JPH06263559A - Production of porous carbon plate - Google Patents

Production of porous carbon plate

Info

Publication number
JPH06263559A
JPH06263559A JP5052120A JP5212093A JPH06263559A JP H06263559 A JPH06263559 A JP H06263559A JP 5052120 A JP5052120 A JP 5052120A JP 5212093 A JP5212093 A JP 5212093A JP H06263559 A JPH06263559 A JP H06263559A
Authority
JP
Japan
Prior art keywords
plate
powdery
porous carbon
carbon plate
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052120A
Other languages
Japanese (ja)
Inventor
Kazutoshi Haraguchi
和敏 原口
Tatsuya Noumoto
龍也 能本
Masaru Furukawa
勝 古河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5052120A priority Critical patent/JPH06263559A/en
Publication of JPH06263559A publication Critical patent/JPH06263559A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a porous carbon plate having physical properties excellent in homogeneity in a remarkably shortened forming time by pressurizing a powdery material containing a thermosetting resin, a curing agent and carbon fiber, then depressurizing the material, thermosetting the material and subsequently burning the thermoset material. CONSTITUTION:A powdery material for forming a porous carbon plate containing (A) a powdery thermosetting resin, (B) a powdery curing agent and (C) powdery carbon fiber is press formed, then depressurized, subsequently thermoset and subsequently burned to produce a porous carbon plate. The components (A) and (B) are preferably powder having <=150mum particle diameter. The fiber of the component (C) is preferably carbon fiber having <=20 aspect ratio (L/D). A method for press forming the powdery material under 5-50kg/cm<2>, providing a flat plate, then depressurizing the plate, thermosetting the formed plate at 100-200 deg.C and subsequently burning the plate is preferred. Thereby, the porous carbon plate of stabilized quality is obtained at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多孔質炭素板の製造法に
関するものであり、得られた多孔質炭素板は燐酸型燃料
電池等の電極材や耐熱材、耐蝕性フィルター等に用いら
れる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous carbon plate, and the obtained porous carbon plate is used for an electrode material such as a phosphoric acid fuel cell, a heat resistant material and a corrosion resistant filter.

【0002】[0002]

【従来の技術】省エネルギ−、無公害型の次世代型発電
方式として注目されている各種燃料電池の内、電解質と
して燐酸を用いる燐酸型燃料電池は、第一世代の燃料電
池として最も実用化に近く、実証テストを行う段階まで
開発が進められている。燐酸型燃料電池において、電池
本体は電極板、セパレ−タ−、冷却板等を積層したもの
で構成されているがその殆どに炭素材が用いられてい
る。これは、力学強度が高く取扱い性に優れていること
のほか、約200℃という反応温度での電解質(燐酸)
に対する耐久性に優れていることや、熱伝導性に優れて
いること、また多孔質性(電極板の場合)やガス不透過
性(セパレ−タ−の場合)に優れていると言った特徴を
炭素材が併せ持っていることによる。
2. Description of the Related Art Among various fuel cells attracting attention as an energy-saving and pollution-free next-generation power generation system, a phosphoric acid fuel cell using phosphoric acid as an electrolyte is most practically used as a first generation fuel cell. The development is being advanced to the stage of conducting a verification test. In a phosphoric acid fuel cell, the cell body is composed of a stack of electrode plates, a separator, a cooling plate, etc., and most of them use carbon materials. In addition to having high mechanical strength and excellent handleability, this is an electrolyte (phosphoric acid) at a reaction temperature of about 200 ° C.
It is characterized by excellent durability against heat, excellent thermal conductivity, and excellent porosity (for electrode plates) and gas impermeability (for separators). Because the carbon material also has.

【0003】この内炭素電極板としては、燐酸を保持し
たり、ガスを透過したりするために多孔質性であり、か
つ厚み方向の熱伝導、電気伝導に優れ、また取扱い性が
容易な力学強度を有していることが必要であり、これら
の性質を併せ持つ多孔質炭素板が用いられている。
The inner carbon electrode plate is porous in order to retain phosphoric acid and to permeate gas, is excellent in heat conduction and electric conduction in the thickness direction, and is easy to handle. It is necessary to have strength, and a porous carbon plate having these properties is used.

