JPH0748182A - Production of porous carbonaceous plate - Google Patents

Production of porous carbonaceous plate

Info

Publication number
JPH0748182A
JPH0748182A JP5052121A JP5212193A JPH0748182A JP H0748182 A JPH0748182 A JP H0748182A JP 5052121 A JP5052121 A JP 5052121A JP 5212193 A JP5212193 A JP 5212193A JP H0748182 A JPH0748182 A JP H0748182A
Authority
JP
Japan
Prior art keywords
plate
baking
firing
temperature
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052121A
Other languages
Japanese (ja)
Inventor
Kazutoshi Haraguchi
和敏 原口
Masaru Furukawa
勝 古河
Fumihiko Maekawa
文彦 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5052121A priority Critical patent/JPH0748182A/en
Publication of JPH0748182A publication Critical patent/JPH0748182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a production method for a porous carbonaceous plate suppressed in developing abnormalities such as wrinkles, warpages or cracks during its baking process by dividing the baking process for a molded plate into two steps and by specifying baking conditions such as maximum baking temperatures, rates of temperature rise and loads during the respective steps. CONSTITUTION:The baking process for a molded plate obtained by molding and curing a composition comprising carbon fibers and a thermosetting resin binder is divided into two steps. In the 1st step, one carbonaceous plate is inserted as a heat transfer plate every 1 to 15 molded plates and a baking is conducted under the following conditions: (1) maximum baking temperature: 600-850 deg.C, (2) rate of temperature rise between baking temperatures 300-700 deg.C: <=0.5 deg.C/min, and (3) load on the molded plates during baking: <=0.02kg/cm<2>. After baking at the maximum temperature in the 1st step, the molded plate is cooled to room temperature and then baked again in the 2nd step by inserting one carbonaceous plate as a heat transfer plate every 1 to 15 molded plates under the following conditions: (4) maximum baking temperature: >=2000 deg.C (up to ca.2500 deg.C) and (5) load on the molded plates during baking: >=0.02kg/cm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多孔質炭素板の製造方法
に関するものであり、得られた多孔質炭素板は燐酸型燃
料電池等の電極材や耐熱材、耐蝕性フィルター等に用い
られる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous carbon plate, and the obtained porous carbon plate is used for an electrode material such as a phosphoric acid fuel cell, a heat resistant material, a corrosion resistant filter and the like.

【0002】[0002]

【従来の技術】省エネルギ−、無公害型の次世代型発電
方式として注目されている各種燃料電池の内、電解質と
して燐酸を用いる燐酸型燃料電池は、第一世代の燃料電
池として最も実用化に近く、実証テストを行う段階まで
開発が進められている。燐酸型燃料電池において、電池
本体は電極板、セパレ−タ−、冷却板等を積層したもの
で構成されているがその殆どに炭素材が用いられてい
る。これは、力学強度が高く取扱い性に優れていること
のほか、約200℃という反応温度での電解質(燐酸)
に対する耐久性に優れていることや、熱伝導性に優れて
いること、また多孔質性(電極板の場合)やガス不透過
性(セパレ−タ−の場合)に優れていると言った特徴を
炭素材が併せ持っていることによる。
2. Description of the Related Art Among various fuel cells attracting attention as an energy-saving and pollution-free next-generation power generation system, a phosphoric acid fuel cell using phosphoric acid as an electrolyte is most practically used as a first generation fuel cell. The development is being advanced to the stage of conducting a verification test. In a phosphoric acid fuel cell, the cell body is composed of a stack of electrode plates, a separator, a cooling plate, etc., and most of them use carbon materials. In addition to having high mechanical strength and excellent handleability, this is an electrolyte (phosphoric acid) at a reaction temperature of about 200 ° C.
It is characterized by excellent durability against heat, excellent thermal conductivity, and excellent porosity (for electrode plates) and gas impermeability (for separators). Because the carbon material also has.

【0003】この内炭素電極板としては、燐酸を保持し
たり、ガスを透過したりするために多孔質性であり、か
つ厚み方向の熱伝導、電気伝導に優れ、また取扱い性が
容易な力学強度を有していることが必要であり、これら
の性質を併せもつ多孔質炭素板が用いられている。
The inner carbon electrode plate is porous in order to retain phosphoric acid and to permeate gas, is excellent in heat conduction and electric conduction in the thickness direction, and is easy to handle. It is necessary to have strength, and a porous carbon plate having these properties is used.

