術と対比して示す充電動作説明図。
FIG. 8 is a charging operation explanatory view showing a charging operation of two secondary batteries in comparison with a conventional technique in the second embodiment.

【図9】本発明の第3実施例に於ける回路構成図及び動
作説明図。
FIG. 9 is a circuit configuration diagram and operation explanatory diagram in the third embodiment of the present invention.

【図10】上記第3実施例に対する従来技術の動作説明
図。
FIG. 10 is an operation explanatory diagram of the conventional technique for the third embodiment.

【図11】本発明の第4実施例の回路構成を示す図。FIG. 11 is a diagram showing a circuit configuration of a fourth embodiment of the present invention.

【図12】本発明の第5実施例(1)の回路構成を示す
図。
FIG. 12 is a diagram showing a circuit configuration of a fifth embodiment (1) of the present invention.

【図13】本発明の第5実施例(2)の回路構成を示す
図。
FIG. 13 is a diagram showing a circuit configuration of a fifth embodiment (2) of the present invention.

【図14】上記第5実施例(2)に対する従来技術の回
路構成を示す図。
FIG. 14 is a diagram showing a circuit configuration of a conventional technique for the fifth embodiment (2).

【図15】本発明の第6実施例の回路構成を示す図。FIG. 15 is a diagram showing a circuit configuration of a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…電池パック、11a,11b,11c…リチウム
・イオン二次電池による組電池、12…電源PCB(電
源用印刷配線基板)、13…システムPCB、14…表
示装置(フラットパネルディスプレイ)、15…キーボ
ード、16A…充電回路、16B…電圧監視回路、17
…外部商用交流電源、21…定電圧定電流電源、22…
スイッチ(SW1)、23…スイッチ(SW2)、24
…スイッチ(SW3)、25…トランジスタ(TR
1)、26…二次電池(Batt1)、27…二次電池(Ba
tt2)、28,29…電池電圧センス回路、30…固定
抵抗(RS )、31…増幅器(Error Amp)、32…基
準電圧(V REF)、33…DC−DCコンバータ、34
…スイッチ(SW2)、35…オン/オフ時間比制御回
路、36a,36b…充電優先切換回路、41…定電圧
定電流電源、42…充電オン・オフ制御部、43…電池
電圧判定部、44…電池電圧判定部、45…二次電池、
61,62…二次電池、63…固定抵抗(R1)、64
…組電池、65…固定抵抗(R2)、66…固定抵抗
(R3)、67…増幅器、68,69…電圧測定回路、
70…スイッチ、71…スイッチ制御回路、81,82
…二次電池、83…電流検知回路、84,85…放電電
流制御回路、86…負荷(A),87…負荷(B)、9
1,92…二次電池、93…増幅器、94,95…電池
電圧に応じて消費電流が変化する負荷(電圧監視回
路)、201…組電池、202…組電池の正(+)端
子、203…組電池の負(+)端子、204…電圧検出
接点、205…実装二次電池の種類を認識するハードウ
ェア(電圧検出回路)、206…選択固定配線、207
…、208…、TA,TB…充電用電極、Pa,Pb…
電圧監視用電極。
11 ... Battery packs, 11a, 11b, 11c ... Lithium-ion secondary battery assembled battery, 12 ... Power supply PCB (printed wiring board for power supply), 13 ... System PCB, 14 ... Display device (flat panel display), 15 ... Keyboard, 16A ... Charging circuit, 16B ... Voltage monitoring circuit, 17
… External commercial AC power supply, 21… Constant voltage and constant current power supply, 22…
Switch (SW1), 23 ... Switch (SW2), 24
... switch (SW3), 25 ... transistor (TR
1), 26 ... Secondary battery (Batt1), 27 ... Secondary battery (Ba
tt2), 28, 29 ... Battery voltage sense circuit, 30 ... Fixed resistance (RS), 31 ... Amplifier (Error Amp), 32 ... Reference voltage (V REF), 33 ... DC-DC converter, 34
... switch (SW2), 35 ... on / off time ratio control circuit, 36a, 36b ... charging priority switching circuit, 41 ... constant voltage / constant current power supply, 42 ... charging on / off control section, 43 ... battery voltage determination section, 44 ... Battery voltage determination unit, 45 ... Secondary battery,
61, 62 ... Secondary battery, 63 ... Fixed resistance (R1), 64
... assembled battery, 65 ... fixed resistance (R2), 66 ... fixed resistance (R3), 67 ... amplifier, 68, 69 ... voltage measuring circuit,
70 ... Switch, 71 ... Switch control circuit, 81, 82
... secondary battery, 83 ... current detection circuit, 84, 85 ... discharge current control circuit, 86 ... load (A), 87 ... load (B), 9
1, 92 ... Secondary battery, 93 ... Amplifier, 94, 95 ... Load (voltage monitoring circuit) whose consumption current changes according to battery voltage, 201 ... Battery pack, 202 ... Positive (+) terminal of battery pack, 203 ... Negative (+) terminal of assembled battery, 204 ... Voltage detection contact, 205 ... Hardware (voltage detection circuit) for recognizing the type of mounted secondary battery, 206 ... Selection fixed wiring, 207