【0004】従来、多孔質炭素板の製法としては、繊維
状物質を主材とし、これを樹脂等のバインダーにて板状
に成形硬化後、次いで焼成して得る方法が一般的であ
る。繊維状物質としては、パルプ、ポリアクリルニトリ
ル、フェノ−ル樹脂等の有機繊維、あるいは炭素質繊
維、黒鉛質繊維等の炭素繊維が、各々単独あるいはそれ
らを複合して用いられる。有機繊維使用の場合には、焼
成工程に於ける素材の収縮を防ぐために、繊維表面に酸
化皮膜を形成する等、何らかの不融化処理を施すか、焼
成工程での収縮の無い炭素繊維との複合にする等の方策
を講じられる。炭素繊維としては光学的等方性ピッチか
らの汎用炭素繊維や光学的異方性ピッチからの高性能炭
素繊維及びポリアクリロニトリルやレ−ヨン等の有機繊
維を出発物質とした炭素繊維などが用いられる。
Conventionally, as a method for producing a porous carbon plate, a method in which a fibrous substance is used as a main material, and this is molded and cured into a plate shape with a binder such as a resin, and then baked, is generally used. As the fibrous substance, organic fibers such as pulp, polyacrylonitrile, and phenol resin, or carbon fibers such as carbonaceous fibers and graphite fibers are used alone or in combination. When using organic fibers, in order to prevent shrinkage of the material in the firing process, some infusibilizing treatment such as forming an oxide film on the fiber surface is performed, or composite with carbon fiber that does not shrink in the firing process Measures such as to be taken. As the carbon fiber, a general-purpose carbon fiber from an optically isotropic pitch, a high-performance carbon fiber from an optically anisotropic pitch, or a carbon fiber starting from an organic fiber such as polyacrylonitrile or rayon is used. .

【0005】上記以外ものとして、厚さ1mm以上の多
孔質炭素板の製造法として、いわゆる粉末法が従来から
行われている。この粉末法は出発原料である炭素繊維、
黒鉛等の粉末と粉末状バインダーとを混合し金型に充填
した後、熱プレスにて温度を加えると共に圧力を加え、
熱硬化を充分に行った後プレスから取り出し、冷却後金
型からの脱型を行い成形板を得、次いで焼成する方法で
ある。
In addition to the above, a so-called powder method has been conventionally used as a method for producing a porous carbon plate having a thickness of 1 mm or more. This powder method uses carbon fiber as the starting material,
After mixing powder such as graphite and a powdery binder and filling the mold, the temperature is applied by a hot press and the pressure is applied,
This is a method in which after sufficient heat curing is carried out, it is taken out from the press, after cooling it is released from the mold to obtain a molded plate, and then baked.

【0006】[0006]

【発明が解決しようとする課題】粉末状物質を用いた粉
末法による多孔質炭素板の製造において問題となるの
は、高温かつ高圧力に耐えられるいわゆるプレス用金型
が必要であり、しかも粉末材料を所定形状の成形板に成
形する工程がこのようなプレスを用いてなお長時間を要
すること、また得られた多孔質炭素板がしばしば密度な
どにおいて不均一な部分を有すること等である。これら
の問題は多孔質炭素板の製造における粉末法の採用にお
いて、製造コスト及び品質の安定化の点から大きな問題
となっている。
A problem in the production of a porous carbon plate by a powder method using a powdery substance is that a so-called pressing die capable of withstanding high temperatures and high pressures is required. The step of forming the material into a formed plate of a predetermined shape still requires a long time using such a press, and the obtained porous carbon plate often has an uneven portion in terms of density and the like. These problems are major problems in terms of manufacturing cost and quality stabilization when the powder method is used in manufacturing a porous carbon plate.

【0007】[0007]

【課題を解決するための手段】本発明者らは、これらの
課題を解決すべく鋭意研究した結果、まずこれらの粉末
状材料を一端加圧した後、除圧し、次いで熱硬化させて
焼成前の成形板とする工程とすること、さらに好適には
前記方法において用いる粉末状熱硬化性樹脂及び粉末状
硬化剤が共に粒径150μm以下及び炭素繊維がアスペ
クト比(L/D)20以下のものとすることによって、
従来の粉末法の問題を解決し、低コストで安定した品質
の多孔質炭素板が得られることを見い出し、本発明を完
成するに至った。
Means for Solving the Problems As a result of intensive studies to solve these problems, the inventors of the present invention firstly pressurize these powder materials once, then depressurize them, and then heat-cure them before firing. More preferably, the powdery thermosetting resin and the powdery curing agent used in the above method have a particle size of 150 μm or less and the carbon fiber has an aspect ratio (L / D) of 20 or less. By
The present invention has been completed by solving the problems of the conventional powder method and finding that a porous carbon plate of low cost and stable quality can be obtained.