【0004】従来、多孔質炭素板の製法としては、繊維
状物質を主材とし、これを樹脂等のバインダーにて板状
に成形後、次いで焼成して得る方法が一般的である。具
体的には、例えば後記する繊維状物質とバインダ−とし
てフェノ−ル樹脂等の熱硬化性樹脂を用い、予め炭素繊
維を湿式抄紙したペ−パ−状材料に熱硬化性樹脂を含浸
した後、成形硬化して多孔質炭素板用成形板を得、次い
で焼成して得る。繊維状物質としては、パルプ、ポリア
クリルニトリル、フェノ−ル樹脂等の有機繊維、あるい
は炭素質繊維、黒鉛質繊維等の炭素繊維が、各々単独あ
るいはそれらを複合して用いられる。有機繊維使用の場
合には、焼成工程に於ける素材の収縮を防ぐために、繊
維表面に酸化皮膜を形成する等、何らかの不融化処理を
施すか、焼成工程での収縮の無い炭素繊維との複合にす
る等の方策を講じられる。炭素繊維としては光学的等方
性ピッチからの汎用炭素繊維や光学的異方性ピッチから
の高性能炭素繊維及びポリアクリロニトリルやレ−ヨン
等の有機繊維を出発物質とした炭素繊維などが用いられ
る。
Conventionally, as a method for producing a porous carbon plate, a method in which a fibrous substance as a main material is formed into a plate shape with a binder such as a resin and then fired is generally used. Specifically, for example, a thermosetting resin such as a phenol resin as a fibrous substance and a binder to be described later is used, and a paper-like material obtained by wet-paper-making carbon fibers is impregnated with the thermosetting resin. It is obtained by molding and curing to obtain a molded plate for porous carbon plate, and then firing. As the fibrous substance, organic fibers such as pulp, polyacrylonitrile, and phenol resin, or carbon fibers such as carbonaceous fibers and graphite fibers are used alone or in combination. When using organic fibers, in order to prevent shrinkage of the material in the firing process, some infusibilizing treatment such as forming an oxide film on the fiber surface is performed, or composite with carbon fiber that does not shrink in the firing process Measures such as to be taken. As the carbon fiber, a general-purpose carbon fiber from an optically isotropic pitch, a high-performance carbon fiber from an optically anisotropic pitch, or a carbon fiber starting from an organic fiber such as polyacrylonitrile or rayon is used. .

【0005】多孔質炭素板の厚みが薄いものに対しては
前記したように湿式で抄紙したペ−パ−状材料が出発原
料として用いられるのが一般的であるが、1mm前後の
厚み以上のものに対しては炭素繊維、黒鉛等粉末と粉末
状バインダー等の粉末状物質を乾式混合した後、金型等
を用いて成形硬化して成形板を得、次いで焼成するいわ
ゆる粉末法により製造される場合が多い。
For thin porous carbon plates, a paper-like material which is wet-processed as described above is generally used as a starting material, but a thickness of about 1 mm or more is used. It is manufactured by the so-called powder method in which powder such as carbon fiber, graphite and powdered substances such as powdery binder are dry mixed, molded and cured using a mold etc. to obtain a molded plate, and then baked. Often.

【0006】いずれの手段をとるにしても、まずこれら
炭素繊維等とバインダ−を成形硬化させて成形板をつく
り、次いで真空や不活性ガス雰囲気下で焼成して多孔質
炭素板が製造される。焼成は、一般に室温から最終温度
まで連続して行われるが、低温側の脱脂によるタ−ル分
除去をより容易とするため最高焼成温度が1200℃付
近での焼成(第1段階)と最高焼成温度2000℃また
はそれ以上の温度、通常は2000〜2500℃(第2
段階))での焼成との2段階に分離して行う場合があ
る。しかし、これら従来の焼成方法では得られる多孔質
炭素板に反り、亀裂等の形状異常が発生する問題があっ
た。これらの形状異常は一般に厚みが薄いものではしわ
や亀裂として、また厚みが厚いときには反りや亀裂とし
て観測される場合が多く、特に大面積の多孔質炭素板ほ
ど顕著である。
Whichever means is adopted, a porous carbon plate is manufactured by first molding and curing the carbon fibers and the binder to form a molded plate and then firing the molded plate in a vacuum or an inert gas atmosphere. . Firing is generally performed continuously from room temperature to the final temperature, but in order to facilitate removal of the tar component by degreasing on the low temperature side, firing at a maximum firing temperature of around 1200 ° C (first stage) and maximum firing Temperature 2000 ° C or higher, usually 2000-2500 ° C (second
In some cases, it may be carried out separately in two steps, i.e. firing in step)). However, these conventional firing methods have a problem in that the obtained porous carbon plate has a shape abnormality such as a warp or a crack. These shape abnormalities are generally observed as wrinkles and cracks when the thickness is thin, and as warps and cracks when the thickness is thick, and are more remarkable especially in large-area porous carbon plates.

