JPH0749120B2 - Sludge treatment method - Google Patents

Sludge treatment method

Info

Publication number
JPH0749120B2
JPH0749120B2 JP3358226A JP35822691A JPH0749120B2 JP H0749120 B2 JPH0749120 B2 JP H0749120B2 JP 3358226 A JP3358226 A JP 3358226A JP 35822691 A JP35822691 A JP 35822691A JP H0749120 B2 JPH0749120 B2 JP H0749120B2
Authority
JP
Japan
Prior art keywords
sludge
clay mineral
added
divalent metal
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3358226A
Other languages
Japanese (ja)
Other versions
JPH0623399A (en
Inventor
昭一 郷田
武司 小林
才知 宮下
Original Assignee
荏原インフィルコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原インフィルコ株式会社 filed Critical 荏原インフィルコ株式会社
Priority to JP3358226A priority Critical patent/JPH0749120B2/en
Publication of JPH0623399A publication Critical patent/JPH0623399A/en
Publication of JPH0749120B2 publication Critical patent/JPH0749120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上水、下水及び各種産
業排水処理によって発生する汚泥の処理、処分に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to treatment and disposal of sludge generated by treatment of tap water, sewage and various industrial wastewater.

【0002】[0002]

【従来の技術】従来、上水、下水及び各種産業排水処理
においては、多量の汚泥が発生し、特に下水等の汚水を
活性汚泥法で処理する際に多くの汚泥が発生しており、
それらの汚泥は濃縮、脱水、乾燥、焼却等の工程を経て
減容化され、埋め立て処分されているのが普通である。
これらの汚泥は、水分が多いものであり、かつ脱水しが
たいものであるため、その処理、処分のために多大の経
費とエネルギーを消費し、それを焼却したものもそのま
まの状態では再利用できるものでなく、埋め立てする外
はないものであるため、その処分地にも余裕がなくな
り、その対策に苦慮している。
2. Description of the Related Art Conventionally, a large amount of sludge is generated in the treatment of tap water, sewage and various industrial wastewater, and particularly when treating sewage such as sewage by an activated sludge method, a large amount of sludge is generated.
These sludges are usually reduced in volume through processes such as concentration, dehydration, drying, incineration, etc., and then disposed of in landfill.
Since these sludges have a high water content and are difficult to dehydrate, they consume a great deal of expense and energy for their treatment and disposal, and those that are incinerated can be reused as they are. Since it is not something that can be done and there is no choice but to reclaim it, there is no room at the disposal site, and we are struggling to deal with it.

【0003】粘土鉱物類を用いて汚泥を処理することに
ついては、本出願人はかねてから研究を進めており、先
に特公昭52−18668号公報で、懸濁固形物1トン
当たり3〜50kgのベントナイト及び高分子凝集剤を
添加し、これを水平な筒状回転容器内の一端に供給して
コロガリ運動を与えて固形物と液とを分離する懸濁液の
処理方法を提案している。
Regarding the treatment of sludge using clay minerals, the present applicant has been conducting research for some time, and in Japanese Patent Publication No. 52-18668, the amount of 3 to 50 kg per ton of suspended solids was previously mentioned. A method for treating a suspension is proposed in which bentonite and a polymer flocculant are added, and the mixture is supplied to one end of a horizontal cylindrical rotary container to give a rolling motion to separate a solid from a liquid.

【0004】また、本出願人は、同様な懸濁液の処理に
関して、特公昭53−13059号公報で、懸濁固形物
を含む懸濁液に高分子凝集剤及びベントナイトを添加
し、処理槽内における懸濁固形物濃度を5〜300g/
リットルに保ちつつ、該液に処理槽内で回転翼による旋
回流を与え、かつこの旋回流が乱されない処理槽を用い
液中の懸濁固形物をペレット状固形物に造粒して液体と
分離するようにした固液分離方法を提案している。
Further, regarding the same treatment of a suspension, the applicant of the present invention discloses in Japanese Patent Publication No. 53-13059 that a polymer flocculant and bentonite are added to a suspension containing suspended solids, and a treatment tank is added. The concentration of suspended solids in the vessel is 5 to 300 g /
While maintaining the liter, the liquid is given a swirling flow by a rotary blade in the processing tank, and the suspended solid in the liquid is granulated into a pellet-like solid by using a processing tank in which the swirling flow is not disturbed. A solid-liquid separation method for separating is proposed.