【0008】即ち、本発明は粉末状熱硬化性樹脂と粉末
状硬化材と粉末状炭素繊維とを含有する多孔質炭素板成
形用粉末材料を加圧成形した後、除圧し、次いで熱硬化
させた後、焼成することを特徴とする多孔質炭素板の製
造法を提供するものである。
That is, according to the present invention, a powder material for forming a porous carbon plate containing a powdery thermosetting resin, a powdery hardening material and a powdery carbon fiber is pressure-molded, depressurized and then heat-cured. The present invention provides a method for producing a porous carbon plate, which comprises firing and then firing.

【0009】本発明で用いる粉末状熱硬化性樹脂として
は、好ましくは粒径150μm以下に調製可能で残炭率
の高いものがよい。具体例としては、エポキシ樹脂、フ
ェノール樹脂、不飽和ポリエステル樹脂、フラン樹脂、
ポリイミド樹脂等の熱硬化樹脂及びピッチ類等が挙げら
れ、なかでも残炭率が高い点でフェノール樹脂やピッチ
類が好ましい。
The powdery thermosetting resin used in the present invention is preferably one which can be prepared to have a particle size of 150 μm or less and has a high residual carbon rate. Specific examples include epoxy resin, phenol resin, unsaturated polyester resin, furan resin,
Examples thereof include thermosetting resins such as polyimide resin and pitches, and among them, phenol resin and pitches are preferable from the viewpoint of high residual carbon rate.

【0010】また、粉末状硬化剤は上記熱硬化性樹脂を
硬化促進させるものであり、好ましくは粒径150μm
以下に調製可能なものがよい。具体例としては、ヘキサ
ミンやメチルメラミン等があげられる。熱硬化性樹脂、
硬化剤いずれの場合でも、粉末の大きさが150μmを
越えて大きい場合はこれら樹脂と炭素繊維の混合物にお
いて必要な均質性が得られず、また硬化剤の場合は単独
で存在し残ることにより最終多孔質炭素板においてピン
ホ−ル等の不均質部をしばしば発生させる原因となりや
すい。
Further, the powdery curing agent accelerates curing of the thermosetting resin, and preferably has a particle size of 150 μm.
What can be prepared below is preferable. Specific examples include hexamine and methylmelamine. Thermosetting resin,
In the case of any of the curing agents, if the powder size is larger than 150 μm, the required homogeneity cannot be obtained in the mixture of these resins and carbon fibers, and in the case of the curing agent, the homogeneity is present alone and remains It often causes a non-uniform portion such as a pinhole in the porous carbon plate.

【0011】本発明で用いる炭素繊維としては、好まし
くはアスペクト比(L/D)が20以下のものがよく、
その出発原料、製法等に特に限定されない。一般には炭
化収率が高い、また低アスペクト比のものが製造し易い
と言った理由からピッチ系炭素繊維を使用するほうが好
ましい。アスペクト比が20を越えると粉末状樹脂等と
の均一分散が難しくなり易い。炭素繊維と熱硬化性樹脂
及び硬化剤の量比は目的とする嵩密度、強度、熱伝導
率、電気抵抗等の物性を満足するように設定すればよく
特に限定されない。具体的には炭素繊維/(熱硬化性樹
脂+硬化剤)が20/80〜50/50程度が多く用い
られる。
The carbon fiber used in the present invention preferably has an aspect ratio (L / D) of 20 or less,
The starting material, manufacturing method, etc. are not particularly limited. In general, it is preferable to use pitch-based carbon fiber because it has a high carbonization yield and is easy to manufacture with a low aspect ratio. If the aspect ratio exceeds 20, it tends to be difficult to uniformly disperse the powdery resin or the like. The amount ratio of the carbon fiber to the thermosetting resin and the curing agent may be set so as to satisfy the desired physical properties such as bulk density, strength, thermal conductivity and electric resistance, and is not particularly limited. Specifically, carbon fiber / (thermosetting resin + curing agent) is often used in the range of 20/80 to 50/50.