【0007】[0007]

【発明が解決しようとする課題】多孔質炭素板が歪み、
反り、欠け、亀裂等の形状異常を有すると、例えば該炭
素板を燃料電池の電極板として組み込もうとするとき、
組み込み時のずれ発生や使用時の性能低下が生じ、最悪
には使用不可となる。これら多孔質炭素板の欠陥の内、
板の歪み(しわ)や反り、ひび割れ(クラック)は焼成
工程において発生する場合が多く、これらの欠陥制御は
焼成工程での多孔質炭素板の品質管理において最も重要
な課題となっている。
The porous carbon plate is distorted,
If there is a shape abnormality such as warp, chip, or crack, for example, when trying to incorporate the carbon plate as an electrode plate of a fuel cell,
At the worst, it becomes unusable because of the deviation during installation and the deterioration of performance during use. Among the defects of these porous carbon plates,
Plate distortion, warpage, and cracks often occur during the firing process, and controlling these defects is the most important issue in quality control of the porous carbon plate during the firing process.

【0008】[0008]

【課題を解決するための手段】本発明者らはこれらの課
題を解決し、よい品質のものを大量に安定して且つ安価
に製造できるように鋭意研究した結果、多孔質炭素板の
製造、特にその焼成工程において焼成工程を2段階に分
けて行い、且つ第一段階での焼成最高温度を600〜8
50℃の条件で行い、次の第二段階での焼成最高温度を
2000℃またはそれ以上の条件で行うこと、好ましく
は前記した条件に焼成時の昇温速度を一定数値以下とす
ること、第一段階と第二段階において試料にかかる荷重
を一定数値に規定すること、更には積層した被焼成物の
間に一定間隔で熱伝達板を挿入すること等の条件を更に
加味すると、焼成工程で発生するしわや反り、亀裂等の
形状異常の抑制に効果的であることを見い出し、本発明
を完成するに至った。
Means for Solving the Problems The inventors of the present invention have solved these problems, and have conducted diligent research so that a large quantity of good quality products can be stably manufactured at low cost. Particularly, in the firing process, the firing process is performed in two steps, and the maximum firing temperature in the first step is 600 to 8
It is carried out under the condition of 50 ° C., and the baking maximum temperature in the next second step is 2000 ° C. or higher, and preferably, the temperature rising rate during baking is set to a certain value or less under the above conditions. If conditions such as defining the load applied to the sample to a constant value in the first step and the second step and inserting heat transfer plates at fixed intervals between the stacked objects to be fired are taken into consideration, The inventors have found that it is effective in suppressing abnormal shapes such as wrinkles, warpage, and cracks that occur, and have completed the present invention.

【0009】本発明は、成形板の焼成時に発生する反
り、しわ、亀裂等の変形が、焼成工程を2段階に分けて
行う場合の第一段階での焼成に主としてかかわること、
即ち第一焼成段階での成形板の加熱及び/または冷却時
の熱膨張・収縮、及び熱伝導不良による試料内温度分布
により発現しているとの知見に基づいている。
In the present invention, the deformation such as warpage, wrinkle, crack, etc., which occurs during firing of the molded plate is mainly related to the firing in the first step when the firing step is performed in two steps.
That is, it is based on the finding that it is caused by thermal expansion / contraction during heating and / or cooling of the formed plate in the first firing step, and temperature distribution in the sample due to poor heat conduction.