【0005】更に、特開昭54−16845号公報で
は、粘土鉱物類を有機性排水汚泥の処理に使用して、下
水処理場等の有機性排水処理場より発生する、最初沈澱
池汚泥、余剰活性汚泥、或いはこれらの混合汚泥の有機
性排水汚泥に、ベントナイトを添加した後、アニオン性
高分子凝集剤又はノニオン性高分子凝集剤、又はこれら
の混合高分子凝集剤を添加して汚泥を凝集する方法を提
案している。
Further, in Japanese Patent Laid-Open No. 54-16845, clay minerals are used for treating organic wastewater sludge, and the first settling tank sludge and surplus generated from organic wastewater treatment plants such as sewage treatment plants. After adding bentonite to activated sludge or organic waste sludge of these mixed sludges, add anionic polymer coagulant or nonionic polymer coagulant, or mixed polymer coagulant of these sludges to coagulate sludge Suggesting a way to do it.

【0006】[0006]

【発明が解決しようとする課題】前記した方法は、いず
れもベントナイトの膨張性を利用し、有機性高分子凝集
剤の効果を高め、比較的強固な凝集物を作り、脱水効率
を高めようとするものである。しかし、これらの方法を
もってしても、著しい低含水率化には至らず、汚泥の処
理の全コストに対する寄与率は小さく、著しい改善がな
されないので、より一層の効率化が必要とされている。
In any of the above-mentioned methods, the expansiveness of bentonite is used to enhance the effect of the organic polymer flocculant, to form a relatively strong agglomerate, and to enhance the dehydration efficiency. To do. However, even with these methods, the water content cannot be significantly lowered, the contribution to the total cost of sludge treatment is small, and no significant improvement is made, so further efficiency improvement is required. .

【0007】本発明は、汚泥又はその脱水ケーキを処理
するに際し、粘土鉱物を2価金属イオンで置換させ、こ
れを添加して、一定時間放置するだけで、粘土鉱物に自
己収縮作用を生起せしめ、この作用により脱水、固化が
進行し、少ないエネルギーで乾燥固化状態に導くように
した汚泥の処理方法を提供することを目的とするもので
ある。
According to the present invention, when treating sludge or its dehydrated cake, the clay mineral is replaced with divalent metal ions.
By adding this and leaving it for a certain period of time, a self-shrinking action is caused in the clay mineral, and by this action dehydration and solidification proceed, and a sludge treatment method that leads to a dry solidification state with less energy is provided. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明の課題は、次の手
段によって前記の目的を達成することができる。 (1) 酸化珪素及び酸化アルミニウムを主成分とし陽
イオン交換性を有する粘土鉱物を2価金属イオンで置換
させ、これを汚泥に添加して脱水した後、その脱水ケー
キを一定時間放置することにより脱水・固化すること
特徴とする汚泥の処理方法。
The object of the present invention can achieve the above object by the following means. (1) Substitution of a cation-exchangeable clay mineral containing silicon oxide and aluminum oxide as main components with divalent metal ions
After adding it to the sludge to dehydrate it, the dehydration case
A sludge treatment method characterized by dehydration and solidification by leaving ki for a certain period of time.

【0009】(2) 酸化珪素及び酸化アルミニウムを
主成分とし陽イオン交換性を有する粘土鉱物を2価金属
イオンで置換させ、これを汚泥の脱水ケーキに添加混合
して、一定時間放置することにより脱水・固化すること
を特徴とする汚泥の処理方法。 本発明で用いる、酸化珪素及び酸化アルミニウムを主成
分とし陽イオン交換性を有する粘土鉱物としては、具体
的には、例えばベントナイト、ザウコナイト、ノントロ
ナイト、サポナイト、ヘクトライト、バーミキュライト
等であり、その組成は、おおよそ酸化珪素:酸化アルミ
ニウムの比が4:1〜2:1で、その他鉄、カルシウ
ム、ナトリウム、マグネシウム、チタン等の酸化物を含
んだものである。
(2) A cation-exchangeable clay mineral containing silicon oxide and aluminum oxide as main components is replaced with a divalent metal ion, and this is added to and mixed with a dehydrated cake of sludge.
Then , the sludge treatment method is characterized in that it is dehydrated and solidified by leaving it for a certain period of time. Examples of the clay mineral having cation exchange properties containing silicon oxide and aluminum oxide as main components used in the present invention include, for example, bentonite, sauconite, nontronite, saponite, hectorite, vermiculite, and the like. The composition is such that the ratio of silicon oxide: aluminum oxide is approximately 4: 1 to 2: 1 and other oxides such as iron, calcium, sodium, magnesium and titanium are included.