【0012】本発明における粉末材料の成形法として
は、一端加圧した後、除圧し、次いで加熱して熱硬化さ
せ、成形板を得ることが必須である。ここで加圧の方法
としては必要な圧力を加えることができれば良く特に装
置の種類に限定されない。具体的にはプレスや加圧ロ−
ラ−等が用いられる。加える圧力としては粉末材料を均
質に粉末成形できる圧力で有れば良く特に限定されない
が、好ましくは5〜50kg/cm2の範囲が品質的に
又コスト的に良い。本発明においては、以上の圧力を加
えた後、除圧し、次いで加熱により熱硬化させることが
必須である。但し、除圧後、プレス等を用いないで、
0.1kg/cm2以下の範囲での重しを成形板の上に
載せておくことは差し支えない。加熱は熱硬化に必要な
温度・時間が確保されたらよく、特に加熱方法、装置に
よって限定されない。具体的にはバッチ式や連続式の乾
燥機、多段乾燥機等が用いられる。温度については熱硬
化を達成できれば良く、好ましくは100〜200℃の
範囲が用いられる。
As a method for molding the powder material in the present invention, it is essential to press once, depressurize, and then heat and heat cure to obtain a molded plate. Here, the method of pressurization is not particularly limited to the type of device as long as the required pressure can be applied. Specifically, press or pressure roll
Lar or the like is used. The pressure to be applied is not particularly limited as long as it is a pressure capable of uniformly powder-forming the powder material, but a range of 5 to 50 kg / cm 2 is preferable in terms of quality and cost. In the present invention, it is essential to apply the above pressure, depressurize, and then heat cure by heating. However, after depressurizing, without using a press,
It is possible to place a weight in the range of 0.1 kg / cm 2 or less on the molding plate. It suffices that the temperature and time required for heat curing be secured for heating, and there is no particular limitation on the heating method and device. Specifically, a batch type or continuous type dryer, a multi-stage dryer or the like is used. Regarding the temperature, it is sufficient that heat curing can be achieved, and the range of 100 to 200 ° C. is preferably used.

【0013】本発明の製造法によれば、プレス等で高圧
力を加えたまま加熱することが必要でなく、短時間で加
圧成形したものを引き続き多段式のバッチ乾燥機または
連続乾燥機にて大量または連続的に熱硬化させることが
可能となる。
According to the production method of the present invention, it is not necessary to heat while applying high pressure with a press or the like, and the product obtained by pressure molding in a short time is continuously subjected to a multi-stage batch dryer or a continuous dryer. It is possible to heat-set in large quantities or continuously.

【0014】以上のようにして得られた成形板は、真空
下または不活性ガス雰囲気下で800℃以上の温度で焼
成され多孔質炭素板が得られる。
The shaped plate obtained as described above is fired at a temperature of 800 ° C. or higher in a vacuum or an inert gas atmosphere to obtain a porous carbon plate.

【0015】また溝あり多孔質炭素板の製造法として
は、予め平板の多孔質炭素板を作った後、切削加工等に
よって溝を作成すると歩どまりがよくないので、前記し
た従来法、即ちプレス用金型(溝あり)を作製し、プレ
ス等で長時間圧力を加えたまま加熱して焼成前の成形板
とする方法を採用される場合がある。しかし高温高圧に
対する耐久性能に加えて精密さが金型作製時に要求され
るのでかなりコスト高となる欠点があった。本発明方法
では、短時間で加圧成形し、除圧後に加熱により熱硬化
させて焼成前の成形板とするため、溝あり金型は短時間
の加圧に耐える程度のものでよいので溝あり多孔質炭素
板の製造におけるコストの削減効果は極めて大きい。焼
成工程もスペーサーとしての溝あり炭素板を必要とせ
ず、溝なし炭素板の間に挟んで焼成することにより目的
とする多孔質炭素板を製造することができる。
As a method for producing a grooved porous carbon plate, if a flat porous carbon plate is prepared in advance and then grooves are formed by cutting or the like, the yield is not good. In some cases, a method of producing a molding die (having a groove) and heating it with a press or the like while applying pressure for a long time to obtain a molded plate before firing is adopted. However, in addition to the durability performance against high temperature and high pressure, precision is required at the time of making the mold, so that there is a drawback that the cost becomes considerably high. In the method of the present invention, pressure molding is performed in a short time, and after depressurization, heat curing is performed by heating to obtain a molded plate before firing. Therefore, the grooved mold may be one that can withstand pressure for a short time. Yes The cost reduction effect in the production of porous carbon plates is extremely large. The firing step does not require a grooved carbon plate as a spacer, and the desired porous carbon plate can be produced by sandwiching between the grooveless carbon plates and firing.