【0010】図1に、炭素繊維、フェノ−ル樹脂を主材
料として得られた、厚み0.7mm、嵩密度0.9g/
cm3の成形板を1200℃迄の各温度で焼成したとき
の昇温・冷却過程における熱膨張・収縮挙動を示す。成
形板は昇温過程において、約400℃迄は熱膨張し、以
後図1のような収縮挙動を示す。冷却過程では全て収縮
挙動を示す。図1より、第一段階での焼成温度を例えば
約700℃とすると、冷却後の熱膨張が焼成前と比較し
て最小に押さえられ、結果として焼成過程で生じるしわ
や亀裂等の発生を抑制できることが明らかとなった。こ
のような研究継続した結果、かかる形状異常の抑制に効
果的な第一段階での焼成温度は最高焼成温度が600〜
850℃の範囲であった。600℃未満では本来の目的
である脱脂が充分でなくまた焼成物の強度も弱い。85
0℃を越えるとしわや亀裂の発生が顕著となってくる。
FIG. 1 shows a carbon fiber and a phenol resin as main materials, having a thickness of 0.7 mm and a bulk density of 0.9 g /
The thermal expansion / contraction behavior during the temperature rising / cooling process when a cm 3 molded plate is fired at various temperatures up to 1200 ° C. is shown. The molded plate thermally expands up to about 400 ° C. in the temperature rising process, and thereafter exhibits the shrinking behavior as shown in FIG. In the cooling process, all exhibit shrinkage behavior. From FIG. 1, when the firing temperature in the first stage is set to, for example, about 700 ° C., the thermal expansion after cooling is suppressed to the minimum as compared with that before firing, and as a result, generation of wrinkles and cracks generated in the firing process is suppressed. It became clear that it was possible. As a result of continuing such research, the maximum firing temperature of the first stage which is effective in suppressing such shape abnormality is 600 to
It was in the range of 850 ° C. If the temperature is lower than 600 ° C, the original purpose of degreasing is not sufficient and the strength of the fired product is weak. 85
When the temperature exceeds 0 ° C, wrinkles and cracks become remarkable.

【0011】第一段階での焼成における昇温速度として
は、脱脂が進む300〜700℃の範囲を0.5℃/分
以下好ましくは0.2℃/分以下で昇温することにより
脱脂が平衡的に進み形状異常の抑制に効果的であった。
As the temperature rising rate in the firing in the first stage, degreasing is performed by increasing the degreasing range of 300 to 700 ° C. at 0.5 ° C./min or less, preferably 0.2 ° C./min or less. It progressed in a balanced manner and was effective in suppressing abnormal shapes.

【0012】本発明方法においては、通常、前記した第
1段階での最高温度まで昇温、焼成した後、室温まで冷
却し、次いで室温から第二段階における最高焼成温度で
ある2000℃またはそれ以上(通常、2000〜25
00℃)に昇温し、焼成する。
In the method of the present invention, usually, the temperature is raised to the maximum temperature in the first step and calcined, then cooled to room temperature, and then the maximum calcining temperature from room temperature to the second step is 2000 ° C. or higher. (Usually 2000-25
The temperature is raised to 00 ° C. and baked.

【0013】焼成時に成形板にかかる荷重は、第一段階
での焼成、第二段階での焼成とも特に必要とするもので
はないが、第二段階での焼成において荷重をかけること
は形状異常の抑制に対して効果的であった。具体的に
は、第一段階での焼成時を0.02Kg/cm2以下、
第二段階での焼成時を0.02Kg/cm2以上の荷重
とすることが好ましい。
The load applied to the molded plate during firing is not particularly required for the firing in the first stage and the firing in the second stage, but applying a load in the firing in the second stage causes abnormal shape. It was effective in suppressing. Specifically, at the time of firing in the first stage, 0.02 Kg / cm 2 or less,
It is preferable to apply a load of 0.02 Kg / cm 2 or more during the firing in the second stage.

【0014】焼成時の試料への熱伝導を良くすることも
形状異常の抑制にやはり大きな効果がある。特に試料で
ある成形板の1枚〜15枚毎に熱伝達板を挿入すること
によってしわや亀裂の発生が抑えられる。
Improving the heat conduction to the sample at the time of firing also has a great effect on suppressing the shape abnormality. In particular, by inserting a heat transfer plate for every 1 to 15 molded plates that are samples, generation of wrinkles and cracks can be suppressed.

