JPH06177019A - Optical element and its manufacture - Google Patents

Optical element and its manufacture

Info

Publication number
JPH06177019A
JPH06177019A JP32652792A JP32652792A JPH06177019A JP H06177019 A JPH06177019 A JP H06177019A JP 32652792 A JP32652792 A JP 32652792A JP 32652792 A JP32652792 A JP 32652792A JP H06177019 A JPH06177019 A JP H06177019A
Authority
JP
Japan
Prior art keywords
multilayer film
optical element
layer
ray
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32652792A
Other languages
Japanese (ja)
Inventor
Hiroaki Oiizumi
博昭 老泉
Masaaki Ito
昌昭 伊東
Tsuneo Terasawa
恒男 寺澤
Eiji Takeda
英次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32652792A priority Critical patent/JPH06177019A/en
Publication of JPH06177019A publication Critical patent/JPH06177019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve yield in optical loss by laminating multi-layer films on a smooth-surface substrate to the thickness larger than the number of lamination at which reflectivity saturates, for inspection, and removing defects from an upper layer if the multi-layer has a defect. CONSTITUTION:A thin film layer 119 is vapor-deposited on a substrate 11 having an ultra-smooth surface, then two kinds of material are alternately laminated, for forming a multi-layer film 21. Here, inspection is carried out with an optical microscope and an x-ray microscope, to remove a defective layer-pair. Then, inspection is carried out again with the optical microscope and x-ray microscope, and until actually reflectivity saturates itself, layer-pairs are laminated, and a resist is coated on it, so that patterns 22 and 2203 of a reflective mask are formed. Then, inspection is carried out again with the optical microscope and x-ray microscope, to confirm that no defect exist, respectively. With this, at an inspection/repair process, yield of expensive multi-layer film optical elements becomes greater, significantly contributing to reduced manufacturing costs of optical elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空紫外線またはX線
の露光または照射により像形成を行う、例えば半導体パ
タンの転写用縮小X線リソグラフィに用いる反射型マス
ク等の、光学素子およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element such as a reflective mask used for reduced X-ray lithography for transferring semiconductor patterns, which is used for image formation by exposure or irradiation with vacuum ultraviolet rays or X-rays, and a method for manufacturing the same. It is about.

【0002】[0002]

【従来の技術】LSIにおける固体素子の集積度および
動作速度を向上するため、回路パタンの微細化が進んで
いる。現在これらのパタンの形成には、露光光源を紫外
線とする縮小投影露光法が広く用いられている。上記露
光法の解像度は、露光波長λに比例し投影光学系の開口
数NAに反比例する。解像限界の向上は開口数NAを大
きくとることにより行われてきた。しかし、この方法は
焦点深度の減少と屈折光学系(レンズ)の設計および製
造技術の困難から限界に近づきつつある。このため、露
光波長λを短くする手段が行われている。例えば、水銀
ランプのg線(λ=435.8nm)からi線(λ=3
65nm)、さらにKrFエキシマレーザ(λ=249
nm)等である。露光波長の短波長化により解像度は向
上する。しかし、露光に用いる紫外線の波長の大きさに
基づく原理的な限界から、0.1μm(100nm)以
下の解像度を得ることは不可能に近い。
2. Description of the Related Art In order to improve the degree of integration and operation speed of solid-state elements in LSI, circuit patterns are becoming finer. At present, a reduction projection exposure method in which an exposure light source is ultraviolet rays is widely used for forming these patterns. The resolution of the exposure method is proportional to the exposure wavelength λ and inversely proportional to the numerical aperture NA of the projection optical system. The resolution limit has been improved by increasing the numerical aperture NA. However, this method is approaching its limit due to the reduction of the depth of focus and the difficulty in designing and manufacturing the refractive optical system (lens). For this reason, means for shortening the exposure wavelength λ has been implemented. For example, from the g-line (λ = 435.8 nm) of a mercury lamp to the i-line (λ = 3)
65 nm) and a KrF excimer laser (λ = 249
nm) and the like. The resolution is improved by shortening the exposure wavelength. However, it is almost impossible to obtain a resolution of 0.1 μm (100 nm) or less from the theoretical limit based on the size of the wavelength of ultraviolet rays used for exposure.

【0003】一方、微細パタンの形成方法に、露光波長
をおよそ0.5nmから2nmの軟X線とする近接等倍
X線リソグラフィがある。この方法は露光波長が短いた
め、原理的に0.1μm以下の高い解像度が得られる可
能性がある。一般に、所望の素子に回路パタンを形成す
るためには、ウェハ上のレジストマスクに該マスク上の
パタンを転写する。上記近接等倍X線リソグラフィでは
等倍X線マスクと呼ばれる透過型マスクが用いられる。
上記等倍X線マスクにおけるX線が透過する部分は、メ
ンブレンと呼ばれるSi、SiN、SiC、C等の軽元
素材料で形成された、通常2μm程度の厚さからなる薄
膜で形成されている。また、上記等倍X線マスクにおけ
るX線を吸収する部分は、メンブレン上に吸収体と呼ば
れる厚さが0.5μm〜1.0μm程度で、W、Au、
Ta等の重金属からなる回路パタンが形成されている。
したがって、上記等倍X線マスクは非常に剛性が弱いメ
ンブレンの上に回路パタンが形成されているため、吸収
体である重金属の内部応力やX線マスクを所定の露光装
置に装着する際の外力等で回路パタンに歪みを生じ、所
望の回路パタンをウェハ上のレジストに転写できないと
いう問題が起ってくる。とくに近接等倍X線リソグラフ
ィでは、上記等倍X線マスクのパタンが1対1の等倍で
レジストに転写されるため、上記等倍X線マスク上のパ
タンの歪みはレジストに1対1で転写される。剛性が弱
い上記等倍X線マスクのパタンに歪みを生じる問題は、
近接等倍X線リソグラフィで大きな課題になっている。
On the other hand, as a method for forming a fine pattern, there is a proximity equal-magnification X-ray lithography in which an exposure wavelength is a soft X-ray of about 0.5 nm to 2 nm. Since this method has a short exposure wavelength, it is possible in principle to obtain a high resolution of 0.1 μm or less. Generally, in order to form a circuit pattern on a desired element, a pattern on the mask is transferred to a resist mask on the wafer. In the above-mentioned proximity equal-magnification X-ray lithography, a transmission type mask called an equal-magnification X-ray mask is used.
The X-ray permeable portion of the equal-magnification X-ray mask is formed of a thin film, which is usually called a membrane and has a thickness of about 2 μm, which is formed of a light element material such as Si, SiN, SiC, and C. Further, the portion that absorbs X-rays in the equal-magnification X-ray mask has a thickness of about 0.5 μm to 1.0 μm called an absorber on the membrane, and W, Au,
A circuit pattern made of a heavy metal such as Ta is formed.
Therefore, since the circuit pattern is formed on the membrane of the above-mentioned equal-magnification X-ray mask having a very low rigidity, the internal stress of the heavy metal as the absorber and the external force when the X-ray mask is mounted on the predetermined exposure apparatus. As a result, the circuit pattern is distorted and a desired circuit pattern cannot be transferred to the resist on the wafer. Especially, in the proximity equal-magnification X-ray lithography, the pattern of the equal-magnification X-ray mask is transferred to the resist at the equal magnification of 1: 1. Therefore, the pattern distortion on the equal-magnification X-ray mask is 1: 1 to the resist. Transcribed. The problem of causing distortion in the pattern of the same-size X-ray mask, which has low rigidity, is
This is a big problem in the near-magnification X-ray lithography.

【0004】上記のような背景をもとに、近年、真空紫
外線または軟X線を露光光源とした縮小X線リソグラフ
ィが注目を浴びている。例えば、ジャパニーズ・ジャー
ナル・オブ・アプライド・フィジックス(Japanese Jou
rnal of Applied Physics)1991年、30号、11
B巻、3051頁に記載されている。図6は縮小X線リ
ソグラフィの露光光学系の例を示すものである。真空紫
外線または軟X線411を露光光源とし、θなる入射角
42で斜めに入射して反射型マスク81を照明する。θ
の入射角42は種々の光学系で異なるが、およそ1°か
ら15°程度である。作業領域を作るために、入射角が
0°の直入射は縮小X線リソグラフィの露光光学系では
不可能である。上記反射型マスク81は、真空紫外線ま
たは軟X線を正反射できる多層膜2が形成されている。
上記反射型マスク81から反射した真空紫外線または軟
X線411は凸ミラー92で反射し、さらに凹ミラー9
1で反射してウェハ82上に結像する。上記凸ミラー9
2および凹ミラー91には、多層膜2がミラー全面に形
成されている。一般にこのような光学系においては、図
6のようにxyz座標系をとるとき、x方向を子午方向
としy方向を球欠方向と呼ぶ。
On the basis of the above background, reduction X-ray lithography using vacuum ultraviolet rays or soft X-rays as an exposure light source has recently attracted attention. For example, Japanese Journal of Applied Physics
rnal of Applied Physics) 1991, No. 30, 11
Volume B, p. 3051. FIG. 6 shows an example of an exposure optical system for reduction X-ray lithography. Vacuum ultraviolet rays or soft X-rays 411 are used as an exposure light source, and are obliquely incident at an incident angle 42 of θ to illuminate the reflective mask 81. θ
The incident angle 42 of is different from various optical systems, but is about 1 ° to 15 °. In order to create a working area, direct incidence with an incident angle of 0 ° is not possible with the exposure optics of reduced X-ray lithography. The reflective mask 81 is formed with the multilayer film 2 capable of specularly reflecting vacuum ultraviolet rays or soft X-rays.
The vacuum ultraviolet rays or the soft X-rays 411 reflected from the reflective mask 81 are reflected by the convex mirror 92, and further the concave mirror 9
It is reflected at 1 and forms an image on the wafer 82. The convex mirror 9
2 and the concave mirror 91, the multilayer film 2 is formed on the entire surface of the mirror. Generally, in such an optical system, when the xyz coordinate system is adopted as shown in FIG. 6, the x direction is the meridional direction and the y direction is the sagittal direction.