【0016】[0016]

【実施例】次いで本発明を実施例によって更に説明す
る。尚、例中の%は特に断りの無い限り重量基準であ
る。
EXAMPLES Next, the present invention will be further described with reference to examples. In the examples,% is based on weight unless otherwise specified.

【0017】実施例1 粉末状熱硬化性樹脂として粒径150μm以下に粉砕調
製したノボラックフェノール樹脂(大日本インキ化学工
業(株)製セラディック4331S)を35%、同様に
粒径150μm以下に粉砕調製したヘキサミン(住友化
学工業(株)製)を2%、アスペクト比(L/D)が1
2(156μm/13μm)のピッチ系炭素繊維
((株)ドナック製ドナカ−ボS)を63%含む均質混
合された粉末材料415gを、面積2500cm2の金
型に充填後、厚み1.8mmになるまでプレスにて約2
0kg/cm2の圧力で0.5分間加圧成形した。これ
を除圧し、引き続き160℃の多段乾燥機内にて約15
分間加熱し成形板を得た。プレスにセットしてから成形
板として取り出すまでの時間は約20分であった。この
成形板を真空焼成炉にて炭素板の間に挟み、真空雰囲気
下2℃/分にて2000℃迄昇温し30分保持して焼成
を行った。得られた多孔質炭素板は均質で表1に示す物
性を有する優れた多孔質炭素板であった。
Example 1 As a powdery thermosetting resin, a novolac phenol resin (Ceradic 4331S manufactured by Dainippon Ink and Chemicals Co., Ltd.) pulverized to a particle size of 150 μm or less was pulverized to 35%, similarly, a particle size of 150 μm or less. Prepared hexamine (Sumitomo Chemical Co., Ltd.) 2%, aspect ratio (L / D) is 1
2 (156 μm / 13 μm) pitch-based carbon fiber (Donakabo S made by Donac Co., Ltd.) 63% of homogeneously mixed powder material containing 63% was filled in a mold having an area of 2500 cm 2 and then a thickness of 1.8 mm was obtained. Until about 2 by press
Pressure molding was performed for 0.5 minutes at a pressure of 0 kg / cm 2 . This is depressurized and then about 15 in a multi-stage dryer at 160 ° C.
After heating for a minute, a molded plate was obtained. The time from setting in the press to removal as a molded plate was about 20 minutes. The formed plate was sandwiched between carbon plates in a vacuum firing furnace, heated to 2000 ° C. at 2 ° C./min in a vacuum atmosphere, and held for 30 minutes for firing. The obtained porous carbon plate was a homogeneous porous carbon plate having the physical properties shown in Table 1.

【0018】実施例2 粉末状熱硬化性樹脂として粒径150μm以下に調製し
たフェノ−ルホルムアルデヒド樹脂(鐘紡(株)製ベル
パ−ルS899)を30%、同様に粒径150μm以下
に粉砕調製したヘキサミン(住友化学工業(株)製)を
0.5%、アスペクト比(L/D)が10(130μm
/13μm)のピッチ系炭素繊維((株)ドナック製ド
ナカ−ボS)を69.5%含む均質混合された粉末材料
485gを、面積2500cm2の金型に充填後、厚み
2.2mmになるまで加圧ロ−ラ−にて約10kg/c
2の圧力で加圧成形した。成形されたものを引き続
き、180℃に設定されたベルト搬送式連続乾燥機にて
約5分間加熱し熱硬化した成形板を得た。粉末試料をセ
ットしてから成形板として取り出すまでの時間は約7分
であった。この成形板を炭素板の間に挟み真空焼成炉に
て真空雰囲気下2℃/分にて2000℃迄昇温し30分
保持して焼成を行った。得られた多孔質炭素板は均質で
表1に示す物性を有する優れた多孔質炭素板であった。
Example 2 As a powdery thermosetting resin, a phenol formaldehyde resin (Velpar S899 manufactured by Kanebo Co., Ltd.) prepared to have a particle size of 150 μm or less was pulverized to 30% and similarly to a particle size of 150 μm or less. Hexamine (Sumitomo Chemical Co., Ltd.) 0.5%, aspect ratio (L / D) 10 (130 μm)
(13 μm) pitch-based carbon fiber (Donakabo S manufactured by Donac Co., Ltd.) of 69.5% and homogeneously mixed powder material (485 g) is filled in a mold having an area of 2500 cm 2 to have a thickness of 2.2 mm. Up to about 10 kg / c with a pressure roller
Pressure molding was performed at a pressure of m 2 . The molded product was subsequently heated for about 5 minutes in a belt-conveying continuous dryer set at 180 ° C. to obtain a heat-cured molded plate. The time from setting the powder sample to taking it out as a molded plate was about 7 minutes. The formed plate was sandwiched between carbon plates and heated in a vacuum firing furnace at 2 ° C./min to 2000 ° C. in a vacuum atmosphere and held for 30 minutes for firing. The obtained porous carbon plate was a homogeneous porous carbon plate having the physical properties shown in Table 1.