【0015】本発明で用いる多孔質炭素板用成形板とし
ては、焼成を経て目的とする物性・形状を有する多孔質
炭素板が最終的に製造可能で有れば良く、その原料や成
形硬化物の製造方法等には特に限定されない。具体的に
は、例えば繊維状物質としてピッチ系炭素繊維等の炭素
繊維を又バインダ−としてフェノ−ル樹脂等の熱硬化性
樹脂を用い、予め炭素繊維を湿式抄紙したペ−パ−状材
料に熱硬化性樹脂を含浸した後成形硬化したものや、粉
末状の炭素繊維及びバインダ−を乾式混合したあと金型
等を用いて成形硬化したものなどが用いられる。
As the molded plate for a porous carbon plate used in the present invention, it is sufficient that a porous carbon plate having the desired physical properties and shape can be finally produced through firing, and its raw material and molded cured product. The manufacturing method and the like are not particularly limited. Specifically, for example, a carbon fiber such as pitch-based carbon fiber is used as the fibrous substance, and a thermosetting resin such as phenol resin is used as the binder. Those obtained by impregnating with a thermosetting resin and then molding and curing, and those obtained by dry-mixing powdery carbon fibers and a binder and then molding and curing with a mold or the like are used.

【0016】本発明で用いる成形板の焼成条件として
は、前記で規定されている条件以外の項目、例えば真空
炉やアジソン炉等の炉の種類、真空、不活性ガス等の焼
成雰囲気などに特に限定されない。
As the firing conditions for the molded plate used in the present invention, items other than those specified above, for example, types of furnaces such as vacuum furnaces and Addison furnaces, vacuum, firing atmospheres such as inert gas, etc., are particularly preferable. Not limited.

【0017】本発明で用いる試料間挿入用熱伝達板とし
ては反りや欠陥の無い均質な平板が好ましく、材質とし
ては、熱伝導率が高く、取扱いに問題の無い強度を有す
るものであり、焼成の温度/雰囲気で劣化しなければ特
に材質等に限定されない。具体的にはC/C(炭素繊維
強化炭素)コンポジット板や等方性やモ−ルドタイプの
カ−ボン板が用いられる。熱伝達板の厚み・形状として
は、成形板と同程度かやや大きいものが好ましい。
As the heat transfer plate for inter-sample insertion used in the present invention, a homogeneous flat plate having no warp or defect is preferable, and as a material, it has a high thermal conductivity and a strength that does not cause any problem in handling, and is fired. The material is not particularly limited as long as it does not deteriorate in the temperature / atmosphere. Specifically, a C / C (carbon fiber reinforced carbon) composite plate or an isotropic or mold type carbon plate is used. The thickness and shape of the heat transfer plate are preferably the same as or slightly larger than those of the molded plate.

【0018】[0018]

【実施例】次いで本発明を実施例によって更に説明す
る。尚、例中の%は特に断りの無い限り重量基準であ
る。
EXAMPLES Next, the present invention will be further described with reference to examples. In the examples,% is based on weight unless otherwise specified.

【0019】参考例 ピッチ系炭素繊維((株)ドナック製ドナカ−ボS)の
10mmチョップをエポキシをバインダ−として目付け
200g/cm2に湿式抄紙した。このペ−パ−100
部にフェノ−ル樹脂(大日本インキ化学工業(株)製プ
ライオ−フェン5900)100部を湿式含浸し、熱プ
レスにて150℃・1時間加熱成形を行い、成形板を得
た。
Reference Example A 10 mm chop of pitch-based carbon fiber (Dunakerbo S manufactured by Donac Co., Ltd.) was used as a binder to prepare a wet paper having a basis weight of 200 g / cm 2 . This paper-100
100 parts of phenol resin (Daio Nippon Ink & Chemicals Co., Ltd., Prio-Fen 5900) was wet-impregnated into parts and heat-molded at 150 ° C. for 1 hour to obtain a molded plate.

【0020】実施例1〜3、比較例1〜2 参考例により得られた成形板(1000mm×1000
mm×0.5mmt)30枚を1200℃まで昇温可能
な真空焼成炉のなかで上下に厚み10mmの炭素質板を
おいて積層設置した。真空下、2℃/分の速度で500
℃(比較例1)、600℃(実施例1)、700℃(実
施例2)、850℃(実施例3)、1000℃(比較例
2)迄各々昇温し1時間保持して第一段焼成を行った。
室温まで冷却後、2300℃対応の真空焼成炉で真空下
5℃/分の速度で2000℃まで迄昇温し1時間保持し
て第二段焼成を行った。得られた多孔質炭素板の外観・
形状を表1に示す。なお比較例1の試料は第一段焼成時
の試料の曲げ強度(幅15mm,L/D=32、ヘッド
速度=2mm/分)が60Kg/cm2と弱く、その後
の取扱いで欠損部が多く発生した。
Examples 1 to 3 and Comparative Examples 1 to 2 Molded plates (1000 mm × 1000) obtained by the reference example.
30 sheets (mm × 0.5 mm t ) were placed one on top of another in a vacuum firing furnace capable of heating up to 1200 ° C. with carbonaceous plates having a thickness of 10 mm placed one above the other. 500 at a rate of 2 ° C / min under vacuum
C. (Comparative Example 1), 600.degree. C. (Example 1), 700.degree. C. (Example 2), 850.degree. C. (Example 3), 1000.degree. Stage firing was performed.
After cooling to room temperature, the temperature was raised to 2000 ° C. at a rate of 5 ° C./min under vacuum in a vacuum firing furnace compatible with 2300 ° C., and the temperature was maintained for 1 hour to carry out second stage firing. Appearance of the obtained porous carbon plate
The shape is shown in Table 1. The sample of Comparative Example 1 had a weak bending strength (width 15 mm, L / D = 32, head speed = 2 mm / min) of 60 Kg / cm 2 at the time of first-stage firing, and many defects were found in the subsequent handling. Occurred.

【0021】比較例3 焼成を一度に連続して2000℃迄昇温して行うことを
除けば、昇温速度や試料について全て実施例2と同じ条
件で製造した多孔質炭素板の外観形状を表1に示す。1
000℃以下の焼成時に排出されたタ−ル分により炉の
電極部等の汚れがあった。この方法での数百枚単位以上
の焼成はこれらタ−ル分等の影響で困難であった。
COMPARATIVE EXAMPLE 3 Except for the fact that the firing was carried out continuously at a temperature up to 2000 ° C., the appearance shape of the porous carbon plate produced under the same conditions as in Example 2 with respect to the rate of temperature rise and the sample was the same. It shows in Table 1. 1
There was stain on the electrode part of the furnace due to the tar discharged during firing at 000 ° C or lower. It was difficult to sinter several hundred sheets or more by this method because of the influence of these tar components.

【0022】実施例4 300〜700℃の範囲の昇温速度を0.1℃/分の速
度で昇温したことを除けば実施例2と同じ条件で製造し
た多孔質炭素板の外観形状を表1に示す。
Example 4 The appearance shape of the porous carbon plate produced under the same conditions as in Example 2 except that the temperature rising rate in the range of 300 to 700 ° C. was raised at a rate of 0.1 ° C./min. It shows in Table 1.

【0023】実施例5 第二段焼成時に約0.03Kg/cm2の荷重が加わる
ように試料の上に厚み200mmの炭素板を置いた以外
は実施例2と同じ条件で製造した多孔質炭素板の外観形
状を表1に示す。
Example 5 Porous carbon produced under the same conditions as in Example 2 except that a carbon plate having a thickness of 200 mm was placed on the sample so that a load of about 0.03 Kg / cm 2 was applied during the second firing. Table 1 shows the external shape of the plate.

【0024】実施例6、実施例7 成形板の5枚毎、20枚毎に厚み8mmの炭素板(東海
カ−ボン(株)製G140A、密度1.74、熱伝導率
130Kcal/m・hr・℃)を挿入した以外は実施
例2と同じ条件で製造した多孔質炭素板の外観形状を表
1に示す。
Examples 6 and 7 Every 5 sheets of forming plate, every 20 sheets of carbon plate having a thickness of 8 mm (G140A manufactured by Tokai Carbon Co., Ltd., density 1.74, thermal conductivity 130 Kcal / m · hr). Table 1 shows the external shape of the porous carbon plate produced under the same conditions as in Example 2 except that (° C) was inserted.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明の製造法によると、外観形状にお
いて欠陥の無い優れた性能の多孔質炭素電極板が得ら
れ、且つ品質の安定した大量製造が可能である。
According to the production method of the present invention, it is possible to obtain a porous carbon electrode plate having excellent appearance and no defects in appearance, and to mass-produce the product with stable quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】多孔質炭素板用の成形板(厚み0.7mm、嵩
密度0.9g/cm3)を焼成したときの昇温・冷却過
程における熱膨張・収縮挙動を示す。
FIG. 1 shows the thermal expansion / contraction behavior in the temperature rising / cooling process when a molded plate for a porous carbon plate (thickness 0.7 mm, bulk density 0.9 g / cm 3 ) is fired.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質炭素板用成形体を焼成するに際
し、焼成を2段階に分けて行い、かつ第一段階での焼成
を最高焼成温度600〜850℃とし、第二段階での焼
成を最高焼成温度2000℃以上とすることを特徴とす
る多孔質炭素板の製造方法。
1. When firing a molded body for a porous carbon plate, the firing is performed in two steps, and the firing in the first step is performed at a maximum firing temperature of 600 to 850 ° C., and the firing in the second step. A method for producing a porous carbon plate, characterized in that the maximum firing temperature is 2000 ° C. or higher.
【請求項2】 第一段階での焼成において、300℃か
ら700℃までの昇温速度が0.5℃/分以下である請
求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein in the firing in the first step, the temperature rising rate from 300 ° C. to 700 ° C. is 0.5 ° C./min or less.
【請求項3】 0.02Kg/cm2以上の荷重をかけ
て第二段階での焼成を行う請求項1記載の製造方法。
3. The production method according to claim 1, wherein the firing in the second stage is performed by applying a load of 0.02 Kg / cm 2 or more.
【請求項4】 多孔質炭素板用成形体を焼成するに際
し、積層された該成形体の1〜15枚毎に炭素質板を挿
入して焼成する請求項1、2または3に記載の多孔質炭
素板の製造方法。
4. The porous material according to claim 1, 2 or 3, wherein, when firing the formed body for porous carbon plate, a carbonaceous plate is inserted every 1 to 15 sheets of the formed formed body and fired. Of manufacturing high quality carbon plate.
JP5052121A 1993-03-12 1993-03-12 Production of porous carbonaceous plate Pending JPH0748182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052121A JPH0748182A (en) 1993-03-12 1993-03-12 Production of porous carbonaceous plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052121A JPH0748182A (en) 1993-03-12 1993-03-12 Production of porous carbonaceous plate

Publications (1)

Publication Number Publication Date
JPH0748182A true JPH0748182A (en) 1995-02-21

Family

ID=12906048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052121A Pending JPH0748182A (en) 1993-03-12 1993-03-12 Production of porous carbonaceous plate

Country Status (1)

Country Link
JP (1) JPH0748182A (en)

Similar Documents

Publication Publication Date Title
US7186309B2 (en) Method for preparing composite flexible graphite material
CN102211766B (en) Rapid low-cost preparation method of high heat conduction carbon material
JPH0435434B2 (en)
US8894905B2 (en) Heat treat configuration for porous carbon-carbon composites
JPH0748182A (en) Production of porous carbonaceous plate
JPS5926907A (en) Thin graphite plate and its manufacture
JP2016204255A (en) Container for firing and manufacturing method of container for firing
JP4004180B2 (en) Method for producing carbon / graphite composite molded body
JPS62171908A (en) Production of carbon plate
JPS62162611A (en) Production of carbon porous material
JPH0520386B2 (en)
JPH04284363A (en) Manufacture of carbon plate
JP2009155193A (en) Porous carbon sheet and method for manufacturing the same, and membrane electrode fusion product using porous carbon sheet
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP2003020278A (en) Carbonaceous thin plate
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JPH0645444B2 (en) Method for manufacturing glassy carbon sheet
JP2603138B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JPS63151677A (en) Carbon fiber reinforced carbon composite material
JP5617181B2 (en) Heat treatment method for thin plate-shaped molded body
JPS62133674A (en) Manufacture of separator with rib for fuel cell
JPH09157065A (en) Production of carbonaceous porous body and porous laminated sheet
CN118125862A (en) Carbon ceramic composite material and preparation method and application thereof
JPH06263559A (en) Production of porous carbon plate