JPH0749561A - Production of aligner device and element using reflection type mask - Google Patents

Production of aligner device and element using reflection type mask

Info

Publication number
JPH0749561A
JPH0749561A JP6190160A JP19016094A JPH0749561A JP H0749561 A JPH0749561 A JP H0749561A JP 6190160 A JP6190160 A JP 6190160A JP 19016094 A JP19016094 A JP 19016094A JP H0749561 A JPH0749561 A JP H0749561A
Authority
JP
Japan
Prior art keywords
layers
reflection
exposure
mask
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6190160A
Other languages
Japanese (ja)
Other versions
JP2675263B2 (en
Inventor
Tsutomu Ikeda
勉 池田
Yutaka Watanabe
豊 渡辺
Masayuki Suzuki
雅之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19016094A priority Critical patent/JP2675263B2/en
Publication of JPH0749561A publication Critical patent/JPH0749561A/en
Application granted granted Critical
Publication of JP2675263B2 publication Critical patent/JP2675263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the aligner and to enhance the accuracy of exposure and transfer by exposing a wafer by using a reflection type mask formed by using a reflection layer having a multilayered film structure alternately laminated with plural materials varying in optical constants as a reflection part. CONSTITUTION:Layers 2, 4 of a first material and layers 3, 5 of a second material are alternately laminated on a substrate 1 having a plane surface, by which the reflection mirror part is formed thereon. Absorbers A for soft X-rays and vacuum UV rays patterned to desired shapes are disposed on the uppermost layer thereof. The soft X-rays which are generated from a divergent X-ray source and are made incident by specular reflection on the reflection type mask M0 constituted by forming the exposure patterns by the reflection layer having the multilayered film structure alternately laminated with the layers 2, 4 of the first material and the layers 3, 5 of the second material varying in the optical constants and the absorbers A on the substrate 1 are admitted via the reflection part of the mask M0 into a projecting optical system and are reflected by a concave face mirror M1, a convex face mirror M2 and a concave face mirror M3 in this order, by which the images of the mask M0 are formed on the exposed substrate (wafer). The element patterns are thus transferred.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軟X線や真空紫外線を
用いたリソグラフィーに好適な、反射型マスクを用いた
露光装置や素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an exposure apparatus and an element using a reflective mask, which is suitable for lithography using soft X-rays or vacuum ultraviolet rays.

【0002】[0002]

【従来の技術】従来、X線を使用した露光装置や素子の
製造に用いられる反射型マスクのX線反射部としては、
単結晶板が用いられていた(特願昭52−54126
号)。しかしこのX線露光用の反射型マスクは、単結晶
のBragg回折を利用するため、X線入射を斜入射と
しなくてはならず、マスクによるエネルギロスも大きか
った。その結果、またマスク面積が非常に大きくなり、
大きいゆえに平面性よく均一に作成するのが困難であ
る、放射光の利用効率が低い等の問題が生じていた。
2. Description of the Related Art Conventionally, as an X-ray reflecting portion of a reflection type mask used for manufacturing an exposure apparatus and an element using X-ray,
A single crystal plate was used (Japanese Patent Application No. 52-54126).
issue). However, since this reflection type mask for X-ray exposure utilizes Bragg diffraction of a single crystal, X-ray incidence must be oblique incidence, and energy loss due to the mask was large. As a result, the mask area becomes very large,
Since it is large, it is difficult to make it flat and uniform, and there are problems such as low utilization efficiency of radiated light.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来例
の問題点に鑑み、露光装置の大幅な小型化や、露光転写
の高精度化を達成することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and it is an object of the present invention to achieve a drastic downsizing of an exposure apparatus and a high accuracy of exposure transfer.