【0019】実施例3 実施例1と同じく均質混合された粉末材料250gを用
い、溝幅1.5mm,溝高さ0.8mm、溝間隔1.5
mmの平行溝多数を有する、面積2500cm 2の金型
に充填後、厚み1.5mmになるまでプレスにて約30
kg/cm2の圧力で0.5分間加圧成形した。次いで
これを除圧し、160℃の多段乾燥機内にて約15分間
加熱し成形板を得た。この成形板を真空焼成炉にて炭素
板の間に挟み、真空雰囲気下2℃/分にて2000℃迄
昇温し30分保持して焼成を行った。得られた多孔質炭
素板は均質で溝形成も均一な表1に示す物性を有する優
れた多孔質炭素板であった。
Example 3 As in Example 1, 250 g of a homogeneously mixed powder material was used.
Groove width 1.5mm, groove height 0.8mm, groove spacing 1.5
Area with 2500 mm parallel grooves, area 2500 cm 2Mold
After filling in, press about 30 to a thickness of 1.5 mm
kg / cm2It pressure-molded at the pressure of 0.5 minutes. Then
This is depressurized and then in a multi-stage dryer at 160 ° C for about 15 minutes
A molded plate was obtained by heating. This formed plate is carbonized in a vacuum firing furnace.
Sandwiched between plates, up to 2000 ° C at 2 ° C / min in a vacuum atmosphere
The temperature was raised and held for 30 minutes for firing. The obtained porous charcoal
The base plate has excellent physical properties as shown in Table 1 that is uniform and has uniform groove formation.
It was a porous carbon plate.

【0020】比較例1 実施例1と同じく均質混合された粉末材料415gを面
積2500cm2の金型に充填後、熱プレスにセットし
160℃まで昇温すると共に厚み1.8mmになるまで
約20kg/cm2の圧力で加圧成形した。厚みを保っ
たまま160℃で15分間保持後、冷却し、金型から脱
型した。この成形板を真空焼成炉にて炭素板の間に挟
み、真空雰囲気下2℃/分にて2000℃迄昇温し30
分保持して焼成を行った。得られた多孔質炭素板は均質
で表1に示す物性を有する優れた多孔質炭素板であっ
た。しかし本比較例においては、熱プレスにセットして
から成形板として取り出すまでには約2時間を要した。
Comparative Example 1 415 g of the powder material homogeneously mixed as in Example 1 was filled in a mold having an area of 2500 cm 2 , set in a hot press, heated to 160 ° C., and about 20 kg until the thickness became 1.8 mm. Pressure molding was performed at a pressure of / cm 2 . After maintaining the thickness at 160 ° C. for 15 minutes, it was cooled and released from the mold. This formed plate is sandwiched between carbon plates in a vacuum firing furnace and heated to 2000 ° C. at 2 ° C./minute in a vacuum atmosphere.
It was held for minutes and baked. The obtained porous carbon plate was a homogeneous porous carbon plate having the physical properties shown in Table 1. However, in this comparative example, it took about 2 hours from setting in the hot press to taking out the molded plate.