..., 208 ..., TA, TB ... Charging electrodes, Pa, Pb ...
Voltage monitoring electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日野 裕一郎 東京都青梅市末広町2丁目9番地 株式会 社東芝青梅工場内 (72)発明者 田代 直樹 東京都青梅市新町1381番地1 東芝コンピ ュータエンジニアリング株式会社内 (72)発明者 萩原 昌彦 東京都青梅市新町1381番地1 東芝コンピ ュータエンジニアリング株式会社内 (72)発明者 三井 圭一 東京都青梅市新町1381番地1 東芝コンピ ュータエンジニアリング株式会社内 (72)発明者 内田 朋彦 東京都青梅市新町1381番地1 東芝コンピ ュータエンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuichiro Hino 2-9, Suehiro-cho, Ome-shi, Tokyo Inside the Toshiba Ome Plant, Inc. (72) Inventor Naoki Tashiro 1381 Shinmachi, Ome-shi, Tokyo 1 Toshiba Computer Company Within Ta Engineering Co., Ltd. (72) Inventor Masahiko Hagiwara 1381 Shinmachi, Ome-shi, Tokyo Inside Toshiba Computer Engineering Co., Ltd. (72) Inventor Keiichi Mitsui 1381 Shinmachi, Ome-shi, Tokyo Toshiba Computer Engineering Incorporated (72) Inventor Tomohiko Uchida 1381 Shinmachi, Ome-shi, Tokyo 1 Toshiba Computer Engineering Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 リチウム・イオン二次電池単セルがn個
並列接続された組電池をm組直列接続して構成した電池
パックと、この電池パックを充電する充電回路とを具備
し、上記電池パックをバッテリ動作時の主電源供給源と
したことを特徴とするポータブルコンピュータ。
1. A battery pack comprising m battery packs in which n lithium-ion secondary battery single cells are connected in parallel are connected in series, and a charging circuit for charging the battery packs. A portable computer in which the pack is used as a main power supply source during battery operation.
【請求項2】 リチウム・イオン二次電池単セルを2乃
至4個並列接続して組電池を構成し、この組電池を3組
乃至4組直列接続して電池パックを構成した請求項1記
載のポータブルコンピュータ。
2. The battery pack according to claim 1, wherein 2 to 4 lithium-ion secondary battery single cells are connected in parallel to form an assembled battery, and 3 to 4 sets of these assembled batteries are connected in series. Portable computer.
【請求項3】 組電池の両端電極を電池パック外部に導
出するモニタ電極と、この電極相互間に接続され、各組
電池の両端電圧を監視する電圧監視手段とを具備してな
る請求項1記載のポータブルコンピュータ。
3. A monitor electrode for leading out both-end electrodes of the assembled battery to the outside of the battery pack, and a voltage monitoring means connected between these electrodes for monitoring both-end voltage of each assembled battery. The listed portable computer.
【請求項4】 電圧監視回路の監視で充電の必要を判断
したとき上記モニタ電極を通して組電池を個別に充電す
る充電回路を備えた請求項3記載のポータブルコンピュ
ータ。
4. The portable computer according to claim 3, further comprising a charging circuit for individually charging the battery pack through the monitor electrodes when the necessity of charging is judged by monitoring of the voltage monitoring circuit.
【請求項5】 単体のリチウム二次電池、又はその組電
池を用いた電池パックを一度に複数装着することができ
る充電回路に於いて、 上記電池パックに充電用の電源を供給する定電圧定電流
電源と、 上記電池パックの充電電流を検出する電流検出回路と、 上記充電電流を予め定められた一定値に制御するシリー
ズレギュレーション回路と、 上記定電圧定電流電源による電池パックへの定電流充電
が設定値以下になったとき、当該電池パックへの充電を
定電圧充電に移行させ、上記シリーズレギュレーション
回路による充電電流制御範囲内で他の電池パックを定電
流充電する制御手段とを具備し、 充電中の電池パックが満充電状態になる以前にシリーズ
レギュレーションによる充電電流制御範囲内で他の電池
パックへ充電を行なうことを特徴とする充電回路。
5. In a charging circuit capable of mounting a plurality of battery packs using a single lithium secondary battery or an assembled battery thereof at a time, a constant voltage constant for supplying charging power to the battery pack. A current power supply, a current detection circuit that detects the charging current of the battery pack, a series regulation circuit that controls the charging current to a predetermined constant value, and a constant current charging of the battery pack by the constant voltage constant current power supply. When is less than or equal to a set value, the charging of the battery pack is shifted to constant voltage charging, and a control means for charging another battery pack with a constant current within the charging current control range by the series regulation circuit is provided, The feature is that other battery packs are charged within the charging current control range by series regulation before the battery pack being charged is fully charged. Charging circuit for.