【0010】前記の粘土鉱物は、鉱物構造上、基本的に
は、酸化珪素が酸化アルミニウムをはさんだサンドウイ
ッチ構造をしており、これを単位層として、多層に重な
りあったものが主構成物であり、この単位層の酸化珪素
側は多量のアニオン荷電を有しているため、単位層が重
なると電気的に反発しあい、その結果、その層間部分が
伸縮自在になると同時に、永久アニオン荷電を有するた
め陽イオン交換能が生じ、通常、陽イオンとしては1価
金属イオンを有する場合が多い。
The clay mineral basically has a sandwich structure in which silicon oxide sandwiches aluminum oxide in terms of a mineral structure, and the main constituent is a multilayer structure in which this is a unit layer. Since the silicon oxide side of this unit layer has a large amount of anion charge, when the unit layers overlap, they electrically repel each other, and as a result, the interlayer portion becomes elastic and at the same time the permanent anion charge is Since it has a cation exchange ability, it usually has a monovalent metal ion as the cation.

【0011】本発明では、この粘土鉱物を2価金属イオ
ンで置換することにより変成したものを用いる。この変
成した粘土鉱物を以下「変成粘土鉱物」という。その変
成は、前記粘土鉱物を2価金属イオンを放出する2価金
属化合物の溶液に浸漬して、粘土鉱物中の1価金属イオ
ンを2価金属イオンにより置換あるいは粘土鉱物に2価
金属化合物を添加混合することにより行うのが良い。2
価金属化合物としては、カルシウム、マグネシウム、バ
リウムなどの水溶性塩を用いるのが好ましい。これらの
中、カルシウムの塩を用いるのが好ましく、例えば塩化
カルシウムなどが用いられる。
In the present invention, a clay mineral modified by substituting it with a divalent metal ion is used. This metamorphic clay mineral is hereinafter referred to as "metamorphic clay mineral". The modification is performed by immersing the clay mineral in a solution of a divalent metal compound that releases a divalent metal ion, and replacing the monovalent metal ion in the clay mineral with the divalent metal ion or adding the divalent metal compound to the clay mineral. It is good to add and mix. Two
As the valent metal compound, it is preferable to use a water-soluble salt such as calcium, magnesium or barium. Among these, it is preferable to use a calcium salt, for example, calcium chloride.

【0012】汚泥又はその脱水ケーキに粘土鉱物と2価
金属化合物とを添加する場合を参考までに示すと、この
両者を同時に加えても、別々に加えても良く、別々に加
える際には粘土鉱物を先に加えても良く、またその逆に
2価金属化合物を先に加えても良い。また、前記粘土鉱
物と2価金属化合物とを添加する場合には、粘土鉱物1
00重量部に対して2価金属化合物を5〜30重量部用
いるのが好ましいが、その添加割合は粘土鉱物或いは2
価金属化合物の種類によっても異なる。
For reference, the case where the clay mineral and the divalent metal compound are added to the sludge or the dehydrated cake thereof is shown for reference. Both of them may be added simultaneously or separately. The mineral may be added first, or vice versa, the divalent metal compound may be added first. Further, when the clay mineral and the divalent metal compound are added, the clay mineral 1
It is preferable to use 5 to 30 parts by weight of the divalent metal compound with respect to 00 parts by weight, but the addition ratio is clay mineral or 2 parts by weight.
It also depends on the type of valent metal compound.