【0021】比較例2 実施例1と同じ種類、量比で、ただ熱硬化性樹脂、硬化
剤の粉末の大きさが粒径300〜400μm、ピッチ系
炭素繊維のアスペクト比が30(390μm/13μ
m)のものを用いて比較例1と同じ方法で多孔質炭素板
を製造した。得られた多孔質炭素板の物性を表1に示
す。表面状態の観察においてむらが多く、物性的にも嵩
密度、ガス透過度がばらつき又曲げ強度は実施例1と比
較して約20%低下した。また、本比較例においては、
熱プレスにセットしてから成形板として取り出すまでに
約2時間をも要した。
Comparative Example 2 In the same kind and amount ratio as in Example 1, the size of powder of thermosetting resin and curing agent is 300 to 400 μm, and the aspect ratio of pitch-based carbon fiber is 30 (390 μm / 13 μm).
A porous carbon plate was produced in the same manner as in Comparative Example 1 by using the m). Table 1 shows the physical properties of the obtained porous carbon plate. In the observation of the surface state, there were many irregularities, the bulk density and the gas permeability varied in physical properties, and the bending strength was reduced by about 20% as compared with Example 1. In addition, in this comparative example,
It took about 2 hours from setting in the hot press to taking out as a molded plate.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】従来の粉末法による多孔質炭素板の製造
法と比較して、得られる多孔質炭素板の物性が均質性に
優れ、また成形時間の大幅短縮がはかれるため製造コス
トの大きな削減が可能である。
As compared with the conventional method for producing a porous carbon plate by the powder method, the physical properties of the obtained porous carbon plate are excellent in homogeneity, and the molding time can be greatly shortened, so that the manufacturing cost is greatly reduced. Is possible.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粉末状熱硬化性樹脂と粉末状硬化材と粉
末状炭素繊維とを含有する多孔質炭素板成形用粉末材料
を加圧成形した後、除圧し、次いで熱硬化させた後、焼
成することを特徴とする多孔質炭素板の製造法。
1. A porous carbon plate-forming powder material containing a powdery thermosetting resin, a powdery hardener and a powdery carbon fiber is pressure-molded, depressurized, and then heat-cured. A method for producing a porous carbon plate, which comprises firing.
【請求項2】 粉末状熱硬化性樹脂と粉末状硬化材とが
粒径150μm以下の粉末である請求項1記載の製造
法。
2. The production method according to claim 1, wherein the powdery thermosetting resin and the powdery curable material are powders having a particle diameter of 150 μm or less.
【請求項3】 粉末状炭素繊維がアスペクト比(L/
D)20以下の炭素繊維である請求項1または2記載の
製造法。
3. The powdery carbon fiber has an aspect ratio (L /
D) The production method according to claim 1 or 2, wherein the carbon fiber is 20 or less.
【請求項4】 多孔質炭素板成形用粉末材料を5〜50
kg/cm2に加圧成形して平板とした後、除圧し、次
いで100〜200℃で熱硬化させた後、焼成する請求
項1、2または3記載の製造法。
4. A powder material for forming a porous carbon plate is used in an amount of 5 to 50.
The manufacturing method according to claim 1, 2 or 3, wherein after pressure-molding to kg / cm 2 , a flat plate is formed, depressurization is performed, then heat curing is performed at 100 to 200 ° C., and then firing is performed.
JP5052120A 1993-03-12 1993-03-12 Production of porous carbon plate Pending JPH06263559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052120A JPH06263559A (en) 1993-03-12 1993-03-12 Production of porous carbon plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052120A JPH06263559A (en) 1993-03-12 1993-03-12 Production of porous carbon plate

Publications (1)

Publication Number Publication Date
JPH06263559A true JPH06263559A (en) 1994-09-20

Family

ID=12906023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052120A Pending JPH06263559A (en) 1993-03-12 1993-03-12 Production of porous carbon plate

Country Status (1)

Country Link
JP (1) JPH06263559A (en)

Similar Documents

Publication Publication Date Title
CN108610049B (en) Isotropic graphite material, method for the production thereof and use thereof
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JPH06263559A (en) Production of porous carbon plate
RU2179161C1 (en) Method of preparing composite material
JPS6020471A (en) Manufacture of members for fuel cell
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH044242B2 (en)
JPH0131445B2 (en)
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPS62171908A (en) Production of carbon plate
JPS62154470A (en) Manufacture of carbon member for fuel cell
JP2003020278A (en) Carbonaceous thin plate
JPH10167855A (en) Porous carbon material
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JPH01266223A (en) Production of anisotropic porous carbon formed product
KR101169388B1 (en) High strength carbon composites using graphene, manufacturing method thereof and separator for fuel cell using the same
JPH04284363A (en) Manufacture of carbon plate
JPH0669077A (en) Manufacture of polarizing electrode for electric double layer capacitor
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact
JP2003002744A (en) Carbonaceous thin plate