【0004】[0004]

【課題を解決するための手段】本発明は前記の課題を解
決しようとするもので、その要旨は光学定数の異なる2
種類の層を交互に積層した多層膜構造を有する反射層と
吸収体による露光パターンとが基板上に形成された反射
型マスクに対して、露光用放射線を照射する光学系と、
該反射型マスクで反射された放射線をウエハに投射して
ウエハに露光パターンを転写する光学系とを有すること
を特徴とする露光装置及び光学定数の異なる2種類の層
を交互に積層した多層膜構造を有する反射層と吸収体に
よる素子パターンとが基板上に形成された反射型マスク
に対して、露光用放射線を照射する工程と、該反射型マ
スクで反射された放射線をウエハに投射してウエハに素
子パターンを転写する工程とを有することを特徴とする
素子の製造方法にある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-described problems, and the gist thereof is different in optical constants.
An optical system for irradiating exposure radiation to a reflective mask having a reflective layer having a multilayer film structure in which layers of various types are alternately laminated and an exposure pattern by an absorber are formed on a substrate,
An exposure apparatus comprising: an optical system for projecting radiation reflected by the reflective mask onto a wafer to transfer an exposure pattern to the wafer; and a multilayer film in which two types of layers having different optical constants are alternately laminated. A step of irradiating a reflective mask having a reflective layer having a structure and an element pattern of an absorber formed on a substrate with exposure radiation, and projecting the radiation reflected by the reflective mask onto a wafer. And a step of transferring an element pattern onto a wafer.

【0005】以下本発明を図面に基づき説明する。The present invention will be described below with reference to the drawings.

【0006】図1は本発明の露光装置及び素子の製造方
法に使用される軟X線・真空紫外線露光用多層膜反射型
マスクの一例の模式断面図である。
FIG. 1 is a schematic cross-sectional view of an example of a multilayer film reflection type mask for soft X-ray / vacuum ultraviolet exposure used in an exposure apparatus and a method for manufacturing an element of the present invention.

【0007】この多層膜反射型マスクは、図中に示すよ
うに平面の基板1上に第1の物質の層2,4…及び第2
の物質の層3,5…が交互に積層されて反射鏡部分が形
成され、その最上層の上に所望の形状にパターニングさ
れている軟X線・真空紫外線用の吸収体Aが配されてい
る。
In this multilayer reflective mask, as shown in the figure, a first material layer 2, 4, ...
.. are alternately laminated to form a reflecting mirror portion, and an absorber A for soft X-ray / vacuum ultraviolet light, which is patterned into a desired shape, is arranged on the uppermost layer thereof. There is.

【0008】各々の層の膜厚d1 ,d2 …は10A以上
であり、交互に等しい膜厚であって(d1 =d3 =…,
2 =d4 =…)も、全ての膜厚を変えても差しつかえ
ないが、それぞれの層中における軟X線・真空紫外線の
吸収による振幅の減少およびそれぞれの層の界面におけ
る反射光の位相の重なりによる反射光の強め合いの両者
を考慮し、反射鏡全体として最も高い反射率が得られる
ような厚さとすることが好ましい。各層の厚さは10Å
より小さい場合は界面における2つの物質の拡散の効果
により、反射鏡として高い反射率が得られず好ましくな
い。層数を増加させればさせるほど反射率は上昇する
が、その一方で製作上の困難さが発生してくる。そのた
め積層数は200層以内が好ましく用いられる。
The film thicknesses d 1 , d 2, ... Of the respective layers are 10 A or more, and the film thicknesses are alternately equal (d 1 = d 3 = ...,
d 2 = d 4 = ...) is acceptable even if all film thicknesses are changed, but the amplitude is reduced by absorption of soft X-rays and vacuum ultraviolet rays in each layer, and the reflected light at the interface of each layer is reduced. In consideration of both the strengthening of reflected light due to the overlapping of phases, it is preferable that the thickness of the reflecting mirror as a whole be such that the highest reflectance is obtained. The thickness of each layer is 10Å
If it is smaller, it is not preferable because a high reflectance cannot be obtained as a reflecting mirror due to the effect of diffusion of two substances at the interface. The reflectance increases as the number of layers increases, but on the other hand, manufacturing difficulties arise. Therefore, the number of laminated layers is preferably 200 or less.