【0013】前記の変成粘土鉱物汚泥に対する添加量
は、汚泥又は変成粘土鉱物などの性状、特に汚泥の性状
によって異なるが、無機汚泥の場合には比較的少なく、
有機物が増えるにしたがい多くなり、添加する変成粘土
鉱物の量は、例えば汚泥の固形分に対して5〜100重
量%を用いるのがよく、10〜50重量%が好ましい。
一般的には多い方が好ましい。使用する2価金属化合物
の添加量は、基本的には陽イオン交換に必要な量であれ
ばよいが、汚泥によってはpHが酸性のものもあり、好
ましくはpHが中性以上になるように添加した方がよ
く、粘土鉱物に対して5〜30重量%、特に10〜20
重量%が好ましく、また汚泥の固形物に対しては2〜5
0%が適当である。なお、これらの場合、高分子凝集剤
を併用することもでき、その高分子凝集剤としては既に
知られているものならば、いずれをも用いることができ
る。
The amount of the above-mentioned modified clay mineral added to the sludge varies depending on the properties of the sludge or the modified clay mineral, particularly the properties of the sludge, but in the case of the inorganic sludge, it is relatively small,
As the amount of organic substances increases, the amount of the modified clay mineral to be added is preferably 5 to 100% by weight, and more preferably 10 to 50% by weight, based on the solid content of sludge.
Generally, the larger the number, the more preferable. The amount of the divalent metal compound used may be basically the amount required for cation exchange, but some sludges have an acidic pH, and preferably the pH is neutral or higher. It is better to add 5 to 30% by weight to clay minerals, especially 10 to 20
% By weight is preferred, and 2 to 5 for sludge solids
0% is suitable. In these cases, a polymer coagulant may be used in combination, and any polymer coagulant that is already known may be used.

【0014】前述したように、汚泥に前記の変成粘土鉱
を添加した後、脱水する。その脱水手段としては、濾
過、遠心分離、ベルトプレス、フィルタープレスなどの
周知の分離手段を用いることができる。そして、その脱
水操作によって生成した脱水ケーキを一定時間放置す
る。その放置時間は、脱水ケーキが固化の程度を高める
に十分な時間とする。なお、脱水ケーキに前記変成粘土
鉱物、或いは粘土鉱物と2価金属化合物を添加しても良
い。
As described above, the above-mentioned modified clay mineral is added to sludge and then dehydrated. As the dehydrating means, known separating means such as filtration, centrifugal separation, belt press, filter press and the like can be used. Then, the dehydrated cake generated by the dehydration operation is left for a certain period of time. The leaving time is sufficient for increasing the degree of solidification of the dehydrated cake. Incidentally, the metamorphic clay mineral in dehydrated cake or clay mineral and may be added a divalent metal compound.

【0015】汚泥に前記変成粘土鉱物を添加する場合、
汚泥への分散性を良くするためにスラリー状にしたもの
を添加した方がよい更に、前記変成粘土鉱物等を添加
する場合、汚泥にではなく、汚泥の脱水ケーキに添加し
てもよく、その場合には通常粉末状で添加するが、ニー
ダー等で脱水ケーキと十分混合する必要がある。
When the above-mentioned modified clay mineral is added to sludge,
In order to improve dispersibility in sludge, it is better to add a slurry . Furthermore, when the modified clay mineral or the like is added, it may be added not to the sludge but to the dehydrated cake of the sludge. In that case, it is usually added in powder form, but it is necessary to sufficiently mix it with the dehydrated cake with a kneader or the like. There is.

【0016】[0016]

【作用】本発明で用いる粘土鉱物はその構造上、層間が
伸縮自在になっており、本発明はその性質を利用するも
のであるが、ここで用いる粘土鉱物は天然ものでは陽イ
オンが通常1価金属であるため、2価金属の陽イオンを
有する2価金属化合物を加えて陽イオン交換をする必要
があるが、粘土鉱物がもともと2価金属イオンを含有す
るものであれば、特に陽イオン交換をする必要はない
(そのような粘土鉱物も前記の「変成粘土鉱物」に含め
る)。
The clay mineral used in the present invention has a structure in which the layers are stretchable and contractible, and the present invention utilizes this property. However, in the clay mineral used here, the cation is usually 1 Since it is a valent metal, it is necessary to add a divalent metal compound having a cation of a divalent metal to perform cation exchange. However, if the clay mineral originally contains a divalent metal ion, a cation is particularly preferable. There is no need for replacement (such clay minerals are also included in the above “metamorphic clay mineral”).

【0017】この1価型と2価型との相違は、1価型の
場合、非常に親水性があり、水が加わると著しく膨張す
るが、2価型となると親水性が減少し、膨潤度合が著し
く減少する。このため、本発明では、含有させる陽イオ
ンとしては2価金属であることが重要であり、その陽イ
オン交換に用いる2価金属化合物としては、2価金属イ
オンを含むものであればその種類、有機物、無機物であ
るかはとわないが、なかでもカルシウム、マグネシウム
等の化合物であることが好ましい。
The difference between the monovalent type and the divalent type is that the monovalent type is very hydrophilic and swells significantly when water is added, but the divalent type reduces the hydrophilicity and swells. The degree is significantly reduced. For this reason, in the present invention, it is important that the cation to be contained is a divalent metal, and the divalent metal compound used for the cation exchange may be any kind as long as it contains a divalent metal ion. It does not matter whether it is an organic substance or an inorganic substance, but it is preferable to use a compound such as calcium or magnesium.