【0005】従来の反射型X線マスクは、例えば、エク
ステンデッド・アブストラクツ・オブ・ザ・18コンフ
ァレンス・オン・ソリッド・スティト・デバイセス・ア
ンド・マテリアル(Extended Abstracts of the 18th C
onference on Solid State Devices and Material)
(1986)、p17−p20に記載されているよう
に、反射率が高い領域を多層膜が存在する部分、反射率
が低いかまたは反射率がない領域を多層膜または多層膜
構造が存在しない部分として形成される。図7(a)に
示すX線マスクは、基板1上の多層膜2に集束イオンビ
ーム5を照射し、基板1に対して垂直方向に変質させ、
反射率が低い領域または非反射部3を形成し、反射率が
高い多層膜2の領域にパタンを形成するものである。
A conventional reflective X-ray mask is, for example, an Extended Abstracts of the 18th Conference on Solid Solid Devices and Materials (Extended Abstracts of the 18th C).
onference on Solid State Devices and Material)
(1986), p17-p20, a region where the multilayer film exists in a region having a high reflectance, and a region where a multilayer film or a multilayer film structure does not exist in a region having a low reflectance or no reflectivity. Formed as. The X-ray mask shown in FIG. 7A irradiates the multilayer film 2 on the substrate 1 with the focused ion beam 5 to change the quality in the direction perpendicular to the substrate 1,
A region having a low reflectance or the non-reflecting portion 3 is formed, and a pattern is formed in a region of the multilayer film 2 having a high reflectance.

【0006】また、図7(b)に示す例は、基板1上の
多層膜2における所定部分を除去して、多層膜がない部
分、すなわち非反射部3を形成するものである。ここで
反射鏡やX線マスク等の光学素子として使用する基板1
には、高い反射率を得るために粗さがない超平滑基板が
必要であり、一般には高価になる。
Further, in the example shown in FIG. 7B, a predetermined portion of the multilayer film 2 on the substrate 1 is removed to form a portion without the multilayer film, that is, the non-reflection portion 3. Substrate 1 used here as an optical element such as a reflecting mirror or an X-ray mask
Requires a super-smooth substrate without roughness in order to obtain high reflectance, and is generally expensive.

【0007】さら、特開昭64−4021号公報に記載
されたように、図7(c)に示す超平滑基板1に直接付
着した多層膜2の上に、所定の厚さおよび形を有する吸
収体パタン35を形成し、これを非反射部とする反射型
X線マスクの例もある。
Further, as described in JP-A-64-4021, a predetermined thickness and shape are formed on the multilayer film 2 directly attached to the ultra-smooth substrate 1 shown in FIG. 7C. There is also an example of a reflection type X-ray mask in which the absorber pattern 35 is formed and used as a non-reflecting portion.

【0008】さらにまた、他の反射型X線マスクの例と
しては、特開平1−152725号公報に記載されてい
る。すなわち図7(d)に示すように、反射型マスクの
基板1の表面をあらかじめエッチングにより一部除去
し、凹凸構造33を作って所定のパタンを形成したの
ち、上記基板1の表面に多層膜2を形成し、凸構造部を
反射部とし、凹構造部34を非反射部とするものであ
る。
Furthermore, another example of the reflection type X-ray mask is described in JP-A-1-152725. That is, as shown in FIG. 7D, the surface of the substrate 1 of the reflective mask is partially removed in advance by etching to form a concavo-convex structure 33 to form a predetermined pattern, and then the multilayer film is formed on the surface of the substrate 1. 2 is formed, and the convex structure portion serves as a reflecting portion and the concave structure portion 34 serves as a non-reflecting portion.

【0009】露光あるいは照射に用いる真空紫外線また
はX線の波長が小さくなる場合に、真空紫外線またはX
線に対する多層膜の反射率を大きくするには、上記多層
膜の積層数を増す必要がある。例えば、高い反射率を得
るためには、X線の波長13nmで50層対以上、10
nmでは100層対以上、7nmでは150層対以上程
度の積層数が必要になる。
When the wavelength of vacuum ultraviolet rays or X-rays used for exposure or irradiation is small, vacuum ultraviolet rays or X-rays are used.
In order to increase the reflectance of the multilayer film with respect to the line, it is necessary to increase the number of laminated layers of the multilayer film. For example, in order to obtain a high reflectance, 50 layer pairs or more at an X-ray wavelength of 13 nm is used.
The number of layers required is about 100 layer pairs or more for nm, and about 150 layer pairs or more for 7 nm.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ように積層する膜が多くなればなるほど、上記積層膜に
欠陥を生じる可能性が大きくなる。欠陥を有する多層膜
は所望の反射率が得られないので、光学素子は製造後に
上記素子を検査し、欠陥が見付かると欠陥を有する多層
膜は不良品となる。そのため、光学素子の歩留りが小さ
くなり光学素子製造のコストが高くなる。
However, the more films that are stacked as described above, the greater the possibility that defects will occur in the stacked films. Since a multilayer film having a defect cannot obtain a desired reflectance, an optical element is inspected after manufacturing the element, and if a defect is found, the multilayer film having a defect becomes a defective product. Therefore, the yield of the optical element is reduced and the cost of manufacturing the optical element is increased.

【0011】また、上記のように解像力を上げるには、
短波長化または高NA化が必要であるが、焦点深度等の
兼ね合いから、短波長化または高NA化にも限界があ
る。この問題を回避するために、特開平4−11891
4号公報記載のように、あらかじめ光学素子の基板にお
ける所望の場所に、自然数をn、露光または照射に用い
る真空紫外線またはX線の入射角をθとするとき、およ
そλ・(2n−1)/(4・cosθ)で与えられる段差
をつけておいて多層膜を積層し、所定のパタンを近接ま
たは隣接する上記反射率が高い領域のパタンにおける高
さの差が、上記段差λ・(2n−1)/(4・cosθ)
になるように配置することにより、結像光学系の解像限
界を超えた微細パタンの転写、結像が可能になる。しか
しながら、基板に積層した上記多層膜に欠陥を生じる
と、多層膜の修正については考慮されていないため、上
記多層膜が不良品となり光学素子の歩留りが小さくなる
という問題があった。
In order to increase the resolution as described above,
Although it is necessary to shorten the wavelength or increase the NA, there is a limit to shortening the wavelength or increasing the NA because of the balance of the depth of focus and the like. In order to avoid this problem, JP-A-4-11891
As described in Japanese Patent Publication No. 4, when a natural number is n and an incident angle of vacuum ultraviolet rays or X-rays used for exposure or irradiation is θ at a desired position on a substrate of an optical element, it is approximately λ · (2n−1). / (4 · cos θ) is provided to form a multi-layer film, and a predetermined pattern is adjacent to or adjacent to a predetermined pattern. -1) / (4 ・ cos θ)
By arranging so as to become, it becomes possible to transfer and image a fine pattern exceeding the resolution limit of the imaging optical system. However, when a defect occurs in the multilayer film laminated on the substrate, the correction of the multilayer film is not taken into consideration, so that there is a problem that the multilayer film becomes a defective product and the yield of optical elements decreases.

【0012】[0012]

【課題を解決するための手段】上記問題点は、基板上、
真空紫外線またはX線に対する反射率が相対的に低い領
域と高い領域とを有する多層膜が、所定のパタンに応じ
て配置された光学素子において、上記真空紫外線または
X線に対する反射率が飽和する積層数以上に厚く、上記
多層膜を平滑基板上に積層することにより、検査を行い
上記多層膜に欠陥がある時に上層から上記欠陥を取除い
て解決することができる。
[Problems to be Solved by the Invention] The above problems are
In an optical element in which a multilayer film having a region having a relatively low reflectance with respect to vacuum ultraviolet rays or X-rays and a region having a relatively high reflectance with respect to X-rays is arranged in accordance with a predetermined pattern, a laminate in which the reflectance with respect to the vacuum ultraviolet rays or X-rays is saturated. By stacking the multilayer film having a thickness of several layers or more on a smooth substrate, it is possible to solve the problem by inspecting and removing the defect from the upper layer when the multilayer film has a defect.

【0013】また上記多層膜の欠陥は、上層から1層づ
つ欠陥があるところまで除去し、またはその後、多層膜
を積層することにより解決できる。
Further, the above-mentioned defects in the multilayer film can be solved by removing the defects one by one from the upper layer or laminating the multilayer films thereafter.

【0014】また、上記多層膜は、真空紫外線またはX
線に対して相対的に反射率が高い領域と低い領域を、所
定パタンに応じて配置し、近接または隣接する高反射率
領域のパタンの高さを、λ・(2n−1)/(4・cos
θ)だけ変化させるように、上層から除去することによ
り、光学素子の解像力を増すことができ、上記多層膜に
おける高反射率領域の表面材料の種類とその1層の厚さ
を同一にすることにより、光学素子の転写または結像す
るパタンの微細性を向上することができる。
Further, the above-mentioned multilayer film is formed by vacuum ultraviolet rays or X
A region having a relatively high reflectance and a region having a relatively low reflectance with respect to the line are arranged according to a predetermined pattern, and the height of the pattern of the high reflectance region adjacent or adjacent to the line is λ · (2n−1) / (4・ Cos
By removing from the upper layer so as to change only θ), the resolving power of the optical element can be increased, and the kind of the surface material of the high reflectance region in the above multilayer film and the thickness of one layer thereof should be the same. As a result, it is possible to improve the fineness of the pattern on which the optical element is transferred or imaged.