【0009】吸収体は、軟X線・真空紫外線を吸収し、
高熱伝導性、低熱膨張性ならばどのようなものでもよい
が、具体的には線膨張率が5×10-5/deg以下であ
り、熱伝導率が0.1J/cm・s・deg以上である
ものがよい。それより大きな線膨張率、熱伝導率である
場合は、吸収体と多層構造の反射鏡とがずれたり剥離し
たりする問題が発生しやすい。このような吸収体をなす
物質としては、例えば、金、タンタル、タングステンな
どの金属、ケイ素などの半導体、窒化ケイ素、炭化ケイ
素、窒化タンタルなどの絶縁体が好ましく用いられる。
The absorber absorbs soft X-rays and vacuum ultraviolet rays,
Any material may be used as long as it has high thermal conductivity and low thermal expansion, but specifically, it has a linear expansion coefficient of 5 × 10 −5 / deg or less and a thermal conductivity of 0.1 J / cm · s · deg or more. What is good is. If the coefficient of linear expansion and the thermal conductivity are larger than the above values, the problem that the absorber and the reflecting mirror having the multilayer structure are displaced or separated easily occurs. As a substance forming such an absorber, for example, metals such as gold, tantalum, and tungsten, semiconductors such as silicon, and insulators such as silicon nitride, silicon carbide, and tantalum nitride are preferably used.

【0010】図3は本発明の反射型マスクを用いた露光
装置の投影光学系の光路図である。
FIG. 3 is an optical path diagram of the projection optical system of the exposure apparatus using the reflective mask of the present invention.

【0011】本発明は光学定数の異なる第1の物質の層
2,4と第2の物質の層3,5とを交互に積層した多層
膜構造を有する反射層と吸収体Aによる露光パターンと
が基板1上に形成された反射型マスクM0 に対して発散
X線源から発生し正入射で入射した軟X線はマスクM0
の反射部を介して投影光学系に入り、凹面鏡M1 、凸面
鏡M2 、凹面鏡M3 の順に反射しマスクM0 の像を露光
基板(ウエハ)上に結像するようにして素子パターンを
転写し得るようにした露光装置及び素子の製造方法であ
る。
According to the present invention, a reflective layer having a multilayer film structure in which first material layers 2 and 4 having different optical constants and second material layers 3 and 5 having different optical constants are alternately laminated, and an exposure pattern by an absorber A are provided. Is generated from the divergent X-ray source to the reflection-type mask M 0 formed on the substrate 1 and the soft X-rays which are normally incident are incident on the mask M 0.
The element pattern is transferred to the projection optical system through the reflection part of the concave mirror, the concave mirror M 1 , the convex mirror M 2 , and the concave mirror M 3 are sequentially reflected to form the image of the mask M 0 on the exposure substrate (wafer). It is a method of manufacturing an exposure apparatus and an element that can be performed.

【0012】[0012]

【実施例】以下に本発明の実施例を挙げて本発明を更に
詳細に説明する。 実施例1 図2(a)に示す様に、基板1として面粗さがrms値
で10Å以下になるように研磨されたケイ素単結晶板を
用い、第1の層2,4…をなす物質としてルテニウム
(Ru)、第2の層3,5…をなす物質として炭化ケイ
素(SiC)を用い、1×10-6Pa以下の超高真空に
到達後、アルゴン圧力を5×10-1Paに保ち、スパッ
タ蒸着法により膜厚をそれぞれ29.8Å、33.9Å
として41層(Ru層21層、SiC:20層)積層
し、更にその上に保護膜Bとして炭素(C)を10Å積
層し多層積層板を得た。この場合、第1の層が屈折率の
実数部分が小であり第2の層が屈折率の実数部分が大で
ある。
EXAMPLES The present invention will be described in more detail with reference to Examples of the present invention. Example 1 As shown in FIG. 2 (a), a substrate 1 is made of a silicon single crystal plate polished to have a surface roughness of 10 Å or less as an rms value, and a material forming the first layers 2, 4 ... As ruthenium (Ru) and silicon carbide (SiC) as the material forming the second layers 3, 5, ... After reaching an ultra high vacuum of 1 × 10 −6 Pa or less, the argon pressure is 5 × 10 −1 Pa. And the film thickness was 29.8Å and 33.9Å respectively by the sputter deposition method.
41 layers (Ru layer 21 layers, SiC: 20 layers) were laminated as above, and further 10 l of carbon (C) was laminated thereon as a protective film B to obtain a multilayer laminated plate. In this case, the first layer has a small real part of the refractive index and the second layer has a large real part of the refractive index.

【0013】次に図2(b)に示すように、この多層積
層板上にレジストとしてのPMMAの層を0.5μm厚
に形成し、EB描画により1.75μmライン&スペー
スのパターニングを行い、このPMMAよりなるパター
ン状レジストC上に軟X線吸収体である金(線膨張率
1.42×10-5/deg、熱伝導率3.16J/cm
・s・deg)をEB蒸着により0.1μm厚形成し
た。次にPMMAをハクリし、多層膜上に金パターンA
を得た(図2(c))。
Next, as shown in FIG. 2B, a PMMA layer as a resist is formed to a thickness of 0.5 μm on this multilayer laminated plate, and 1.75 μm lines and spaces are patterned by EB drawing. Gold (a linear expansion coefficient of 1.42 × 10 −5 / deg, a thermal conductivity of 3.16 J / cm 2) which is a soft X-ray absorber is formed on the patterned resist C made of PMMA.
.S.deg) was formed by EB vapor deposition to a thickness of 0.1 .mu.m. Next, the PMMA is peeled off, and the gold pattern A is formed on the multilayer film.
Was obtained (FIG. 2 (c)).

【0014】次に作成した多層膜反射型マスクを用いて
軟X線露光を行った。
Next, soft X-ray exposure was performed using the multilayer reflective mask thus prepared.

【0015】図3は投影光学系の光路図で、図中の軟X
線反射ミラーM1 ,M2 ,M3 はそれぞれ凹面鏡、凸面
鏡、凹面鏡であり、Wは露光基板を示している。M0
上記多層膜反射型マスクである。図中にその位置を示
す。発散X線源から発生しマスクM0 に対して1.7°
の角度(正入射)で入射した軟X線はマスクM0 の反射
部を介して投影光学系に入り、凹面鏡M1 、凸面鏡M
2 、凹面鏡M3 の順に反射し、マスクM0 の像を露光基
板W上に結像する。本投影光学系の仕様は投影倍率1/
5、有効Fナンバーが13、像面サイズが28×14m
2 、像高が20〜37mm、解像力が0.35μmで
ある。
FIG. 3 is an optical path diagram of the projection optical system.
The line reflection mirrors M 1 , M 2 and M 3 are a concave mirror, a convex mirror and a concave mirror, respectively, and W is an exposure substrate. M 0 is the multilayer reflective mask. The position is shown in the figure. Generated from a divergent X-ray source and 1.7 ° with respect to the mask M 0
The soft X-rays incident at an angle of (normal incidence) enter the projection optical system via the reflecting portion of the mask M 0 , and are concave mirror M 1 and convex mirror M 1 .
2 , the concave mirror M 3 is reflected in this order, and the image of the mask M 0 is formed on the exposure substrate W. This projection optical system has a projection magnification of 1 /
5, effective F number 13, image plane size 28x14m
m 2 , the image height is 20 to 37 mm, and the resolution is 0.35 μm.

【0016】光源には124Åの軟X線を用い、露光基
板WにはPMMA1μmを塗布した。軟X線を発生さ
せ、投影露光系により、露光基板W上のPMMAレジス
トを露光し現像を行ったところ、0.35μmライン&
スペースが解像した。 実施例2 実施例1と同様に研摩されたケイ素単結晶板1上に、第
1の層2,4…をなす物質として窒化タンタル(Ta
N)、第2の層3,5…をなす物質としてケイ素(S
i)を用い、1×10-6Pa以下の超高真空に到達後、
アルゴン圧力を5×10-1Paに保ち、スパッタ蒸着法
により膜厚をそれぞれ20.3Å、40.6Åとして、
41層(TaN:21層、Si:20層)積層し、更に
その上に保護膜Bとして炭素(C)を10A積層した。
この場合、第1の層が屈折率の実数部分が小であり第2
の層が屈折率の実数部分が大である。
A soft X-ray of 124 Å was used as a light source, and PMMA 1 μm was applied to the exposed substrate W. When a soft X-ray is generated and the PMMA resist on the exposure substrate W is exposed and developed by a projection exposure system, 0.35 μm line &
Space resolved. Example 2 On a silicon single crystal plate 1 polished in the same manner as in Example 1, tantalum nitride (Ta) was used as a material for the first layers 2, 4 ...
N) and silicon (S) as a material forming the second layers 3, 5 ...
i), after reaching an ultra high vacuum of 1 × 10 −6 Pa or less,
Keeping the argon pressure at 5 × 10 −1 Pa and setting the film thickness to 20.3Å and 40.6Å respectively by the sputter deposition method,
41 layers (TaN: 21 layers, Si: 20 layers) were laminated, and further 10 A of carbon (C) was laminated thereon as a protective film B.
In this case, the first layer has a small real part of the refractive index and
The real part of the refractive index of the layer is large.

【0017】次に得られた多層積層板上にPMMA0.
5μmを形成しEB描画によりパターニングを行った。
このPMMAパターン上に軟X線吸収体であるタンタル
(Ta)(線膨張率6.3×10-6/deg、熱伝導率
0.575J/cm・s・deg)をEB蒸着により
0.1μm厚形成した後、PMMAをハクリし、多層膜
上にタンタルパターンAを得た。
Next, PMMA0.
5 μm was formed and patterned by EB drawing.
On this PMMA pattern, tantalum (Ta) (linear expansion coefficient 6.3 × 10 −6 / deg, thermal conductivity 0.575 J / cm · s · deg), which is a soft X-ray absorber, was formed by EB vapor deposition to a thickness of 0.1 μm. After thickly forming, PMMA was peeled off to obtain a tantalum pattern A on the multilayer film.

【0018】ここで作製したマスクを用いて、実施例1
で示した縮小光学系により露光基板W上のPMMAを露
光した。その結果、0.35μmラインアンドスペース
が解像した。 実施例3 実施例1と同様に研摩されたケイ素単結晶板上に、第1
の層2,4…をなす物質としてパラジウム(Pd)、第
2の層3,5…をなす物質としてケイ素(Si)を用
い、1×10-6Pa以下の超高真空中においてEB蒸着
法により、膜厚をそれぞれ21.1Å、40.3Åとし
て、41層(Pd:21層、Si:20層)積層し、更
にその上に保護膜として炭素(C)を10Å積層した。
この場合、第1の層が屈折率の実数部分が小であり第2
の層が屈折率の実数部分が大である。
Using the mask produced here, Example 1
The PMMA on the exposure substrate W was exposed by the reduction optical system shown by. As a result, 0.35 μm line and space was resolved. Example 3 On a silicon single crystal plate polished in the same manner as in Example 1, the first
(Pd) is used as a material for forming the layers 2, 4 ... and Silicon (Si) is used as a material for forming the second layers 3, 5 ..., and EB vapor deposition is performed in an ultrahigh vacuum of 1 × 10 −6 Pa or less. Thus, 41 layers (Pd: 21 layers, Si: 20 layers) were laminated with film thicknesses of 21.1Å and 40.3Å, respectively, and further 10Å of carbon (C) was laminated thereon as a protective film.
In this case, the first layer has a small real part of the refractive index and
The real part of the refractive index of the layer is large.

【0019】次に得られた多層積層板上にPMMA0.
5μmを形成しEB描画によりパターニングを行った。
このPMMAパターン上に軟X線吸収体であるケイ素
(Si)(線膨張率2.6×10-6/deg、熱伝導率
1.49J/cm・s・deg)をEB蒸着により0.
1μm厚形成した後、PMMAをハクリし、多層膜上に
ケイ素パターンAを得た。
Next, PMMA0.
5 μm was formed and patterned by EB drawing.
On this PMMA pattern, silicon (Si) as a soft X-ray absorber (coefficient of linear expansion of 2.6 × 10 −6 / deg, thermal conductivity of 1.49 J / cm · s · deg) was formed by EB vapor deposition.
After forming a film having a thickness of 1 μm, PMMA was peeled off to obtain a silicon pattern A on the multilayer film.

【0020】ここで作製したマスクを用いて、実施例1
で示した縮小光学系により露光基板W上のPMMAを露
光した。その結果、0.35μmラインアンドスペース
が解像した。
Using the mask produced here, Example 1
The PMMA on the exposure substrate W was exposed by the reduction optical system shown by. As a result, 0.35 μm line and space was resolved.

【0021】尚本発明の実施例においては、図3に示し
た構成の1/5倍縮小光学系(0.35μm解像)を仮
定したが、もちろん他の仕様や構成の露光用光学系を使
用してもよい。
In the embodiment of the present invention, the ⅕ reduction optical system (0.35 μm resolution) having the configuration shown in FIG. 3 is assumed, but it goes without saying that an exposure optical system having other specifications and configurations may be used. May be used.

【0022】また実施例においては、多層膜の形成にお
いてEB蒸着法及びスパッタリング法を用いたが、これ
に限定されるものではなく、その他抵抗加熱、CVD、
反応性スパッタリング等のさまざまな薄膜を形成する方
法を用いることができる。また基板としてSi単結晶板
を用いたが、それに限らずガラス、溶融石英、炭化ケイ
素等の基板であってその表面が使用波長に比べて十分に
なめらかになるように研摩されたものであればよい。
In the examples, the EB vapor deposition method and the sputtering method were used for forming the multilayer film, but the present invention is not limited to this, and other resistance heating, CVD,
Various thin film forming methods such as reactive sputtering can be used. Although a Si single crystal plate was used as the substrate, the substrate is not limited to this, and any substrate such as glass, fused silica, silicon carbide, etc., whose surface is sufficiently smooth compared to the wavelength used, can be used. Good.

【0023】[0023]

【発明の効果】本発明によれば、光学定数の異なる2つ
の物質を交互に積層した多層膜構造を有する反射層を反
射部として用いた反射型マスクを用いてウエハに露光を
行うため、従来の単結晶のBragg回折を利用した反
射鏡のように放射線を水平方向から斜入射させる必要が
無く、マスクに対して放射線を正入射させることが可能
であり、放射光の利用効率も高い。その結果、露光装置
の大幅な小型化や、露光転写の高精度化を達成すること
ができる。
According to the present invention, a wafer is exposed by using a reflective mask having a reflective layer having a multilayer structure in which two substances having different optical constants are alternately laminated as a reflective portion. Unlike the reflecting mirror using Bragg diffraction of the single crystal, it is not necessary to obliquely enter the radiation from the horizontal direction, the radiation can be directly incident on the mask, and the utilization efficiency of the emitted light is high. As a result, it is possible to significantly reduce the size of the exposure apparatus and improve the accuracy of exposure transfer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる軟X線・真空紫外線露光用
多層膜反射型マスクの基本断面図。
FIG. 1 is a basic sectional view of a multilayer film reflective mask for soft X-ray / vacuum ultraviolet exposure used in the present invention.

【図2】図2(a)(b)(c)は本発明に用いられる
多層膜反射マスクの作製工程図。
2A, 2B, and 2C are manufacturing process diagrams of a multilayer film reflection mask used in the present invention.

【図3】本発明の露光装置の投影光学系の光路図。FIG. 3 is an optical path diagram of a projection optical system of the exposure apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2,4 第1の物質の層 3,5 第2の物質の層 A 軟X線・真空紫外線吸収体 B 保護膜 C レジスト(PMMA) M0 軟X線・真空紫外線露光用多層膜反射型マスク M1 凹型X線ミラー M2 凸型X線ミラー M3 凹型X線ミラー W 露光基板 d1 〜d4 各層の厚さ1 Si substrate 2,4 First substance layer 3,5 Second substance layer A Soft X-ray / vacuum ultraviolet absorber B Protective film C Resist (PMMA) M 0 Soft X-ray / vacuum ultraviolet exposure multilayer film Reflective mask M 1 concave X-ray mirror M 2 convex X-ray mirror M 3 concave X-ray mirror W exposure substrate d 1 to d 4 thickness of each layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光学定数の異なる2種類の層を交互に積
層した多層膜構造を有する反射層と吸収体による露光パ
ターンとが基板上に形成された反射型マスクに対して、
露光用放射線を照射する光学系と、該反射型マスクで反
射された放射線をウエハに投射してウエハに露光パター
ンを転写する光学系とを有することを特徴とする露光装
置。
1. A reflective mask having a reflective layer having a multilayer film structure in which two types of layers having different optical constants are alternately laminated and an exposure pattern of an absorber are formed on a substrate,
An exposure apparatus comprising: an optical system for irradiating exposure radiation; and an optical system for projecting the radiation reflected by the reflective mask onto a wafer to transfer an exposure pattern onto the wafer.
【請求項2】 光学定数の異なる2種類の層を交互に積
層した多層膜構造を有する反射層と吸収体による素子パ
ターンとが基板上に形成された反射型マスクに対して、
露光用放射線を照射する工程と、該反射型マスクで反射
された放射線をウエハに投射してウエハに素子パターン
を転写する工程とを有することを特徴とする素子の製造
方法。
2. A reflection type mask in which a reflection layer having a multilayer film structure in which two types of layers having different optical constants are alternately laminated and an element pattern made of an absorber are formed on a substrate,
A method for manufacturing an element, comprising: a step of irradiating exposure radiation; and a step of projecting the radiation reflected by the reflective mask onto a wafer to transfer an element pattern to the wafer.
【請求項3】 前記投射は縮小投影である請求項1記載
の露光装置または請求項2記載の素子の製造方法。
3. The exposure apparatus according to claim 1, or the element manufacturing method according to claim 2, wherein the projection is reduction projection.
【請求項4】 前記放射線は軟X線または真空紫外線で
ある請求項1記載の露光装置または請求項2記載の素子
の製造方法。
4. The exposure apparatus according to claim 1, or the element manufacturing method according to claim 2, wherein the radiation is soft X-rays or vacuum ultraviolet rays.
JP19016094A 1994-07-21 1994-07-21 Exposure apparatus and exposure method using reflective mask Expired - Lifetime JP2675263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19016094A JP2675263B2 (en) 1994-07-21 1994-07-21 Exposure apparatus and exposure method using reflective mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19016094A JP2675263B2 (en) 1994-07-21 1994-07-21 Exposure apparatus and exposure method using reflective mask

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3352387A Division JPH0727198B2 (en) 1987-02-18 1987-02-18 Multi-layer reflective mask

Publications (2)

Publication Number Publication Date
JPH0749561A true JPH0749561A (en) 1995-02-21
JP2675263B2 JP2675263B2 (en) 1997-11-12

Family

ID=16253429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19016094A Expired - Lifetime JP2675263B2 (en) 1994-07-21 1994-07-21 Exposure apparatus and exposure method using reflective mask

Country Status (1)

Country Link
JP (1) JP2675263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273668A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Reflecttion type phototmask blank, method of manufacturing same, reflection type phototmask, method of manufacturing same and exposure method of extreme ultraviolet light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201656A (en) * 1987-02-18 1988-08-19 Canon Inc Multilayered film reflection type mask for soft x-ray and vacuum ultraviolet-ray exposure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201656A (en) * 1987-02-18 1988-08-19 Canon Inc Multilayered film reflection type mask for soft x-ray and vacuum ultraviolet-ray exposure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273668A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Reflecttion type phototmask blank, method of manufacturing same, reflection type phototmask, method of manufacturing same and exposure method of extreme ultraviolet light

Also Published As

Publication number Publication date
JP2675263B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US5052033A (en) Reflection type mask
JP3047541B2 (en) Reflective mask and defect repair method
US6833223B2 (en) Multilayer-film reflective mirrors and optical systems comprising same
WO2004109778A1 (en) Mutilayer film reflector and x-ray exposure system
US7773196B2 (en) Projection-optical systems and exposure apparatus comprising same
JP4144301B2 (en) MULTILAYER REFLECTOR, REFLECTIVE MASK, EXPOSURE APPARATUS AND REFLECTIVE MASK MANUFACTURING METHOD
JPH0727198B2 (en) Multi-layer reflective mask
JP2007057450A (en) Multilayered film mirror and exposure system
EP1995767B1 (en) Projection optical system, aligner and method for fabricating semiconductor device
JP2545905B2 (en) Reflective mask and exposure method using the same
JPH0868897A (en) Reflection mirror and its production method
JP2615741B2 (en) Reflection type mask, exposure apparatus and exposure method using the same
JPH10339799A (en) Reflecting mirror and its manufacturing method
JPH0749561A (en) Production of aligner device and element using reflection type mask
JPH05144710A (en) Optical element and fabrication thereof
JP2000031021A (en) Reflective mask and method of producing device using the same
JPH06177019A (en) Optical element and its manufacture
JP2675263C (en)
JP2002323599A (en) Method of manufacturing multilayer film reflecting mirror and exposure device
JP3345512B2 (en) Method for manufacturing semiconductor device
JP7295260B2 (en) Extreme UV mask blank with multilayer absorber and manufacturing method
TW561280B (en) Multi-layer film reflection mirror and exposure equipment
JPH01175734A (en) Reflective mask and its manufacture
JP2615741C (en)
US7105255B2 (en) EUV reflection mask and lithographic process using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term