【0018】本発明では、前記の変成粘土鉱物等を汚泥
に添加することにより、その脱水操作の後において自己
脱水の作用を生じる。この自己脱水のメカニズムについ
て述べると、汚泥に添加し脱水することにより汚泥粒子
と2価金属イオンによる粘土鉱物との架橋が始まる。こ
の架橋作用により粘土鉱物の前記伸縮部に電気的な変位
が生じ、層間格子に変形が起き、また、吸着された水の
配位状況が変化して親水性が減少し、その結果、吸着し
ていた水が放出され、層間部が自己収縮する。粘土鉱物
格子間に閉じ込められた汚泥粒子は粘土鉱物の収縮に伴
い脱水されることになり、脱水が進むにしたがい架橋が
強化され、固化が進行する。
In the present invention, by adding the above-mentioned modified clay mineral and the like to sludge, the action of self-dehydration occurs after the dehydration operation. The mechanism of this self-dehydration will be described. When it is added to sludge and dehydrated, the sludge particles are cross-linked with the clay mineral by the divalent metal ions. This cross-linking action causes an electrical displacement in the stretchable part of the clay mineral, causing a deformation in the inter-layer lattice, and also changes the coordination state of the adsorbed water to reduce the hydrophilicity, resulting in adsorption. The water that had been released is released, and the interlayer portion self-contracts. The sludge particles trapped between the clay mineral lattices are dehydrated as the clay mineral shrinks, and as the dehydration progresses, the crosslinking is strengthened and solidification proceeds.

【0019】従って、汚泥から処理する場合には、脱水
操作により粘土鉱物が汚泥とよく接触させる必要がある
が、それに使用する脱水機に制約はなく、また以下の実
施例ではベルトプレスを使用するため有機高分子凝集剤
を使用し凝集させているが、機種、汚泥の種類によって
は必ずしも、有機高分子凝集剤を必要とするものではな
い。また脱水ケーキに前記の変成粘土鉱物を添加混合す
ることにより自己脱水の作用が生じる。
Therefore, when treating sludge, it is necessary to bring the clay mineral into good contact with the sludge by a dehydration operation, but there is no restriction on the dehydrator used for it, and a belt press is used in the following examples. Therefore, the organic polymer coagulant is used for coagulation, but the organic polymer coagulant is not always necessary depending on the model and the type of sludge. Further, the action of self-dehydration occurs by adding and mixing the above-mentioned modified clay mineral to the dehydrated cake.

【0020】自己脱水、固化を完了させるためには一定
時間放置しなければならないが、化学的に2価金属の架
橋作用の促進を図ることや、物理的に熱風を送り込んだ
り、その環境を除湿することによりその作用を促進さ
せ、短時間で脱水固化を完了させることもできる。ま
た、固化物はかなりの破壊強度を保有すると同時に、水
に接しても再分散したり破壊されることもなく、吸水
性、保水性が高いため種々の有効利用方法が考えられ、
目的にあった形状に成形したのち固化するのも一方法で
あり、さらに、有害物を封じ込める手段としても利用で
きる。
To complete self-dehydration and solidification, it must be left for a certain period of time, but it is necessary to chemically promote the crosslinking action of the divalent metal, physically blow hot air, or dehumidify the environment. By doing so, the action can be promoted and the dehydration and solidification can be completed in a short time. Further, the solidified material has a considerable breaking strength, at the same time it is not re-dispersed or broken even when it comes into contact with water, and since water absorption and water retention are high, various effective utilization methods are conceivable.
One of the methods is to mold it into a shape suitable for the purpose and then solidify it, and it can also be used as a means for containing harmful substances.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこの実施例に限定されるものでは
ない。 実施例1 固化する汚泥として下水混合生汚泥を用い、その汚泥濃
度は17.2g/リットルであった。添加する粘土鉱物
としてはベントナイト(モンモリロナイトが主成分)を
使用し、その添加率を汚泥の固形物に対して20%と
し、またそれとともに加える2価金属化合物として消石
灰を用い、その添加率を汚泥の固形物に対して4%とし
た。汚泥の脱水に脱水機としてベルトプレスを用いたた
め、ベントナイトおよび消石灰を添加混合後、有機高分
子化合物凝集剤(添加率0.7%)を添加して脱水し
た。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to this embodiment. Example 1 Sewage mixed raw sludge was used as the sludge to be solidified, and the sludge concentration was 17.2 g / liter. Bentonite (mainly montmorillonite) was used as the clay mineral to be added, and its addition rate was 20% with respect to the solid matter of sludge, and slaked lime was used as the divalent metal compound added with it, and the addition rate was sludge. To 4% of solids. Since a belt press was used as a dehydrator for dewatering sludge, bentonite and slaked lime were added and mixed, and then an organic polymer compound flocculant (addition rate 0.7%) was added for dewatering.