【0015】[0015]

【作用】まず、真空紫外線またはX線に対して光学定数
が異なる2種類の物質を交互に積層した多層膜の積層数
と、その真空紫外線またはX線に対する反射率との関係
を考える。図8に示すA、B、Cは入射角が5°で、そ
れぞれ真空紫外線またはX線の波長が約13、10、7
nmにピーク反射率を示すように周期長を設計したMo
/Si、Ru/BN、Ru/BNの多層膜の積層数(積
層対数)と、反射率との関係を示したものである。いず
れの場合も積層数が増えると、各反射率は小さく振動し
ながら増加する。さらに、13nm用では積層対数が約
50層対、10nm用では約100層対、7nm用では
150層対になると、上記各反射率は小さい振動を伴っ
て飽和する。用いる真空紫外線またはX線の波長が小さ
くなれば積層数も増加し、したがって多層膜全体の膜厚
も増加する。これは各多層膜に対する真空紫外線または
X線の侵入深さが、短波長になればなるほど大きくなる
ことを示している。もし、多層膜の積層途中に欠陥が生
じると所望の反射率は得られない。
First, let us consider the relationship between the number of layers of a multilayer film in which two kinds of substances having different optical constants for vacuum ultraviolet rays or X-rays are alternately laminated and the reflectance for the vacuum ultraviolet rays or X-rays. A, B, and C shown in FIG. 8 have an incident angle of 5 ° and have wavelengths of vacuum ultraviolet rays or X-rays of about 13, 10, and 7, respectively.
Mo whose period length is designed to show peak reflectance in nm
2 shows the relationship between the reflectance and the number of laminated layers (number of laminated layers) of the multilayer films of / Si, Ru / BN, and Ru / BN. In either case, as the number of stacked layers increases, each reflectance increases with a small vibration. Furthermore, when the number of stacked layers is about 50 layers for 13 nm and about 100 layers for 10 nm, and 150 layers for 7 nm, the above-mentioned reflectances are saturated with a small vibration. If the wavelength of vacuum ultraviolet rays or X-rays used becomes smaller, the number of laminated layers also increases, so that the film thickness of the entire multilayer film also increases. This indicates that the penetration depth of vacuum ultraviolet rays or X-rays into each multilayer film increases as the wavelength becomes shorter. If a defect occurs during the lamination of the multilayer film, the desired reflectance cannot be obtained.

【0016】図9に示すA、B、Cは、それぞれ多層膜
の積層対数30層対め、50層対め、100層対めにお
いて欠陥がある場合の、それぞれ波長13nm、10n
m、7nmのX線に対する反射率である。それぞれ欠陥
がある積層数の直前で反射率は飽和し、それ以上積層し
ても反射率は低下することを示している。図10のA、
B、Cに示されるように、多層膜の上層から欠陥がある
ところまで上記多層膜を除去することにより、それぞれ
の多層膜は各積層数での最大の反射率を示す。さらに欠
陥がある多層膜を除去したのちに、新たに欠陥がない多
層膜を積層することにより高い反射率の多層膜を有する
光学素子が再生される。
A, B, and C shown in FIG. 9 have wavelengths of 13 nm and 10 n, respectively, when there are defects in the number of laminated pairs of 30 layers, 50 layers, and 100 layers, respectively.
This is the reflectance for X-rays of m and 7 nm. It is shown that the reflectance is saturated just before the number of laminated layers with defects, and the reflectance is reduced even if the number of laminated layers is more than that. A of FIG.
As shown in B and C, by removing the above-mentioned multilayer film from the upper layer of the multilayer film to the place where there is a defect, each multilayer film shows the maximum reflectance in each number of stacks. Further, after removing the defective multilayer film, a new multilayer film having no defect is laminated to reproduce an optical element having a multilayer film having high reflectance.

【0017】また、多層膜の積層数を、上記多層膜の真
空紫外線またはX線に対する反射率が飽和する積層数以
上に厚く積層しておき、上記真空紫外線またはX線に対
して相対的に反射率が高い領域と反射率が低い領域と
を、所定のパタンに応じて上記多層膜に配置した際に、
上記多層膜パタンの表面に欠陥を発生した場合には、上
記多層膜の上層から所定の積層数だけ多層膜を除去する
と、飽和した状態の反射率が得られる。例えば、波長1
0nm用の多層膜を150層対積層した場合で、上記X
線に対して相対的に反射率が高い領域と反射率が低い領
域を、所定のパタンに応じて上記多層膜に配置した際、
上記多層膜パタンの表面に欠陥が発生して反射率が低下
したものを、欠陥がある多層膜パタンの表面から10層
対ほど除去する。この場合、光学素子の多層膜の積層数
は140層対であるが、この積層対では上記X線に対す
る反射率が飽和しており、150層対の良品多層膜と同
等の反射率を有する。
Further, the number of laminated layers of the multi-layered film is set to be thicker than the number of laminated layers at which the reflectance of the multi-layered film with respect to vacuum ultraviolet rays or X-rays is saturated, and the multi-layered film is relatively reflected with respect to the vacuum ultraviolet rays or X-rays. When a region having a high reflectance and a region having a low reflectance are arranged in the multilayer film according to a predetermined pattern,
When a defect occurs on the surface of the multilayer film pattern, the reflectance in a saturated state can be obtained by removing a predetermined number of multilayer films from the upper layer of the multilayer film. For example, wavelength 1
In the case of laminating 150 layers of a multilayer film for 0 nm, the above X
When a region having a high reflectance and a region having a low reflectance with respect to the line are arranged in the multilayer film according to a predetermined pattern,
About 10 layer pairs are removed from the surface of the defective multi-layer film pattern, which has a reduced reflectance due to the occurrence of defects on the surface of the multi-layer film pattern. In this case, the number of laminated multilayer films of the optical element is 140 layer pairs, but this laminated pair has a saturated reflectance with respect to the above X-rays, and has a reflectance equivalent to that of a good quality multilayer film of 150 layer pairs.

【0018】ところで、図11は入射角が5°で、X線
の波長が約13nmにピーク反射率を示すように周期長
を設計したMo/Si多層膜の積層数と、振幅反射率の
位相の関係を示したものである。反射率が飽和する積層
数で振幅反射率の位相も振動を有して飽和する。多層膜
の表面がMoの金属層である場合とSi層である場合と
では、振幅反射率の位相が異なる。
By the way, in FIG. 11, the incident angle is 5 °, the number of laminated Mo / Si multilayer films whose period length is designed so that the X-ray wavelength has a peak reflectance at about 13 nm, and the phase of the amplitude reflectance is shown. It shows the relationship of. The phase of the amplitude reflectivity is also saturated by vibrating at the number of laminated layers where the reflectivity is saturated. The phase of the amplitude reflectance is different when the surface of the multilayer film is a metal layer of Mo and when it is a Si layer.

【0019】多層膜を上層から除去する工程を含む光学
素子の製造方法において、真空紫外線またはX線に対し
て光学定数が異なる少なくとも2種類の物質を、基板の
上に交互に積層した多層膜の積層数を、上記真空紫外線
またはX線の侵入深さより多く形成し、真空紫外線また
はX線に対して相対的に反射率が高い領域と反射率が低
い領域とを、所定のパタンに応じて上記多層膜に配置
し、隣接する反射率が高い領域のパタンの高さをλ・
(2n−1)/(4・cosθ)だけ変化させると、隣接
する上記反射率が高い領域のパタンから反射するX線の
相対的な位相は図1(b)のように反転し、上記X線の
強度分布は図1(c)に示すように変化して、隣接する
像パタンのコントラストが増加する。ここで、隣接する
反射率が高い領域の表面材料を同一にして振幅反射率の
位相を揃えるのが望ましい。これは、隣接する反射率が
高い領域のパタン表面をなす第1層の材料が異なると、
図11に示されるように、隣接する反射率が高い領域の
パタンからの反射光との振幅の相対的な位相差が180
°ではなくなり、隣接するパタンのコントラストがあま
り増加しない。図12には従来の反射型マスクを示し、
(a)にその構造を示すとともに、(b)および(c)
には、上記マスクから反射される真空紫外線またはX線
の位相および強度の変化をそれぞれ示している。
In a method of manufacturing an optical element including a step of removing a multilayer film from an upper layer, a multilayer film in which at least two kinds of substances having different optical constants with respect to vacuum ultraviolet rays or X-rays are alternately laminated on a substrate. The number of stacked layers is set to be larger than the penetration depth of the vacuum ultraviolet rays or X-rays, and a region having a high reflectance and a region having a low reflectance with respect to the vacuum ultraviolet rays or the X-rays are formed according to a predetermined pattern. It is arranged in a multilayer film and the height of the pattern in the adjacent area with high reflectance is
By changing by (2n−1) / (4 · cos θ), the relative phase of the X-rays reflected from the adjacent pattern of the region having high reflectance is inverted as shown in FIG. The intensity distribution of the line changes as shown in FIG. 1C, and the contrast of adjacent image patterns increases. Here, it is desirable that the surface materials of adjacent regions having high reflectance are made the same so that the phases of the amplitude reflectance are aligned. This is because when the material of the first layer forming the pattern surface of the adjacent high reflectance region is different,
As shown in FIG. 11, the relative phase difference of the amplitude with respect to the reflected light from the pattern in the adjacent region having high reflectance is 180.
The contrast of adjacent patterns does not increase so much. FIG. 12 shows a conventional reflective mask,
The structure is shown in (a), and (b) and (c)
Shows changes in phase and intensity of vacuum ultraviolet rays or X-rays reflected from the mask.

【0020】また、隣接または近接する上記反射率が高
い領域のパタン間の高さの差をm・(da+db)とす
るとき、つぎの関係式が成立するようにmの値を決定す
ることが望ましい。
Further, when the height difference between adjacent or adjacent high reflectance patterns is m · (da + db), the value of m can be determined so that the following relational expression holds. desirable.

【0021】 m・(da+db)=λ・(2n−1)/(4・cos
θ) ここで、mとnとは自然数、daは多層膜を形成する1
層の膜厚、dbは多層膜を形成する別の1層の膜厚、λ
は光学素子の照明または露出に用いる真空紫外線または
X線の波長、θは光学素子の照明または露出に用いる真
空紫外線またはX線の入射角である。例えば、daはM
o膜で膜厚が2.58nm、dbはBN膜で膜厚が2.
58nm、Mo膜の積層数81層、BN膜の80層をそ
れぞれ交互に積層し、λ=10nm、θ=5°におい
て、m=17、n=18を与える膜厚だけ変化させるよ
うに、上記多層膜の上層からMo膜とBN膜とを1層ず
つ除去すると、隣接する反射率が高い領域のパタンから
反射するX線との相対的な位相が180°反転し、隣接
するパタンの像コントラストが増加する。隣接する反射
率が高い領域のパタンの最表面は、共にMo膜が露出し
ている。ここで、隣接または近接する上記反射率が高い
領域のパタン間の高さの差の精度は、多層膜の周期長に
対して約5%以内であることが望ましい。ここでは、m
=17、n=18なので上式の左辺は87.72nm、
右辺は87.83nmである。この差は0.11nmで
あり、多層膜の周期長5.16nmに対して誤差が2%
であり問題はない。
M · (da + db) = λ · (2n−1) / (4 · cos
θ) Here, m and n are natural numbers, and da is a multilayer film 1
The film thickness of the layer, db is the film thickness of another layer forming the multilayer film, λ
Is the wavelength of vacuum ultraviolet rays or X-rays used for illuminating or exposing the optical element, and θ is the incident angle of vacuum ultraviolet rays or X-rays used for illuminating or exposing the optical element. For example, da is M
The film thickness is 2.58 nm for the o film and BN film for the db is 2.
58 nm, 81 layers of Mo films, and 80 layers of BN films are alternately laminated, and the thickness is changed to give m = 17 and n = 18 at λ = 10 nm and θ = 5 °. When the Mo film and the BN film are removed one by one from the upper layer of the multilayer film, the relative phase with respect to the X-ray reflected from the pattern of the adjacent high reflectance region is inverted by 180 °, and the image contrast of the adjacent pattern is increased. Will increase. The Mo film is exposed on the outermost surface of each of the adjacent patterns having high reflectance. Here, it is desirable that the accuracy of the height difference between the patterns in the adjacent or adjacent regions having high reflectance is within about 5% with respect to the cycle length of the multilayer film. Where m
= 17, n = 18, the left side of the above equation is 87.72 nm,
The right side is 87.83 nm. This difference is 0.11 nm, and the error is 2% when the cycle length of the multilayer film is 5.16 nm.
There is no problem.

【0022】[0022]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明による光学素子の一実施例を示す図、
図2は上記光学素子の製造工程フローを示す図、図3は
多層膜に欠陥を有する光学素子の一例を示す図、図4は
本実施例により形成した光学素子パタンの例を示す図、
図5は本発明による光学素子を実装したX線投影露光装
置を示す図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an optical element according to the present invention,
2 is a diagram showing a manufacturing process flow of the above optical element, FIG. 3 is a diagram showing an example of an optical element having a defect in a multilayer film, FIG. 4 is a diagram showing an example of an optical element pattern formed by this embodiment,
FIG. 5 is a diagram showing an X-ray projection exposure apparatus on which the optical element according to the present invention is mounted.

【0023】第1実施例 図1に示す第1実施例は光学素子として反射型マスクを
例示し、(a)は上記素子の断面図、(b)は反射光の
振幅分布を示す図、(c)は上記反射光の強度分布をそ
れぞれ示す図である。上記反射型マスクは、図1(a)
に示すように、基板11上に、真空紫外線またはX線に
対する光学定数が異なる少なくとも2種類の物質を交互
に積層して多層膜21を形成し、真空紫外線またはX線
に対する反射率が相対的に低い領域と高い領域とを、所
定のパタンに応じて上記多層膜21に配置した光学素子
であって、上記パタンを形成するそれぞれの多層膜2
2、2203は、上記真空紫外線またはX線に対する反
射率が飽和する積層数以上に厚く、平滑基板11上にア
ルミニウムの薄膜層119を介して積層され、上記パタ
ンを形成する高反射率の多層膜22と隣接または近接す
る高反射率多層膜2203との間には、λ・(2n−
1)/(4・cosθ)の高さの差を有している。したが
って、上記パタンから反射するX線等の位相はパタンを
形成する多層膜表面における高さの差Δによって反転
し、相対的に反射率が低い領域では打ち消し合い、隣接
する像パタンのコントラストが増加する。
First Embodiment A first embodiment shown in FIG. 1 exemplifies a reflection type mask as an optical element, (a) is a sectional view of the above element, (b) is a diagram showing an amplitude distribution of reflected light, ( FIG. 3C is a diagram showing the intensity distribution of the reflected light. The reflective mask is shown in FIG.
As shown in FIG. 3, at least two kinds of substances having different optical constants for vacuum ultraviolet rays or X-rays are alternately laminated on the substrate 11 to form the multilayer film 21, and the reflectance for vacuum ultraviolet rays or X-rays is relatively high. An optical element in which a low region and a high region are arranged in the multilayer film 21 according to a predetermined pattern, and each of the multilayer films 2 forming the pattern.
The reference numerals 2, 2203 are thicker than the number of laminated layers at which the reflectance with respect to the vacuum ultraviolet ray or the X-ray is saturated, and are laminated on the smooth substrate 11 through the thin film layer 119 of aluminum to form the pattern with high reflectance. 22 and the high-reflectance multilayer film 2203 adjacent to or close to each other, λ · (2n−
There is a height difference of 1) / (4 · cos θ). Therefore, the phase of X-rays or the like reflected from the pattern is inverted by the height difference Δ on the surface of the multilayer film forming the pattern, cancels each other out in the region where the reflectance is relatively low, and the contrast of adjacent image patterns increases. To do.

【0024】つぎに上記反射型X線マスクの製造例を説
明する。図2に示す一部は上記実施例の製造工程を示す
ものである。超平滑面を有するシリコン基板またはSi
C基板11に、スパッタリング蒸着法の1つであるマグ
ネトロンスパッタリング法で、多層膜を除去する際に上
記基板11を保護するアルミニウム(Al)膜の薄膜層
119を200nm厚ほど蒸着する。このとき、スパッ
タリングガスの圧力は出来るかぎり低圧が望ましい。つ
ぎに炭素(C)膜1.27nm厚とニッケル(Ni)膜
1.27nm厚とを交互に形成して多層膜21を作る。
このとき、20層対の積層ごとに光学顕微鏡とX線顕微
鏡とにより検査を行った。160層対積層したのちの検
査で上記多層膜21に欠陥があることを知った。このと
きの波長5nmのX線に対する反射率は25%であっ
た。そこで、160層対から20層対を除去し140層
対にした。再度20層対の積層ごとに光学顕微鏡とX線
顕微鏡により検査を行い、実質的に反射率が飽和する合
計200層対を積層した。その上にレジストを塗布し
て、図1(a)に示すような反射型マスクを形成し、再
度光学およびX線顕微鏡で検査を行い、それぞれ欠陥が
ないことを確認した。
Next, an example of manufacturing the reflective X-ray mask will be described. The part shown in FIG. 2 shows the manufacturing process of the above embodiment. Silicon substrate or Si with ultra-smooth surface
A thin film layer 119 of an aluminum (Al) film that protects the substrate 11 when removing the multilayer film is vapor-deposited to a thickness of 200 nm on the C substrate 11 by magnetron sputtering, which is one of the sputtering vapor deposition methods. At this time, the pressure of the sputtering gas is desirably as low as possible. Next, a carbon (C) film having a thickness of 1.27 nm and a nickel (Ni) film having a thickness of 1.27 nm are alternately formed to form a multilayer film 21.
At this time, each layer of 20 layers was inspected with an optical microscope and an X-ray microscope. The inspection after stacking 160 layers was found that the multilayer film 21 had a defect. At this time, the reflectance for X-rays having a wavelength of 5 nm was 25%. Therefore, 20 layer pairs were removed from 160 layer pairs to make 140 layer pairs. Again, every 20 layer pairs were inspected with an optical microscope and an X-ray microscope, and a total of 200 layer pairs in which the reflectance was substantially saturated were laminated. A resist was applied thereon to form a reflection type mask as shown in FIG. 1 (a), which was again inspected with an optical microscope and an X-ray microscope, and it was confirmed that there was no defect in each.

【0025】第2実施例 上記実施例と同様に、超平滑面を有するシリコン基板ま
たはSiC基板11に、マグネトロンスパッタリング法
でアルミニウム(Al)膜119を200nm厚ほど蒸
着し、つぎにルテニウム(Ru)膜1.78nm厚と窒
化ほう素(BN)膜1.78nm厚を交互に積層して多
層膜を作る。このとき、10層対の積層ごとに光学顕微
鏡とX線顕微鏡とにより検査を行い、120層対積層し
た後の検査で多層膜に欠陥があることが判明した。そこ
で120層対からRu膜とBN膜とを1層づつ除去し、
1層の除去ごとに光学顕微鏡とX線顕微鏡とにより検査
を行った。上記Ru膜とBN膜を1層づつ除去するに
は、試料基板の温度を−100℃まで冷却し、4ふっ化
炭素ガスを試料表面に吸着させてエッチングするデジタ
ルエッチングを用いた。1層ごとに除去と検査を繰り返
したところ、115層対目に欠陥が見付かり、110層
対まで除去した。その後再度Ru膜とBN膜とを交互に
積層し、10層対の積層ごとに光学顕微鏡とX線顕微鏡
とによる検査を行いながら合計150層対まで積層し、
欠陥がないことを確認した。第1実施例と同様に反射型
マスクを形成し、再度光学顕微鏡とX線顕微鏡とにより
検査を行い欠陥がないことを確認した。
Second Embodiment Similar to the above embodiment, an aluminum (Al) film 119 is vapor-deposited to a thickness of 200 nm on a silicon substrate or SiC substrate 11 having an ultra-smooth surface by magnetron sputtering, and then ruthenium (Ru). A 1.78 nm thick film and a 1.78 nm thick boron nitride (BN) film are alternately laminated to form a multilayer film. At this time, each stack of 10 layer pairs was inspected by an optical microscope and an X-ray microscope, and it was found by inspection after stacking 120 layer pairs that the multilayer film had a defect. Therefore, the Ru film and the BN film are removed one by one from the 120 layer pair,
Each time one layer was removed, inspection was performed with an optical microscope and an X-ray microscope. In order to remove the Ru film and the BN film one by one, the temperature of the sample substrate was cooled to −100 ° C., and digital etching was used in which carbon tetrafluoride gas was adsorbed on the sample surface for etching. When the removal and inspection were repeated for each layer, a defect was found in the 115th layer pair, and up to the 110th layer pair was removed. After that, the Ru film and the BN film are alternately laminated again, and a total of 150 layer pairs are laminated while inspecting with an optical microscope and an X-ray microscope for every 10 layer pairs.
It was confirmed that there were no defects. A reflection type mask was formed in the same manner as in the first example, and it was again inspected with an optical microscope and an X-ray microscope to confirm that there was no defect.

【0026】第3実施例 また、上記実施例と同様に、超平滑面を有するシリコン
基板またはSiC基板11に、マグネトロンスパッタリ
ング法によりアルミニウム(Al)膜119を200n
m厚ほど蒸着したのち、モリブデン(Mo)膜2.58
nm厚と窒化ほう素(BN)膜2.58nm厚とを交互
に積層して多層膜を作った。このとき、10層対の積層
ごとに光学顕微鏡とX線顕微鏡とによる検査を行い、1
50層対まで積層したが検査の結果多層膜には欠陥が存
在しなかった。このときの波長10nmのX線に対する
反射率は35%であった。上記実施例と同様に反射型マ
スクを形成したが、光学顕微鏡とX線顕微鏡とにより検
査を行ったところ、多層膜パタンの表面に欠陥があるこ
とが判明した。上記欠陥は反射型マスクのパタン形成工
程の途中で発生したものと考えられる。したがって、多
層膜150層対の表面からMo膜とBN膜とを1層づつ
除去し、合計10層対を除去した。再度光学顕微鏡とX
線顕微鏡とによる検査を行い欠陥がないことを確認し
た。本実施例ではMo層241層BN層240層で反射
率が飽和するが、その後、上記実施例と同様の反射型マ
スクを形成し、上記両顕微鏡により検査を行い欠陥がな
いことを確認した。図3(a)は多層膜パタン22の表
面に存在する欠陥2202を示す図で、(b)は上記欠
陥2202を除去した欠陥がない反射型マスクを示す図
である。
Third Embodiment Further, similarly to the above-mentioned embodiment, a silicon substrate or a SiC substrate 11 having an ultra-smooth surface is coated with an aluminum (Al) film 119 at a thickness of 200 n by a magnetron sputtering method.
After vapor deposition to a thickness of m, molybdenum (Mo) film 2.58
nm thickness and boron nitride (BN) film 2.58 nm thickness were alternately laminated to form a multilayer film. At this time, an inspection with an optical microscope and an X-ray microscope is performed for each stack of 10 layers.
Up to 50 pairs of layers were laminated, but inspection revealed that the multilayer film had no defects. At this time, the reflectance for X-rays having a wavelength of 10 nm was 35%. A reflective mask was formed in the same manner as in the above example, but it was found by inspection with an optical microscope and an X-ray microscope that there were defects on the surface of the multilayer film pattern. It is considered that the above defects were generated during the pattern forming process of the reflective mask. Therefore, the Mo film and the BN film were removed one by one from the surface of the multilayer film 150 layer pairs, and a total of 10 layer pairs were removed. Optical microscope and X again
Inspection with a line microscope confirmed that there were no defects. In this example, the reflectance was saturated in the Mo layer 241 layer and the BN layer 240 layer, but after that, a reflective mask similar to that in the above example was formed, and it was confirmed by inspection with both microscopes that there was no defect. FIG. 3A is a diagram showing defects 2202 existing on the surface of the multilayer film pattern 22, and FIG. 3B is a diagram showing a defect-free reflective mask obtained by removing the defects 2202.

【0027】第4実施例 つぎに上記各実施例と同様にして形成したアルミニウム
(Al)膜119の上に、モリブデン(Mo)膜2.5
8nm厚と窒化ほう素(BN)膜2.58nm厚とを交
互に積層して多層膜を作った。このとき、10層対の積
層ごとに光学顕微鏡とX線顕微鏡により検査を行った。
150.5層対まで積層したが(Mo151層とBN1
50層を交互に合計301層を積層)、検査結果では多
層膜に欠陥が存在しなかった。波長10nmのX線に対
する反射率は35%であった。上記実施例と同様に反射
型マスクを形成し多層膜パタンを形成した。さらに隣接
または近接する上記反射率が高い領域のパタン間の高さ
の差をm(da+db)とするとき、およそつぎの関係
式が成り立つようにmの値を決定した。
Fourth Embodiment Next, a molybdenum (Mo) film 2.5 is formed on the aluminum (Al) film 119 formed in the same manner as in the above respective embodiments.
A multilayer film was formed by alternately stacking a 8 nm thick boron nitride (BN) film and a 2.58 nm thick boron nitride (BN) film. At this time, each layer of 10 layers was inspected with an optical microscope and an X-ray microscope.
Up to 150.5 layer pairs were laminated (Mo 151 layer and BN1
A total of 301 layers were alternately laminated with 50 layers), and the inspection result showed that there were no defects in the multilayer film. The reflectance for X-rays having a wavelength of 10 nm was 35%. A reflective mask was formed in the same manner as in the above example to form a multilayer film pattern. Further, when the difference in height between the patterns of the above-described regions of high reflectance that are adjacent or close to each other is m (da + db), the value of m was determined so that the following relational expression approximately holds.

【0028】 m・(da+db)=λ・(2n−1)/(4・cos
θ) ここで、mとnとは自然数、daはモリブデン(Mo)
膜の膜厚、dbは窒化ほう素(BN)膜の膜厚、λは光
学素子の照明または露光に用いる真空紫外線またはX線
の波長、θは光学素子の照明または露光に用いる真空紫
外線またはX線の入射角である。m=17、n=18を
与える膜厚だけ変化させるように、多層膜の上層からM
o膜とBN膜を1層づつ除去した。隣接する反射率が高
い領域のパタンの最表面は共にMo膜が露出している。
光学顕微鏡とX線顕微鏡により検査を行い、欠陥がない
ことを確認した。ここで隣接または近接する上記反射率
が高い領域のパタン間の高さの差の精度は、多層膜の周
期長に対して約5%以内であることが望ましいが、本実
施例ではm=17、n=18で上式の左辺は87.72
nm、右辺は87.83nmである。この差は0.11
nmであり、多層膜の周期長5.16nmに対して誤差
が約2%であり問題はない。
M · (da + db) = λ · (2n−1) / (4 · cos
θ) where m and n are natural numbers and da is molybdenum (Mo)
The thickness of the film, db is the thickness of a boron nitride (BN) film, λ is the wavelength of vacuum ultraviolet rays or X-rays used for illuminating or exposing an optical element, and θ is the vacuum ultraviolet ray or X used for illuminating or exposing an optical element. The angle of incidence of the line. From the upper layer of the multilayer film, M so that the film thickness is changed to give m = 17 and n = 18.
The o film and the BN film were removed one by one. The Mo film is exposed on both outermost surfaces of the adjacent patterns having high reflectance.
Inspection by an optical microscope and an X-ray microscope confirmed that there were no defects. Here, it is desirable that the accuracy of the height difference between the patterns of the adjacent or adjacent areas of high reflectance is within about 5% with respect to the cycle length of the multilayer film, but in this embodiment, m = 17. , N = 18, the left side of the above equation is 87.72.
nm, and the right side is 87.83 nm. This difference is 0.11
There is no problem because the error is about 2% for the cycle length of the multilayer film of 5.16 nm.

【0029】図4に本実施例で形成したパタンの例を示
す。(a)は反射率が高い多層膜領域22と、位相が
(2n−1)πだけ異なる高反射率多層膜領域2203
とが、交互にストライプ状に近接して配置されたパタン
を示す図、(b)は上記高反射率領域22を囲んで(2
n−1)πだけ位相が異なる高反射率領域2203が近
接して配置されたパタンを示す図、(c)は上記高反射
率領域22の周囲に(2n−1)π位相が異なる高反射
率領域2203が隣接し、これが間隔を保って併置され
たパタンを示す図、(d)は上記高反射率領域22の両
側に(2n−1)πだけ位相が異なる高反射率領域22
03がストライプ状に隣接配置されたパタンを示す図で
ある。
FIG. 4 shows an example of the pattern formed in this embodiment. (A) shows a high reflectance multilayer film region 2203 having a phase difference of (2n−1) π from the multilayer film region 22 having high reflectance.
And (b) show a pattern in which stripes are alternately arranged close to each other. (B) surrounds the high reflectance region 22 (2
(c-1) is a diagram showing a pattern in which high reflectance regions 2203 having a phase difference of (n-1) π are arranged close to each other, and (c) shows high reflectance having a (2n-1) π phase difference around the high reflectance region 22. The figure shows a pattern in which the index regions 2203 are adjacent and juxtaposed at intervals, and (d) shows a high reflectance region 22 having a phase difference of (2n-1) π on both sides of the high reflectance region 22.
FIG. 3 is a diagram showing a pattern in which 03 is adjacently arranged in a stripe shape.

【0030】第5実施例 上記実施例で作製した反射型マスクを装着して転写実験
を行ったX線投影露光装置を図5に示す。図5におい
て、マスク81とウェハ82とはそれぞれマスクステー
ジ83とウェハステージ84に搭載されている。まず、
マスク81とウェハ82との相対一をアライメント装置
85を用いて検出し、制御装置86により駆動装置8
7、88を介して位置合わせを行う。X線源89から放
射されたX線を反射鏡90で集光し、上記マスク81上
の円弧領域を照明する。マスク81と入射X線411と
の位置関係は、より細いパタンの短軸方向が入射X線の
球欠方向、より細いパタンの長軸方向が入射X線の子午
方向になるように設定した。上記マスク81で反射され
たX線は、波長10nm近傍のX線からなり、反射鏡9
1、92、93および94からなる結像光学系95によ
り、ウェハ82上に倍率1/5で結像する。反射鏡9
1、92、93および94は、マスク81と同様なMo
/BN系多層膜を蒸着し、各多層膜の周期長は反射X線
の波長が一致するように調節されている。マスク81と
ウェハ82を倍率に応じて同期走査し、マスク全面のパ
タンをウェハ82に転写した。このような方法により、
ウェハ82上の30mm角領域で0.07μm幅のパタ
ンを得ることができた。
Fifth Embodiment FIG. 5 shows an X-ray projection exposure apparatus on which a transfer experiment was carried out by mounting the reflection type mask manufactured in the above embodiment. In FIG. 5, the mask 81 and the wafer 82 are mounted on the mask stage 83 and the wafer stage 84, respectively. First,
The relative position between the mask 81 and the wafer 82 is detected using the alignment device 85, and the drive device 8 is controlled by the control device 86.
Alignment is performed via 7, 88. The X-ray emitted from the X-ray source 89 is condensed by the reflecting mirror 90, and the arc area on the mask 81 is illuminated. The positional relationship between the mask 81 and the incident X-ray 411 was set such that the minor axis direction of the thinner pattern was the sagittal direction of the incident X-ray and the major axis direction of the thinner pattern was the meridional direction of the incident X-ray. The X-rays reflected by the mask 81 are X-rays having a wavelength near 10 nm, and
An image is formed on the wafer 82 at a magnification of ⅕ by an image forming optical system 95 composed of 1, 92, 93 and 94. Reflector 9
1, 92, 93, and 94 are Mo similar to the mask 81.
A / BN-based multilayer film is deposited, and the cycle length of each multilayer film is adjusted so that the wavelengths of the reflected X-rays match. The mask 81 and the wafer 82 were synchronously scanned according to the magnification, and the pattern on the entire surface of the mask was transferred onto the wafer 82. By this method,
A pattern with a width of 0.07 μm could be obtained in a 30 mm square area on the wafer 82.

【0031】第6実施例 上記第5実施例で形成した多層膜に対して、所定のパタ
ンを形成する前に、図5に示すX線投影露光装置に上記
多層膜を装着して、ウェハ82上のレジストに転写を行
い多層膜中の欠陥の有無を検査した。多層膜で反射され
たX線は波長10nm近傍のX線からなり、反射鏡9
1、92、93および94からなる結像光学系95によ
り、ウェハ82上のレジストに倍率1/5で結像する。
反射鏡91、92、93および94はマスク81と同様
なMo/BN系多層膜を蒸着し、各多層膜の周期長は反
射X線の波長が一致するように調節されている。マスク
とウェハを倍率に応じて同期走査し、多層膜全面をウェ
ハのレジストに転写した。レジストを現像したのち、上
記ウェハ上レジストの残膜特性を検査することにより、
多層膜全面の欠陥の有無が確認できた。
Sixth Embodiment Before forming a predetermined pattern on the multilayer film formed in the fifth embodiment, the multilayer film is mounted on the X-ray projection exposure apparatus shown in FIG. Transfer to the upper resist and inspected for defects in the multilayer film. The X-rays reflected by the multilayer film are composed of X-rays having a wavelength near 10 nm, and
An image forming optical system 95 composed of 1, 92, 93 and 94 forms an image on the resist on the wafer 82 at a magnification of 1/5.
The reflecting mirrors 91, 92, 93 and 94 are vapor-deposited Mo / BN multilayer films similar to the mask 81, and the cycle length of each multilayer film is adjusted so that the wavelengths of the reflected X-rays coincide with each other. The mask and the wafer were synchronously scanned according to the magnification, and the entire surface of the multilayer film was transferred to the resist on the wafer. After developing the resist, by inspecting the residual film characteristics of the resist on the wafer,
It was possible to confirm the presence or absence of defects on the entire surface of the multilayer film.

【0032】上記各実施例では多層膜に用いる材料に関
して、Ni/C、Ru/BN、Rh/BN、Mo/Si
C系多層膜の場合を説明したが、本発明は上記材料に限
定されることなく、例えば、NiCr/C、Ni/V、
Ni/Ti、W/C、Ru/C、Rh/C、Ru/B
N、Rh/B4C、RhRu/BN、Ru/B4C、Mo
/Si、Pd/BN、Ag/BN、Mo/SiN、Mo
/B4C、Mo/C、Ru/Beなどの多層膜が形成可
能な材料であれば実施可能である。
In each of the above-mentioned embodiments, the materials used for the multilayer film are Ni / C, Ru / BN, Rh / BN, Mo / Si.
Although the case of the C-based multilayer film has been described, the present invention is not limited to the above-mentioned materials. For example, NiCr / C, Ni / V,
Ni / Ti, W / C, Ru / C, Rh / C, Ru / B
N, Rh / B 4 C, RhRu / BN, Ru / B 4 C, Mo
/ Si, Pd / BN, Ag / BN, Mo / SiN, Mo
Any material capable of forming a multilayer film such as / B 4 C, Mo / C, Ru / Be can be used.

【0033】また、上記実施例は反射型マスクの場合だ
けを説明したが、反射型マスクに限定されることなく、
回折格子やリニアゾーンプレートなどの反射面に微細パ
タンを有する光学素子にも適用できる。
Further, although the above-mentioned embodiment describes only the case of the reflection type mask, it is not limited to the reflection type mask,
It can also be applied to an optical element having a fine pattern on the reflecting surface such as a diffraction grating or a linear zone plate.

【0034】[0034]

【発明の効果】上記のように本発明による光学素子およ
びその製造方法は、基板上に、真空紫外線またはX線に
対する反射率が相対的に低い領域と高い領域とを有する
多層膜とが、所定のパタンに応じて配置された光学素子
において、上記真空紫外線またはX線に対する反射率が
飽和する積層数以上に厚く、平滑基板上に多層膜を積層
し、上記多層膜の形成および所定パタンに応じて配置す
る工程中に検査工程と欠陥除去工程を含めたことによ
り、検査修正処理に際し高価な多層膜光学素子の歩留り
が大となり、光学素子の製造コスト低減に大きく寄与で
きるとともに、本発明の製造方法による光学素子を転写
・結像することにより、隣接する上記反射率が高い領域
のパタンから反射するビームの位相が反転し、隣接する
パタンのコントラストが増加して、パタン像の解像力を
増加させることができる。
As described above, in the optical element and the method for manufacturing the same according to the present invention, a multilayer film having a region having a relatively low reflectance and a region having a relatively high vacuum ultraviolet ray or X-ray reflectance is provided on a substrate. In the optical element arranged according to the pattern, the multilayer film is laminated on a smooth substrate with a thickness equal to or larger than the number of laminated layers where the reflectance with respect to the vacuum ultraviolet ray or the X-ray is saturated, and according to the formation of the multilayer film and a predetermined pattern. By including the inspection step and the defect removal step in the step of arranging the layers, the yield of the expensive multilayer optical element in the inspection and correction process becomes large, which can greatly contribute to the reduction of the manufacturing cost of the optical element and the manufacturing of the present invention. By transferring and imaging an optical element according to the method, the phase of the beam reflected from the adjacent pattern of the high reflectance region is inverted, and the contrast of the adjacent pattern is changed. There is increasing, it is possible to increase the resolution of the pattern image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光学素子の一実施例を示す図で、
(a)は多層膜パタンの断面を示す図、(b)は反射光
の振幅分布を示す図、(c)は反射光の強度分布を示す
図である。
FIG. 1 is a diagram showing an embodiment of an optical element according to the present invention,
(A) is a figure which shows the cross section of a multilayer film pattern, (b) is a figure which shows the amplitude distribution of reflected light, (c) is a figure which shows the intensity distribution of reflected light.

【図2】上記光学素子の製造工程フローを示す図であ
る。
FIG. 2 is a diagram showing a manufacturing process flow of the optical element.

【図3】多層膜に欠陥を有する光学素子の一例を示す図
で、(a)は欠陥を有する多層膜を示す図、(b)は欠
陥個所を除去した多層膜を示す図である。
3A and 3B are diagrams showing an example of an optical element having a defect in a multilayer film, FIG. 3A is a diagram showing a multilayer film having a defect, and FIG. 3B is a diagram showing a multilayer film from which a defective portion is removed.

【図4】本実施例で形成したパタンの例を示す図で、
(a)は高反射率領域で位相が(2n−1)πだけ異な
る多層膜が交互にストライプ状に近接したパタンを示す
図、(b)は高反射率領域を囲んで(2n−1)πだけ
位相が異なる高反射率領域が近接したパタンを示す図、
(c)は高反射率領域の周囲に(2n−1)π位相が異
なる高反射率領域が隣接して併置されたパタンを示す
図、(d)は高反射率領域の両側に(2n−1)π位相
が異なる高反射率領域を隣接したパタンを示す図であ
る。
FIG. 4 is a view showing an example of a pattern formed in this embodiment,
(A) is a diagram showing a pattern in which a multilayer film in which a phase difference is (2n-1) π in a high reflectance region is alternately arranged in proximity to each other in a stripe shape, and (b) surrounds the high reflectance region (2n-1). A diagram showing a pattern in which high reflectance regions in which phases are different by π are close to each other,
(C) is a diagram showing a pattern in which (2n-1) high reflectance regions having different π phases are juxtaposed adjacent to each other around the high reflectance region, and (d) is (2n-) on both sides of the high reflectance region. 1) A diagram showing a pattern in which high reflectance regions having different π phases are adjacent to each other.

【図5】本発明の光学素子を実装したX線投影露光装置
を示す図である。
FIG. 5 is a diagram showing an X-ray projection exposure apparatus on which the optical element of the present invention is mounted.

【図6】従来のX線縮小投影露光法の露光光学系を示す
図である。
FIG. 6 is a diagram showing an exposure optical system of a conventional X-ray reduction projection exposure method.

【図7】従来の反射型マスクを示す図で、(a)〜
(d)はそれぞれ異なる方法で形成したマスクの断面図
である。
FIG. 7 is a diagram showing a conventional reflective mask, and includes (a) to
(D) is sectional drawing of the mask formed with the respectively different method.

【図8】多層膜の積層数と反射X線の反射率を示す図で
ある。
FIG. 8 is a diagram showing the number of stacked multilayer films and the reflectance of reflected X-rays.

【図9】欠陥を有する多層膜の積層数と反射率との関係
を示す図である。
FIG. 9 is a diagram showing the relationship between the number of stacked multilayer films having a defect and the reflectance.

【図10】欠陥多層膜を除去した場合の積層数と反射率
との関係を示す図である。
FIG. 10 is a diagram showing the relationship between the number of stacked layers and the reflectance when the defective multilayer film is removed.

【図11】多層膜積層数と振幅反射率の位相との関係を
示す図である。
FIG. 11 is a diagram showing the relationship between the number of stacked multilayer films and the phase of amplitude reflectance.

【図12】従来の光学素子を示す図で、(a)は素子の
断面図、(b)は反射光の振幅分布を示す図、(c)は
反射光の強度分布を示す図である。
12A and 12B are diagrams showing a conventional optical element, FIG. 12A is a sectional view of the element, FIG. 12B is a diagram showing an amplitude distribution of reflected light, and FIG. 12C is a diagram showing an intensity distribution of reflected light.

【符号の説明】 11…基板 21…多層膜 22、2203…パタンを形成する多層膜 89…X線源 119…薄膜層 2202…欠陥[Explanation of Codes] 11 ... Substrate 21 ... Multilayer Film 22, 2203 ... Multilayer Film 89 for Forming Pattern 89 ... X-ray Source 119 ... Thin Film Layer 2202 ... Defect

フロントページの続き (72)発明者 武田 英次 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Eiji Takeda 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】基板上に、真空紫外線またはX線に対する
反射率が相対的に低い領域と高い領域とを有する多層膜
が、所定のパタンに応じて配置された光学素子におい
て、上記真空紫外線またはX線に対する反射率が飽和す
る積層数以上に厚く、上記多層膜を平滑基板上に積層す
ることを特徴とする光学素子。
1. An optical element in which a multilayer film having a region having a relatively low reflectance and a region having a relatively high vacuum ultraviolet ray or X-ray on a substrate is arranged according to a predetermined pattern. An optical element, characterized in that the multilayer film is thicker than the number of laminated layers at which the reflectance for X-rays is saturated and is laminated on a smooth substrate.
【請求項2】上記反射率が高い領域は、少なくとも1つ
のパタンの高さをm・(da+db)とするとき、つぎ
の式をほぼ満足するように変化させた多層膜であること
を特徴とする請求項1に記載した光学素子、 m・(da+db)=λ・(2n−1)/(4・cos
θ) ただし、mとnは自然数、daは多層膜を形成する1層
の膜厚、dbは多層膜を形成する他の1層の膜厚、λは
光学素子の照明または露光に用いる真空紫外線またはX
線の波長、θは光学素子の照明または露光に用いる真空
紫外線またはX線の入射角である。
2. The high reflectance region is a multi-layer film which is changed so as to substantially satisfy the following equation when the height of at least one pattern is m · (da + db). The optical element according to claim 1, wherein m · (da + db) = λ · (2n−1) / (4 · cos
θ) where m and n are natural numbers, da is the thickness of one layer forming the multilayer film, db is the thickness of another layer forming the multilayer film, and λ is a vacuum ultraviolet ray used for illumination or exposure of the optical element. Or X
The wavelength of the ray, θ is the incident angle of vacuum ultraviolet ray or X-ray used for illumination or exposure of the optical element.
【請求項3】上記反射率が低い領域と高い領域とを有す
る多層膜は、反射率が高い隣接領域の表面材料を同一に
したことを特徴とする請求項1に記載した光学素子。
3. The optical element according to claim 1, wherein in the multilayer film having the low reflectance region and the high reflectance region, the surface materials of adjacent regions having high reflectance are the same.
【請求項4】上記多層膜は、上記基板との間に少なくと
も1層の薄膜層を形成したことを特徴とする請求項1ま
たは請求項3に記載した光学素子。
4. The optical element according to claim 1 or 3, wherein the multilayer film has at least one thin film layer formed between the multilayer film and the substrate.
【請求項5】基板上に、真空紫外線またはX線に対し光
学定数が異なる少なくとも2種類の物質を、交互に積層
して多層膜を形成する工程と、真空紫外線またはX線に
対し相対的に反射率が高い領域と反射率が低い領域と
を、所定のパタンに応じて上記多層膜に配置する工程
と、上記工程により形成する光学素子を検査する工程
と、上記光学素子を修正する工程と、上記多層膜に欠陥
がある場合に上記欠陥を多層膜の上層から除去する工程
とを含む光学素子の製造方法。
5. A step of alternately laminating at least two kinds of substances having optical constants different from those of vacuum ultraviolet rays or X-rays on a substrate to form a multilayer film, and a step of relatively laminating to vacuum ultraviolet rays or X-rays. A region having a high reflectance and a region having a low reflectance are arranged in the multilayer film according to a predetermined pattern, a step of inspecting an optical element formed by the step, and a step of correcting the optical element. And a step of removing the defect from the upper layer of the multilayer film when the multilayer film has a defect.
【請求項6】上記光学定数が異なる少なくとも2種類の
物質を積層して多層膜を形成する工程は、上記基板上に
少なくとも1層の薄膜層を形成する工程の後に、行うこ
とを特徴とする請求項5に記載した光学素子の製造方
法。
6. The step of forming a multilayer film by laminating at least two kinds of substances having different optical constants is performed after the step of forming at least one thin film layer on the substrate. The method for manufacturing the optical element according to claim 5.
【請求項7】上記欠陥を多層膜の上層から除去する工程
は、上記多層膜を上層から1層づつ除去する工程を含む
ことを特徴とする請求項5に記載した光学素子の製造方
法。
7. The method of manufacturing an optical element according to claim 5, wherein the step of removing the defects from the upper layer of the multilayer film includes the step of removing the multilayer film one layer at a time from the upper layer.
【請求項8】上記多層膜は、上記真空紫外線またはX線
に対する反射率が飽和する積層数以上の厚さに、積層す
ることを特徴とする請求項5から請求項7のいずれかに
記載した光学素子の製造方法。
8. The multilayer film according to claim 5, wherein the multilayer film is laminated in a thickness equal to or larger than the number of laminated layers at which the reflectance with respect to the vacuum ultraviolet ray or the X-ray is saturated. Optical element manufacturing method.
【請求項9】上記光学素子を検査する工程は、少なくと
も一部にX線顕微鏡による検査を含むことを特徴とする
請求項5に記載した光学素子の製造方法。
9. The method of manufacturing an optical element according to claim 5, wherein the step of inspecting the optical element includes an inspection by an X-ray microscope at least in part.
【請求項10】上記光学素子を検査する工程は、少なく
とも一部が上記光学素子を露光して被露光材に転写し、
上記被露光材を検査することを特徴とする請求項5に記
載した光学素子の製造方法。
10. In the step of inspecting the optical element, at least a part of the optical element is exposed and transferred to a material to be exposed,
The method for manufacturing an optical element according to claim 5, wherein the material to be exposed is inspected.
【請求項11】上記光学定数が異なる少なくとも2種類
の物質を、交互に積層して多層膜を形成する工程は、該
工程の途中に、上記光学素子を検査する工程を少なくと
も1回含むことを特徴とする請求項5または請求項6に
記載した光学素子の製造方法。
11. The step of alternately laminating at least two kinds of substances having different optical constants to form a multilayer film includes at least one step of inspecting the optical element in the middle of the step. 7. The method for manufacturing an optical element according to claim 5, which is characterized in that.
【請求項12】基板上に、真空紫外線またはX線に対し
光学定数が異なる少なくとも2種類の物質を、交互に積
層した多層膜の積層数を、上記多層膜の真空紫外線また
はX線に対する反射率が飽和する積層数の厚さ以上に積
層する工程と、上記多層膜に対する真空紫外線またはX
線の相対反射率が高い領域と低い領域とを、所定のパタ
ンに応じて配置する工程と、隣接または近接する上記反
射率が高い領域の少なくとも1つのパタンの高さを、お
よそλ・(2n−1)/(4・cosθ)だけ異なるよう
に、上層から上記多層膜を除去する工程とを含む光学素
子の製造方法、ただし、nは自然数、λは光学素子の照
明または露光に用いる真空紫外線またはX線の波長、θ
は光学素子の照明または露光に用いる真空紫外線または
X線の入射角である。
12. A multilayer film in which at least two kinds of substances having different optical constants with respect to vacuum ultraviolet rays or X-rays are alternately laminated on a substrate, and the number of laminated layers is defined as the reflectance of the multilayer film with respect to vacuum ultraviolet rays or X-rays. And the step of stacking the stacked layers to a thickness equal to or larger than the number of stacked layers that saturates.
A step of arranging a region having a high relative reflectance and a region having a low relative reflectance of a line according to a predetermined pattern, and a height of at least one pattern of the high reflectance region which is adjacent to or adjacent to each other are approximately λ · (2n -1) / (4 · cos θ), a method of manufacturing an optical element, including the step of removing the multilayer film from the upper layer, where n is a natural number and λ is a vacuum ultraviolet ray used for illumination or exposure of the optical element. Or X-ray wavelength, θ
Is the incident angle of vacuum ultraviolet rays or X-rays used for illumination or exposure of the optical element.
【請求項13】上記隣接または近接する上記反射率が高
い多層膜領域のパタンの高さは、つぎの式が成り立つよ
うに、上層から上記多層膜を除去する工程を含むことを
特徴とする請求項12に記載した光学素子の製造方法、 m・(da+db)=λ・(2n−1)/(4・cos
θ) ただし、mとnは自然数、daは多層膜を形成する1層
の膜厚、dbは多層膜を形成する他の1層の膜厚、λは
光学素子の照明または露光に用いる真空紫外線またはX
線の波長、θは光学素子の照明または露光に用いる真空
紫外線またはX線の入射角である。
13. The height of the pattern in the adjacent or adjacent multilayer region having a high reflectance includes the step of removing the multilayer film from the upper layer so that the following equation is satisfied. Item 12. A method for manufacturing an optical element according to item 12, m · (da + db) = λ · (2n−1) / (4 · cos
θ) where m and n are natural numbers, da is the thickness of one layer forming the multilayer film, db is the thickness of another layer forming the multilayer film, and λ is a vacuum ultraviolet ray used for illumination or exposure of the optical element. Or X
The wavelength of the ray, θ is the incident angle of vacuum ultraviolet ray or X-ray used for illumination or exposure of the optical element.
【請求項14】上記光学定数が異なる少なくとも2種類
の物質を交互に積層して多層膜を形成する工程は、上記
基板上に少なくとも1層の薄膜層を形成する工程の後
に、行うことを特徴とする請求項12または請求項13
に記載した光学素子の製造方法。
14. The step of alternately laminating at least two kinds of substances having different optical constants to form a multilayer film is performed after the step of forming at least one thin film layer on the substrate. Claim 12 or claim 13
A method for manufacturing the optical element described in 1.
【請求項15】上記隣接または近接する反射率が高い多
層膜領域のパタンの高さは、ほぼλ・(2n−1)/
(4・cosθ)だけ上記高さを変化させるように、上層
から上記多層膜を1層ずつ除去する工程を含むことを特
徴とする請求項12、請求項13、請求項14のいずれ
かに記載した光学素子の製造方法。
15. The height of the pattern in the multi-layer film region adjacent to or adjacent to each other and having a high reflectance is approximately λ · (2n−1) /
15. The method according to claim 12, further comprising the step of removing the multilayer film from the upper layer one by one so as to change the height by (4 · cos θ). Of manufacturing a finished optical element.
JP32652792A 1992-12-07 1992-12-07 Optical element and its manufacture Pending JPH06177019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32652792A JPH06177019A (en) 1992-12-07 1992-12-07 Optical element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32652792A JPH06177019A (en) 1992-12-07 1992-12-07 Optical element and its manufacture

Publications (1)

Publication Number Publication Date
JPH06177019A true JPH06177019A (en) 1994-06-24

Family

ID=18188830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32652792A Pending JPH06177019A (en) 1992-12-07 1992-12-07 Optical element and its manufacture

Country Status (1)

Country Link
JP (1) JPH06177019A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532738A (en) * 1998-12-08 2002-10-02 イーユーヴィー リミテッド リアビリティ コーポレーション Mask repair method using defect correction
JP2004510343A (en) * 2000-09-26 2004-04-02 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア Reduction of multilayer defects on reticle
KR100839076B1 (en) * 2007-02-06 2008-06-19 삼성전자주식회사 Apparatus for inspecting multilayer and semiconductor manufacturing apparatus having the same of
JP2009272347A (en) * 2008-04-30 2009-11-19 Toshiba Corp Light reflecting mask, exposure apparatus, measuring method, and method of manufacturing semiconductor device
JP2011176127A (en) * 2010-02-24 2011-09-08 Dainippon Printing Co Ltd Reflection type mask and method of manufacturing the same
JP2012190964A (en) * 2011-03-10 2012-10-04 Toppan Printing Co Ltd Phase defect correction method of reflection type photomask and reflection type photomask using the same
JP2012529999A (en) * 2009-06-16 2012-11-29 ザ・ボーイング・カンパニー User-assisted material removal from composite structures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532738A (en) * 1998-12-08 2002-10-02 イーユーヴィー リミテッド リアビリティ コーポレーション Mask repair method using defect correction
JP2004510343A (en) * 2000-09-26 2004-04-02 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア Reduction of multilayer defects on reticle
JP4774188B2 (en) * 2000-09-26 2011-09-14 イーユーヴィー リミテッド ライアビリティー コーポレイション Mitigating multilayer defects on reticles
KR100839076B1 (en) * 2007-02-06 2008-06-19 삼성전자주식회사 Apparatus for inspecting multilayer and semiconductor manufacturing apparatus having the same of
JP2009272347A (en) * 2008-04-30 2009-11-19 Toshiba Corp Light reflecting mask, exposure apparatus, measuring method, and method of manufacturing semiconductor device
JP2012529999A (en) * 2009-06-16 2012-11-29 ザ・ボーイング・カンパニー User-assisted material removal from composite structures
JP2011176127A (en) * 2010-02-24 2011-09-08 Dainippon Printing Co Ltd Reflection type mask and method of manufacturing the same
JP2012190964A (en) * 2011-03-10 2012-10-04 Toppan Printing Co Ltd Phase defect correction method of reflection type photomask and reflection type photomask using the same

Similar Documents

Publication Publication Date Title
US5272744A (en) Reflection mask
US7203275B2 (en) Multilayer film reflector and X-ray exposure system
EP1412817B1 (en) Damascene extreme ultraviolet lithography (euvl) photomask and method of making
JP4320970B2 (en) Manufacturing method of multilayer mirror
JP4818125B2 (en) Concentrator with sacrificial reflective surface
JP2003014893A (en) Multilayer film reflection mirror and exposure equipment
JP2008242332A (en) Reflecting optical element and exposure device
JP4144301B2 (en) MULTILAYER REFLECTOR, REFLECTIVE MASK, EXPOSURE APPARATUS AND REFLECTIVE MASK MANUFACTURING METHOD
JPH06120125A (en) Optical element and projection aligner using same
KR20090032876A (en) Lithograpy apparatus and method for forming semiconductor device using the same
US5485497A (en) Optical element and projection exposure apparatus employing the same
JPH06177019A (en) Optical element and its manufacture
JPH1026698A (en) Device for forming thin film under vacuum and method for manufacturing reflector
JP2000031021A (en) Reflective mask and method of producing device using the same
JP3167074B2 (en) SOR exposure system and mask manufactured using the same
JPH06177018A (en) Optical element, and lighting method and projection exposure device therefor
JP3345512B2 (en) Method for manufacturing semiconductor device
TW202111419A (en) Euv mask blanks and methods of manufacture
JP2005099571A (en) Multilayered film reflection mirror, film-deposition method of reflection multilayered film, film-deposition device and exposure device
JPH09326347A (en) Fine pattern transcribing method and its device
JP2007059743A (en) Multilayer film reflector and aligner
JP4524976B2 (en) Manufacturing method of multilayer mirror
KR100255255B1 (en) Optical element and projection exposure apparatus employing the same
JP2005049122A (en) Multilayer-film reflector and exposure device
KR20030089765A (en) Multilayer film reflection mirror and exposure apparatus