【請求項6】 単体のリチウム二次電池、又はその組電
池を用いた電池パックを一度に複数装着することができ
る充電回路に於いて、 上記電池パックに充電用の電源を供給する定電圧定電流
電源と、 上記電池パックの充電電流を検出する電流検出回路と、 上記充電電流を予め定められた一定値に制御するスイッ
チングレギュレーション回路と、 上記定電圧定電流電源による電池パックへの定電流充電
が設定値以下になったとき、当該電池パックへの充電を
定電圧充電に移行させ、上記スイッチングレギュレーシ
ョン回路による充電電流制御範囲内で他の電池パックを
定電流充電する制御手段とを具備し、 充電中の電池パックが満充電状態になる以前にスイッチ
ングレギュレーションによる充電電流制御範囲内で他の
電池パックへ充電を行なうことを特徴とする充電回路。
6. In a charging circuit capable of mounting a plurality of battery packs using a single lithium secondary battery or a battery pack thereof at one time, a constant voltage constant for supplying a charging power source to the battery pack. A current power supply, a current detection circuit that detects the charging current of the battery pack, a switching regulation circuit that controls the charging current to a predetermined constant value, and a constant current charging to the battery pack by the constant voltage constant current power supply. Is less than or equal to a set value, the charging of the battery pack is shifted to constant voltage charging, and a control means for charging another battery pack with a constant current within the charging current control range by the switching regulation circuit is provided. Before the battery pack being charged is fully charged, charge the other battery packs within the charging current control range by switching regulation. Charging circuit, characterized in that.
【請求項7】 単体のリチウム二次電池、又はその組電
池を用いた電池パックを一度に複数装着することができ
る充電回路に於いて、 上記各電池パックの充電優先順位を設定する手段と、 上記優先順位に従い選択された電池パックに充電用の電
源を供給する定電圧定電流電源と、 上記電池パックの充電電流を検出する電流検出回路と、 上記充電電流を予め定められた一定値に制御するシリー
ズレギュレーション回路と、 上記定電圧定電流電源による電池パックへの定電流充電
が設定値以下になったとき、当該電池パックへの充電を
定電圧充電に移行させ、上記シリーズレギュレーション
回路による充電電流制御範囲内で上記充電優先順位に従
う次の電池パックを定電流充電する制御手段とを具備
し、 充電中の電池パックが満充電状態になる以前にシリーズ
レギュレーションによる充電電流制御範囲内で設定順位
に従う次の電池パックへ充電を行なうことを特徴とする
充電回路。
7. A charging circuit capable of mounting a plurality of battery packs using a single lithium secondary battery or an assembled battery thereof at one time, and means for setting a charging priority of each battery pack, A constant-voltage constant-current power supply that supplies power for charging to the battery pack selected according to the priority, a current detection circuit that detects the charging current of the battery pack, and the charging current is controlled to a predetermined constant value. When the constant current charging to the battery pack by the above series regulation circuit and the above constant voltage constant current power supply becomes less than the set value, the charging to the battery pack is shifted to the constant voltage charging, and the charging current by the above series regulation circuit is changed. A control means for charging the next battery pack according to the above charging priority order within the control range with a constant current, and the battery pack being charged is in a fully charged state. A charging circuit that charges the next battery pack according to the set order within the charging current control range based on the series regulation previously.
【請求項8】 単体のリチウム二次電池、又はその組電
池を用いた電池パックを一度に複数装着することができ
る充電回路に於いて、 上記各電池パックの充電優先順位を設定する手段と、 上記優先順位に従い選択された電池パックに充電用の電
源を供給する定電圧定電流電源と、 上記電池パックの充電電流を検出する電流検出回路と、 上記充電電流を予め定められた一定値に制御するスイッ
チングレギュレーション回路と、 上記定電圧定電流電源による電池パックへの定電流充電
が設定値以下になったとき、当該電池パックへの充電を
定電圧充電に移行させ、上記スイッチングレギュレーシ
ョン回路による充電電流制御範囲内で上記充電優先順位
に従う次の電池パックを定電流充電する制御手段とを具
備し、 充電中の電池パックが満充電状態になる以前にスイッチ
ングレギュレーションによる充電電流制御範囲内で設定
順位に従う次の電池パックへ充電を行なうことを特徴と
する充電回路。
8. A charging circuit capable of mounting a plurality of battery packs using a single lithium secondary battery or an assembled battery thereof at one time, and means for setting a charging priority of each battery pack, A constant-voltage constant-current power supply that supplies power for charging to the battery pack selected according to the priority, a current detection circuit that detects the charging current of the battery pack, and the charging current is controlled to a predetermined constant value. When the constant current charging to the battery pack by the switching regulation circuit and the constant voltage constant current power supply becomes less than the set value, the charging to the battery pack is shifted to the constant voltage charging, and the charging current by the switching regulation circuit is changed. A control means for charging the next battery pack according to the above charging priority within the control range with a constant current, and the battery pack being charged is fully charged. Charging circuit that charges the next battery pack according to the setting order within the charging current control range by switching regulation before it goes into a standby state.
【請求項9】 定電圧充電を必要とする二次電池の充電
回路に於いて、 上記二次電池を連続充電する手段と、同連続充電時に於
いて電池電圧が第1の設定電圧に達したことを判定する
手段と、同判定時に於いて上記二次電池を連続充電から
所定の間隔で断続的に充電を行なう断続充電に切替える
手段と、 上記断続充電時に於ける非充電状態での電池電圧が第2
の設定電圧に達したことを判定する手段と、同判定時に
於いて断続充電から定電圧充電に切替える手段とを具備
し、二次電池の連続充電による電池電圧が第1の設定電
圧に達した際に断続充電に切替え、断続充電下での非充
電時の電池電圧が第2の設定電圧に達した際に定電圧充
電に切替えることを特徴とした定電圧充電を必要とする
二次電池の急速充電方式。
9. In a charging circuit for a secondary battery which requires constant voltage charging, means for continuously charging the secondary battery, and the battery voltage reaching a first set voltage during the continuous charging. Means for determining that, the means for switching the secondary battery from intermittent charging to intermittent charging that intermittently charges at a predetermined interval at the time of the determination, and battery voltage in the non-charged state during the intermittent charging Is the second
And a means for switching from intermittent charging to constant voltage charging at the time of the determination, and the battery voltage due to continuous charging of the secondary battery has reached the first set voltage. Of the secondary battery requiring constant voltage charging, which is characterized by switching to intermittent charging at that time and switching to constant voltage charging when the battery voltage during non-charging under intermittent charging reaches the second set voltage. Quick charge method.
【請求項10】 直列接続された2個以上の二次電池単
セルと、二次電池単セル相互の接続点に電流制限抵抗を
介して接続される端子とを備えてなる組電池の電池電圧
測定装置に於いて、上記端子に接続される増幅器を含む
補正電流路と、この補正電流路の増幅器と上記端子との
間に介在される電圧測定用のスイッチと、このスイッチ
をオン/オフ制御する手段と、上記スイッチをオフした
後の上記二次電池単セル各々の電圧を測定し出力する手
段とを具備してなることを特徴とする組電池の電池電圧
測定装置。
10. A battery voltage of an assembled battery comprising two or more secondary battery single cells connected in series, and a terminal connected to a connection point between the secondary battery single cells via a current limiting resistor. In a measuring device, a correction current path including an amplifier connected to the terminal, a switch for measuring voltage interposed between the amplifier of the correction current path and the terminal, and on / off control of the switch And a means for measuring and outputting the voltage of each of the secondary battery single cells after the switch has been turned off, the battery voltage measuring device for an assembled battery.
【請求項11】 2個以上の二次電池単セルが直列接続
された組電池と、 上記各二次電池単セルに対応して設けられ、対応する二
次電池単セルから電力が供給され、又は対応する二次電
池単セルの電圧に応じて消費電流が変化する直列接続さ
れた負荷とでなる回路に於いて、 二次電池単セル相互の接続点と負荷相互の接続点との間
の中性線電流路に介在された電流検知回路と、 この検知電流に従い各二次電池単セルの放電電流を個別
に制御して上記中性線電流路を無電流状態に制御し各二
次電池単セルの放電電流を等しくする放電電流制御回路
とを具備してなることを特徴とする二次電池の放電制御
方式。
11. An assembled battery in which two or more secondary battery single cells are connected in series, and a battery provided corresponding to each of the secondary battery single cells, and power is supplied from the corresponding secondary battery single cell, Or, in a circuit consisting of a load connected in series whose current consumption changes according to the voltage of the corresponding secondary battery single cell, between the connection point between the secondary battery single cells and the connection point between the loads. A current detection circuit interposed in the neutral line current path, and the discharge current of each secondary battery single cell is individually controlled according to this detection current to control the neutral line current path to a non-current state to control each secondary battery. A discharge control method for a secondary battery, comprising: a discharge current control circuit that equalizes the discharge currents of the single cells.
【請求項12】 2個以上の二次電池単セルが直列接続
された組電池と、 上記各二次電池単セルに対応して設けられ、対応する二
次電池単セルから電力が供給され、又は対応する二次電
池単セルの電圧に応じて消費電流が変化する直列接続さ
れた負荷とでなる回路に於いて、二次電池単セル相互の
接続点と負荷相互の接続点との間に、二次電池単セル相
互の接続点電圧を増幅し負荷相互の接続点に出力する増
幅度1の増幅器を設け、上記各負荷の消費電流が異なる
場合であっても上記各二次電池単セルの消費電流を等し
くしたことを特徴とする二次電池の放電制御方式。
12. An assembled battery in which two or more secondary battery single cells are connected in series, and a battery provided corresponding to each of the secondary battery single cells, and power is supplied from the corresponding secondary battery single cell, Or, in a circuit consisting of a series-connected load whose current consumption changes according to the voltage of the corresponding secondary battery single cell, between the connection point between the secondary battery single cells and the connection point between the loads. , Each secondary battery single cell is provided with an amplifier having an amplification factor of 1 for amplifying the voltage at the connection point between the secondary battery single cells and outputting it to the connection point between the loads, even if the current consumption of each load is different. Discharge control method for secondary batteries, characterized in that the current consumption of the battery is equal.
【請求項13】 二次電池単セルを直列接続してなる複
数種の組電池のうちの任意の組電池が実装可能なポータ
ブルコンピュータに於いて、組電池の種別毎に二次電池
単セルの直列接続点位置を特定した電圧検出端をもつ組
電池と、この組電池の電圧検出端より得られる電圧によ
り実装された組電池の種別を認識する手段とを具備して
なることを特徴とするポータブルコンピュータ。
13. A portable computer in which an arbitrary assembled battery of a plurality of assembled batteries formed by connecting secondary battery single cells in series can be mounted, wherein a secondary battery single cell is classified by type of assembled battery. The battery pack is characterized by comprising an assembled battery having a voltage detection end that specifies the position of the serial connection point, and means for recognizing the type of the assembled battery mounted by the voltage obtained from the voltage detection end of this assembled battery. Portable computer.
JP5197328A 1993-08-09 1993-08-09 Portable computer Pending JPH0749731A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5197328A JPH0749731A (en) 1993-08-09 1993-08-09 Portable computer
US08/853,415 US5825155A (en) 1993-08-09 1997-05-09 Battery set structure and charge/ discharge control apparatus for lithium-ion battery
US09/009,422 US5903131A (en) 1993-08-09 1998-01-20 Battery set structure and charge/discharge control apparatus for lithium-ion battery
US09/257,060 US6064179A (en) 1993-08-09 1999-02-25 Battery set structure and charge/discharge control apparatus for lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197328A JPH0749731A (en) 1993-08-09 1993-08-09 Portable computer

Publications (1)

Publication Number Publication Date
JPH0749731A true JPH0749731A (en) 1995-02-21

Family

ID=16372644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197328A Pending JPH0749731A (en) 1993-08-09 1993-08-09 Portable computer

Country Status (1)

Country Link
JP (1) JPH0749731A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036337A1 (en) * 1996-03-22 1997-10-02 Hitachi, Ltd. Lithium secondary cell, charger, and device for information terminal
EP1729203A1 (en) * 2005-05-31 2006-12-06 Marvell World Trade Ltd. Power distribution system for mobile computing devices
JP2010035416A (en) * 2000-01-18 2010-02-12 Qualcomm Inc System and method for accommodating more than one battery within electronic device
US7725182B2 (en) 2005-05-31 2010-05-25 Marvell World Trade Ltd. Power distribution system for a medical device
JP2012524380A (en) * 2009-04-16 2012-10-11 ヴァレンス テクノロジー インコーポレーテッド Battery, battery system, battery sub-module, battery operating method, battery system operating method, battery charging method, and battery system charging method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036337A1 (en) * 1996-03-22 1997-10-02 Hitachi, Ltd. Lithium secondary cell, charger, and device for information terminal
JP2010035416A (en) * 2000-01-18 2010-02-12 Qualcomm Inc System and method for accommodating more than one battery within electronic device
EP1729203A1 (en) * 2005-05-31 2006-12-06 Marvell World Trade Ltd. Power distribution system for mobile computing devices
US7610498B2 (en) 2005-05-31 2009-10-27 Marvell World Trade Ltd. Very low voltage power distribution for mobile devices
US7725182B2 (en) 2005-05-31 2010-05-25 Marvell World Trade Ltd. Power distribution system for a medical device
US8823323B2 (en) 2009-04-16 2014-09-02 Valence Technology, Inc. Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
JP2012524380A (en) * 2009-04-16 2012-10-11 ヴァレンス テクノロジー インコーポレーテッド Battery, battery system, battery sub-module, battery operating method, battery system operating method, battery charging method, and battery system charging method
US8884585B2 (en) 2009-04-16 2014-11-11 Valence Technology, Inc. Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
US9537326B2 (en) 2009-04-16 2017-01-03 Valence Technology, Inc. Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
JP2019003953A (en) * 2009-04-16 2019-01-10 ヴァレンス テクノロジー インコーポレーテッドValence Technology,Inc. Battery system
US10230246B2 (en) 2009-04-16 2019-03-12 Lithium Werks Technology Bv Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
JP2021065095A (en) * 2009-04-16 2021-04-22 リチウム ワークス テクノロジー ビーブイ Battery system
US11289918B2 (en) 2009-04-16 2022-03-29 Lithion Battery Inc. Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods

Similar Documents

Publication Publication Date Title
CN101421902B (en) Charging method and battery pack
US7956575B2 (en) Charging device for battery
EP2087572B1 (en) Battery pack charging system and method
US6064179A (en) Battery set structure and charge/discharge control apparatus for lithium-ion battery
US6163086A (en) Power supply circuit and a voltage level adjusting circuit and method for a portable battery-powered electronic device
US6060864A (en) Battery set structure and charge/discharge control apparatus for lithium-ion battery
US6373226B1 (en) Method of controlling discharge of a plurality of rechargeable batteries, and battery assembly
US6100670A (en) Multi-functional battery management module operable in a charging mode and a battery pack mode
US8203309B2 (en) Battery pack, and battery system
US6624614B2 (en) Charge and discharge controller
US20110076525A1 (en) Battery management system with energy balance among multiple battery cells
JP4667276B2 (en) A battery pack in which multiple secondary batteries are connected in series or in parallel
CN101277023B (en) Charging device
CN101013764A (en) Methods of charging battery packs for cordless power tool systems
EP0902522B1 (en) Charge control method and charger for a rechargeable battery
CN103001299A (en) Charger
US20050112416A1 (en) Battery assembly and battery pack
WO2014087675A2 (en) Charging device
JP3017128B2 (en) Charge control device
JP3249261B2 (en) Battery pack
US6002239A (en) Charging current adapter circuit for cells or batteries
JPH0749731A (en) Portable computer
JP3096535B2 (en) Method and apparatus for charging secondary battery
JP2003070178A (en) Charging state adjusting device and charging state detection device
JP3457637B2 (en) Battery type detection device