【0022】比較対象として、有機高分子化合物凝集剤
のみを添加(添加率0.7%)した場合(比較例1)、
ベントナイト(添加率20%)と有機高分子凝集剤(添
加率0.7%)とを添加した場合(比較例2)について
も脱水を行った。その脱水により得られた脱水ケーキの
含水率は、各々のケーキ含水率がほぼ同等となるように
脱水条件を調整した結果、比較例1及び2で78.5
%、79.1%であり、本発明の場合で78.2%とな
った。
For comparison, when only the organic polymer compound flocculant was added (addition rate 0.7%) (Comparative Example 1),
Dehydration was also performed in the case where bentonite (addition rate 20%) and an organic polymer coagulant (addition rate 0.7%) were added (Comparative Example 2). As for the water content of the dehydrated cake obtained by the dehydration, as a result of adjusting the dehydration conditions so that the water content of each cake was almost the same, 78.5 in Comparative Examples 1 and 2.
%, 79.1%, and in the case of the present invention, it was 78.2%.

【0023】次に、各々の脱水ケーキ20gを約18時
間放置し、時間の経過に伴う固化状態、ケーキ含水率
(重量)の変化を測定した。その結果を表1に示すが、
放置した環境は湿度54%、温度22℃であった。
Next, 20 g of each dehydrated cake was allowed to stand for about 18 hours, and changes in the solidified state and cake water content (weight) over time were measured. The results are shown in Table 1,
The environment that was left was a humidity of 54% and a temperature of 22 ° C.

【0024】[0024]

【表1】 この測定においては、大気中に放置しているため、乾燥
による水分の蒸発があり、有機高分子凝集剤のみを添加
した比較例1の場合、含水率低下はもっぱら乾燥による
ものである。一方、粘土鉱物は添加するが、2価金属化
合物を添加しない比較例2の場合も、その含水率の低下
は有機高分子凝集剤のみ添加の場合と同様であって、自
己収縮現象は認められなかった。ところが、本発明の場
合、表1より明らかなように含水率の低下率が比較例1
及び2の場合より著しく高くなっており、乾燥以外に粘
土鉱物の自己収縮による脱水作用が働いている。
[Table 1] In this measurement, since the sample was left in the air, there was evaporation of water due to drying, and in the case of Comparative Example 1 in which only the organic polymer coagulant was added, the decrease in water content was solely due to drying. On the other hand, in the case of Comparative Example 2 in which the clay mineral was added but the divalent metal compound was not added, the decrease in water content was the same as in the case of adding only the organic polymer coagulant, and the self-shrinking phenomenon was recognized. There wasn't. However, in the case of the present invention, as is clear from Table 1, the decrease rate of the water content is comparative example 1.
It is significantly higher than in the cases of 2 and 2, and the dehydration action by the self-shrinkage of the clay mineral is exerted in addition to the drying.

【0025】[0025]

【発明の効果】本発明によれば、汚泥又はその脱水ケー
キを処理する際し、粘土鉱物と2価金属化合物を使用し
て、一定時間放置するだけで、粘土鉱物の自己収縮作用
により脱水が進むと同時に固化が進行し、少ないエネル
ギーで一挙に乾燥固化状態に導くことができる。この固
化物は水に接しても再分散したり破壊されることもな
く、吸水性、保水性が高いため種々の分野で有効に利用
することが可能であり、埋め立てに廻される量が減るの
で、処分地対策の一助となる。また、本発明により処理
された汚泥は固化状態であるため、取扱が非常に容易で
ある。
EFFECTS OF THE INVENTION According to the present invention, when treating sludge or its dehydrated cake, the clay mineral and the divalent metal compound are used and the dehydration is carried out by the self-shrinking action of the clay mineral, simply by allowing it to stand for a certain period of time. Solidification progresses at the same time, and it is possible to lead to a dry solidification state at once with a small amount of energy. This solidified product is not redispersed or destroyed even when it comes into contact with water, and since it has high water absorption and water retention, it can be effectively used in various fields, and the amount sent to landfill is reduced. , Will help the disposal site measures. Moreover, since the sludge treated by the present invention is in a solidified state, it is very easy to handle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化珪素及び酸化アルミニウムを主成分
とし陽イオン交換性を有する粘土鉱物を2価金属イオン
で置換させ、これを汚泥に添加して脱水した後、その脱
水ケーキを一定時間放置することにより脱水・固化する
ことを特徴とする汚泥の処理方法。
1. A clay mineral having silicon oxide and aluminum oxide as main components and having a cation exchange property is replaced with a divalent metal ion, and this is added to sludge for dehydration, followed by removal thereof.
Dehydrate and solidify by leaving the water cake for a certain period of time
Processing method of sludge, characterized in that.
【請求項2】 酸化珪素及び酸化アルミニウムを主成分
とし陽イオン交換性を有する粘土鉱物を2価金属イオン
で置換させ、これを汚泥の脱水ケーキに添加混合して
一定時間放置することにより脱水・固化することを特徴
とする汚泥の処理方法。
2. A clay mineral having silicon oxide and aluminum oxide as main components and having a cation exchange property is replaced with a divalent metal ion, and this is added to and mixed with a dehydrated cake of sludge,
A sludge treatment method characterized by being dehydrated and solidified by leaving it for a certain period of time.
JP3358226A 1991-12-27 1991-12-27 Sludge treatment method Expired - Fee Related JPH0749120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358226A JPH0749120B2 (en) 1991-12-27 1991-12-27 Sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358226A JPH0749120B2 (en) 1991-12-27 1991-12-27 Sludge treatment method

Publications (2)

Publication Number Publication Date
JPH0623399A JPH0623399A (en) 1994-02-01
JPH0749120B2 true JPH0749120B2 (en) 1995-05-31

Family

ID=18458195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358226A Expired - Fee Related JPH0749120B2 (en) 1991-12-27 1991-12-27 Sludge treatment method

Country Status (1)

Country Link
JP (1) JPH0749120B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794400A (en) * 1980-12-03 1982-06-11 Soichi Nagahara Sludge treatment of waste water

Also Published As

Publication number Publication date
JPH0623399A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
Prabhu et al. A review on removal of heavy metal ions from waste water using natural/modified bentonite
KR101338784B1 (en) Surface treated calcium carbonate and its use in waste water treatment
RU2225251C2 (en) Product and method for water treatment
US4415467A (en) Agent for the purification of waste waters and process for its production
US5073272A (en) Method for using a flocculant powder
US4377483A (en) Method of removing dissolved heavy metals from aqueous waste liquids
US20110195166A1 (en) Modified Biogenic Silica and Method for Purifying a Liquid
CN104261536B (en) For quickly removing the efficient flocculant of heavy metal in water
JPH09192677A (en) Treatment of arsenic-containing waste water
JP2005028281A (en) Composite adsorbent and method for wastewater treatment by using the adsorbent
CN106336038A (en) Treatment method for heavy metal-containing polluted wastewater
KR19980068155A (en) A coagulant
Almaliky et al. Geomaterials as cost effective sorbent to remove fluoride from water
JP2006320836A (en) Instant flocculant for treating polluted water and method for treating polluted water using the same
JPH0749120B2 (en) Sludge treatment method
JPWO2004045740A1 (en) Purification agent for waste water and sludge water
JPH0117760B2 (en)
JP2003019404A (en) Arsenic adsorbent and removal treatment method for arsenic using the same
JP3724062B2 (en) Waste treatment material and waste treatment method
JP6315165B2 (en) Production of a toxic metal adsorbent in which a porous sintered body is impregnated with an iron-based coagulant and the use method
JPS62152588A (en) Treatment of water containing phosphate
JP5154898B2 (en) Flocculant
JP2005028272A (en) Phosphorus-component adsorbent and method for wastewater treatment by using the adsorbent
CN107686139A (en) A kind of composite medicament for water disposal and its preparation method and application
JPS59228906A (en) Water treating agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees