JPH0748114A - Method for purifying silicon - Google Patents

Method for purifying silicon

Info

Publication number
JPH0748114A
JPH0748114A JP19616993A JP19616993A JPH0748114A JP H0748114 A JPH0748114 A JP H0748114A JP 19616993 A JP19616993 A JP 19616993A JP 19616993 A JP19616993 A JP 19616993A JP H0748114 A JPH0748114 A JP H0748114A
Authority
JP
Japan
Prior art keywords
silicon
plasma
steam
melted
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19616993A
Other languages
Japanese (ja)
Inventor
Hiroyuki Baba
裕幸 馬場
Kenkichi Yushimo
憲吉 湯下
Yasuhiko Sakaguchi
泰彦 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19616993A priority Critical patent/JPH0748114A/en
Publication of JPH0748114A publication Critical patent/JPH0748114A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove boron contained in silicon by disposing a plasma- generating device in the bottom of a container holding the melted silicon and blowing a plasma gas mixed with a specific amount of steam into the melted silicon from the device. CONSTITUTION:A plasma-generating device 2 equipped with an anode 22, a cathode 23, etc., is disposed in the bottom of a container 3 (e.g. quartz crucible) for purifying silicon containing impurities. Solid silicon is supplied into the container 3 and subsequently melted with a plasma 21 generated from a plasma- generating device 2. <=10vol.% of steam is supplied into the plasma 21 from a steam-adding pipe 25. The high temperature steam-added plasma 13 is blown into the melted silicon 12 to remove impurities contained in the melted silicon 12. Thus, the contact area of the plasma with the melted silicon is widened, and the plasma gas 13 vigorously stirs the melted silicon 12, thereby enhancing the probability of the reaction of the plasma 13 with boron contained in the melted silicon 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池等用の原料と
して使用することができる高純度シリコンの精製方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying high-purity silicon that can be used as a raw material for solar cells and the like.

【0002】[0002]

【従来の技術】太陽電池に使用される原料には、一般に
比抵抗値が 0.1Ωcm以上で導電特性がp型である高純度
シリコンが使用されるが、シリコン中に含有される不純
物は ppmオーダまで除去されている必要がある。これに
対して従来種々の方法が検討されているが、不純物とし
てのボロンは、最も除去しにくい元素であることが知ら
れている。
2. Description of the Related Art As a raw material used for solar cells, generally, high-purity silicon having a specific resistance value of 0.1 Ωcm or more and p-type conductivity is used. Impurities contained in silicon are in the ppm order. Must have been removed. On the other hand, various methods have been studied so far, but it is known that boron as an impurity is the most difficult element to remove.

【0003】例えば、特開平63-218506 号公報には、高
周波励起による熱プラズマを用いてシリコンを溶融し、
シリコン中のボロンを除去する方法が開示されている。
この方法では、固体シリコンの一部に水素と酸素の混合
ガスを高周波励起させたプラズマを照射してゾーンメル
トさせ、その溶融部分でボロンを除去を行っている。し
かしこの方法では、固体シリコンの一部をプラズマによ
る熱だけで溶解し、精製を行うために、熱の利用効率が
悪く生産性の低いものとなっており、また、シリコン溶
融部の温度が過剰に上昇するので、蒸発によるシリコン
の損失が多くなるという欠点があった。
For example, in Japanese Patent Laid-Open No. 63-218506, silicon is melted by using thermal plasma excited by high frequency,
A method of removing boron in silicon is disclosed.
In this method, a part of solid silicon is irradiated with plasma generated by high-frequency excitation of a mixed gas of hydrogen and oxygen to cause zone melting, and boron is removed at the melted part. However, in this method, part of the solid silicon is melted only by the heat of the plasma and the purification is performed, resulting in poor heat utilization efficiency and low productivity, and the temperature of the silicon melting part is excessive. Therefore, there is a drawback that the loss of silicon due to evaporation increases.

【0004】また、高周波で水素と酸素の混合ガスを励
起させるため、酸素の活性化の度合いが高くなってお
り、シリコンの表面に酸化膜が生成しやすい条件となっ
ていた。このため、プラズマガス中に添加する酸素濃度
の上限が0.05%と低く、酸化によるボロンの除去速度を
向上させることが困難であった。
Further, since a mixed gas of hydrogen and oxygen is excited at a high frequency, the degree of activation of oxygen is high, which is a condition that an oxide film is easily formed on the surface of silicon. Therefore, the upper limit of the concentration of oxygen added to the plasma gas is as low as 0.05%, and it is difficult to improve the removal rate of boron by oxidation.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
を解決し、ボロン含有量の多いシリコンを原料として
も、太陽電池用シリコンとして使用可能な濃度まで、効
率良く十分な精製速度で、ボロンを除去する方法を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and even when silicon having a high boron content is used as a raw material, it can be efficiently and sufficiently refined to a concentration at which it can be used as silicon for solar cells. It is intended to provide a method for removing boron.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、溶
融シリコンを保持する容器の底にプラズマ発生装置を設
け、当該装置より 10vol%以下の水蒸気を添加したプラ
ズマガスをシリコン中に吹き込むことを特徴とするシリ
コンの精製方法であり、溶融シリコンを保持する容器と
しては1600〜1700℃の温度範囲でシリコンを保持できれ
ば特に問題はないが、石英坩堝、シリカスタンプ材ある
いは水冷銅坩堝等を有利に用いることができる。
That is, according to the present invention, a plasma generator is provided at the bottom of a container for holding molten silicon, and a plasma gas added with 10 vol% or less of steam from the device is blown into the silicon. It is a method of purifying silicon that is a feature, and as a container for holding molten silicon, there is no particular problem as long as it can hold silicon in a temperature range of 1600 to 1700 ° C, but a quartz crucible, a silica stamp material or a water-cooled copper crucible is advantageous. Can be used.

【0007】[0007]

【作用】このように本発明によれば、溶融したシリコン
を保持する容器の底にプラズマ発生装置を設け、当該装
置より 10vol%以下の水蒸気を添加したプラズマガスを
容器の底から溶融シリコン中に吹き込むようにしたた
め、高温の水蒸気添加プラズマがシリコンに接触する面
積が広くなり、溶融シリコン中に存在するボロンと水蒸
気添加プラズマが反応する確率が高くなり、酸化による
ボロンの蒸発除去速度を向上できるようになった。
As described above, according to the present invention, the plasma generator is provided at the bottom of the container for holding the molten silicon, and the plasma gas to which 10 vol% or less of steam is added from the device is introduced into the molten silicon from the bottom of the container. Since it is blown in, the area where the high temperature steam-added plasma contacts the silicon becomes wider, the probability that the boron present in the molten silicon and the steam-added plasma will react becomes higher, and the evaporation removal rate of boron by oxidation can be improved. Became.

【0008】また、容器底から吹き込んだプラズマガス
は溶融シリコンを激しく攪拌するため、水蒸気添加プラ
ズマとシリコンの接触する部分に溶存するボロンが速く
移動し、溶融シリコン中に存在するボロンと水蒸気添加
プラズマが反応する確率が高くなり、酸化によるボロン
の蒸発除去速度を向上できるようになった。ここで、添
加する水蒸気濃度が10%を越えると、シリコンの酸化に
よりSiO2の生成が急激に増し、シリコンの精製歩留りが
著しく悪化するため、本発明においては水蒸気の添加濃
度を10%以下にした。
Further, since the plasma gas blown from the bottom of the container violently agitates the molten silicon, the boron dissolved in the portion where the steam-added plasma and the silicon come into contact with each other moves rapidly, and the boron and the steam-added plasma existing in the molten silicon. Has a higher probability of reacting with, and the evaporation removal rate of boron due to oxidation can be improved. Here, if the water vapor concentration to be added exceeds 10%, the production of SiO 2 is rapidly increased by the oxidation of silicon, and the purification yield of silicon is significantly deteriorated. Therefore, in the present invention, the water vapor addition concentration is set to 10% or less. did.

【0009】さらに溶融シリコンを保持する容器とし
て、石英坩堝、シリカスタンプ材あるいは水冷銅坩堝を
用いると、ボロンの除去と共に溶存炭素の除去も行うこ
とができ、その他の不純物汚染の混入も防止できる。
Further, when a quartz crucible, a silica stamp material or a water-cooled copper crucible is used as a container for holding the molten silicon, not only boron can be removed but also dissolved carbon can be removed and contamination with other impurities can be prevented.

【0010】[0010]

【実施例】図1および図3は本発明を実施する際に用い
る装置の一例を示す縦断面図である。30kW級の非移送型
のアルゴンプラズマ発生装置2を底部に設けた内径 150
mmの石英坩堝〔図1および図3(a)〕、シリカスタン
プ材〔図3(b)〕、水冷銅坩堝〔図3(c)〕あるい
は黒鉛坩堝〔図3(d)〕に、プラズマ発生後にアルゴ
ン雰囲気下で2 kgの固体の金属シリコンを投入し、シリ
コン全量が溶け落ちた時点でプラズマ中に水蒸気添加管
25から 5%の水蒸気を供給した。
1 and 3 are longitudinal sectional views showing an example of an apparatus used for carrying out the present invention. 150kW inner diameter with a 30kW class non-transfer type argon plasma generator 2 installed at the bottom
mm plasma quartz crucible [Figs. 1 and 3 (a)], silica stamp material [Fig. 3 (b)], water-cooled copper crucible [Fig. 3 (c)] or graphite crucible [Fig. 3 (d)] After that, 2 kg of solid metallic silicon was charged under an argon atmosphere, and 5% of water vapor was supplied from the water vapor addition pipe 25 into the plasma at the time when the entire amount of silicon melted down.

【0011】図2は本発明の比較に用いた従来タイプの
シリコン精製装置の一例を示す縦断面図である。非移送
型のアルゴンプラズマ発生装置2は上記実施例と同一の
ものである。内径 150mmの石英坩堝、シリカスタンプ
材、水冷銅坩堝あるいは黒鉛坩堝に2 kgの固体の金属シ
リコンを投入し、坩堝上40mmの高さからアルゴンプラズ
マをシリコンに吹き付けて溶解し、シリコン全量が溶け
落ちた時点でプラズマ中に水蒸気添加管25から 5%の
水蒸気を供給した。
FIG. 2 is a longitudinal sectional view showing an example of a conventional type silicon refining apparatus used for comparison of the present invention. The non-transfer type argon plasma generator 2 is the same as that of the above embodiment. Put 2 kg of solid metal silicon into a quartz crucible with an inner diameter of 150 mm, a silica stamp material, a water-cooled copper crucible or a graphite crucible, and blow argon gas onto the silicon from a height of 40 mm above the crucible to melt it, and the entire amount of silicon will melt down. At that time, 5% steam was supplied from the steam addition tube 25 into the plasma.

【0012】実施例および比較例のいずれの場合も、プ
ラズマ作動ガスはアルゴンガス19リットル/分、プラズ
マ添加ガスは水蒸気 1リットル/分( 5.0%)で供給
し、プラズマへの投入電力は20kWとし、水蒸気供給開始
から供給終了までの処理時間は2時間である。また、添
加する水蒸気濃度の影響を観るため、図1の精製装置で
内径 150mmの石英坩堝を用いて、プラズマ発生後にアル
ゴン雰囲気下で2 kgの固体の金属シリコンを投入し、シ
リコン全量が溶け落ちた時点でプラズマ中に水蒸気添加
管25から水蒸気濃度を 0〜15%の範囲で変えて供給
し、ボロンおよび炭素の除去速度の変化およびシリコン
歩留りの変化を調べた。
In each of the examples and comparative examples, the plasma working gas was supplied with argon gas of 19 liters / minute, the plasma additive gas was supplied with water vapor of 1 liters / minute (5.0%), and the input power to the plasma was 20 kW. The processing time from the start of steam supply to the end of supply is 2 hours. In addition, in order to observe the effect of the concentration of water vapor added, using a quartz crucible with an inner diameter of 150 mm in the refining equipment of Fig. 1, 2 kg of solid metallic silicon was charged in the argon atmosphere after plasma generation, and the total amount of silicon melted down. At that time, the water vapor was supplied into the plasma from the water vapor addition pipe 25 while changing the water vapor concentration in the range of 0 to 15%, and changes in the removal rate of boron and carbon and changes in the silicon yield were investigated.

【0013】ボロンおよび炭素の濃度変化は、シリコン
溶け落ち直後、水蒸気添加開始からの 1時間経過した時
点、および水蒸気供給終了後に、石英管でシリコンを吸
引採取し、ボロンはICP発光分光法による分析、炭素
は放射化分析でもとめた。実施例および比較例によるシ
リコン中のボロン除去結果を表1に、炭素除去結果およ
びシリコン歩留りを表2に、水蒸気添加濃度を変えた結
果を表3に、そしてそれを図4に図示する。
Concentration changes of boron and carbon were measured by ICP emission spectroscopy after the silicon was sucked and sampled by a quartz tube immediately after the silicon melted down, 1 hour after the start of the steam addition, and after the end of the steam supply. , Carbon was also determined by activation analysis. The results of removing boron in silicon according to Examples and Comparative Examples are shown in Table 1, the results of removing carbon and the yield of silicon are shown in Table 2, the results of changing the concentration of added steam are shown in Table 3, and are shown in FIG.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】表中の反応速度係数kB およびkcは、ボ
ロンと炭素がシリコン中の濃度の一次反応で除去される
ため、 d〔B〕/dt=−kB 〔B〕およびd〔C〕/dt=
−kC 〔C〕 より求めた係数である。表1からわかるように、いずれ
の場合も実施例の方が比較例よりも2倍程度速くボロン
が除去されている。また、表2から、石英坩堝および水
冷銅坩堝を用いた場合には、ボロンと同時に炭素の除去
ができ、この場合も実施例の方が除去速度が2倍程度速
くなっていることがわかる。
The reaction rate coefficients k B and k c in the table are d [B] / dt = -k B [B] and d [C] because boron and carbon are removed by the first-order reaction of the concentration in silicon. / Dt =
It is a coefficient obtained from −k C [C]. As can be seen from Table 1, in each case, boron is removed about twice as fast in the example as compared with the comparative example. In addition, it can be seen from Table 2 that when the quartz crucible and the water-cooled copper crucible are used, carbon can be removed at the same time as boron, and in this case as well, the removal rate is about twice as fast in the example.

【0018】表2からは実施例と比較例にシリコン歩留
りの差は認められないことがわかる。歩留りは処理時間
の延長とともに低下するため、同一濃度までボロンを除
去する場合には、短時間の処理でボロンを除去できる本
発明の方が結果的に高い歩留りとなる。また、水冷の銅
坩堝を用いた場合に最も歩留りが高くなっているが、坩
堝近傍のシリコンが溶解しないため、この部分の精製は
期待できない。
From Table 2, it can be seen that no difference in silicon yield is observed between the example and the comparative example. Since the yield decreases with the extension of the treatment time, when removing boron to the same concentration, the present invention capable of removing boron in a short treatment results in a higher yield. The yield is highest when a water-cooled copper crucible is used. However, since the silicon in the vicinity of the crucible is not dissolved, purification of this portion cannot be expected.

【0019】また、表3および図4に示すように、10%
を越えて水蒸気を添加するとシリコンの酸化が激しくな
り、SiO2の多量生成のためシリコン歩留りが急激に下が
るとともに、シリコン融液中に未蒸発のSiO2膜が取り残
されるため精製後に濾過などの除去手段を用いてこれを
取り除く必要がある。なお前記実施例では、非移送型の
アルゴンプラズマの場合について説明したが、本発明は
これに限るものではなく、移送型のプラズマ装置や、作
動ガスにヘリウム、水素、窒素をもちいたものあるいは
それらの混合ガスを用いてもよい。
Further, as shown in Table 3 and FIG. 4, 10%
If steam is added beyond the temperature range, the oxidation of silicon will become more vigorous and the silicon yield will drop sharply due to the large amount of SiO 2 produced.Since the unevaporated SiO 2 film will remain in the silicon melt, it will be removed by filtration after purification. It is necessary to remove this by means. In the above embodiments, the case of non-transfer type argon plasma has been described, but the present invention is not limited to this, and a transfer type plasma device or a device using helium, hydrogen, or nitrogen as a working gas or those You may use the mixed gas of.

【0020】[0020]

【発明の効果】本発明によってシリコンから除去しにく
いボロンを容易に効率よく除去することができるように
なった。また、坩堝材質を選べばボロンと同時に溶存す
る炭素も除去できるため、太陽電池用シリコンの冶金的
な製造プロセスにおける炭素除去工程の簡略化あるいは
省略が可能となるという効果もある。
According to the present invention, it becomes possible to easily and efficiently remove boron that is difficult to remove from silicon. Further, if the crucible material is selected, the dissolved carbon can be removed at the same time as boron, so that the carbon removal step in the metallurgical production process of silicon for solar cells can be simplified or omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する際に用いる装置の一例を示す
縦断面図。
FIG. 1 is a vertical cross-sectional view showing an example of an apparatus used for carrying out the present invention.

【図2】従来の装置の一例を示す縦断面図。FIG. 2 is a vertical sectional view showing an example of a conventional device.

【図3】本発明を実施する際に用いる装置の数例を示す
縦断面図。
FIG. 3 is a vertical cross-sectional view showing several examples of devices used when carrying out the present invention.

【図4】水蒸気添加濃度と反応速度係数およびSi歩留り
との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the concentration of water vapor added, reaction rate coefficient, and Si yield.

【符号の説明】[Explanation of symbols]

1 シリコン 11 固体シリコン 12 溶融シリコン 13 プラズマガスの気泡 2 プラズマトーチ 21 水蒸気添加プラズマ流れ 22 プラズマトーチ陽極 23 プラズマトーチ陰極 24 プラズマ作動ガス供給管 25 水蒸気添加管 3 シリコン保持容器 31 石英坩堝 32 シリカスタンプ材 33 水冷銅坩堝 34 黒鉛坩堝 1 Silicon 11 Solid Silicon 12 Molten Silicon 13 Plasma Gas Bubbles 2 Plasma Torch 21 Steam Addition Plasma Flow 22 Plasma Torch Anode 23 Plasma Torch Cathode 24 Plasma Working Gas Supply Pipe 25 Steam Addition Pipe 3 Silicon Holding Container 31 Quartz Crucible 32 Silica Stamping Material 33 Water-cooled copper crucible 34 Graphite crucible

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融シリコンを保持する容器の底にプラ
ズマ発生装置を設け、当該装置より 10vol%以下の水蒸
気を添加したプラズマガスをシリコン中に吹き込むこと
を特徴とするシリコンの精製方法。
1. A method for purifying silicon, characterized in that a plasma generator is provided at the bottom of a container holding molten silicon, and a plasma gas to which 10 vol% or less of steam is added is blown into the silicon from the device.
【請求項2】 溶融シリコンを保持する容器として、石
英坩堝、シリカスタンプ材あるいは水冷銅坩堝を用いる
ことを特徴とする請求項1記載のシリコンの精製方法。
2. The method for purifying silicon according to claim 1, wherein a quartz crucible, a silica stamp material, or a water-cooled copper crucible is used as the container for holding the molten silicon.
JP19616993A 1993-08-06 1993-08-06 Method for purifying silicon Pending JPH0748114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19616993A JPH0748114A (en) 1993-08-06 1993-08-06 Method for purifying silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19616993A JPH0748114A (en) 1993-08-06 1993-08-06 Method for purifying silicon

Publications (1)

Publication Number Publication Date
JPH0748114A true JPH0748114A (en) 1995-02-21

Family

ID=16353359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19616993A Pending JPH0748114A (en) 1993-08-06 1993-08-06 Method for purifying silicon

Country Status (1)

Country Link
JP (1) JPH0748114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278097B1 (en) 1999-07-12 2007-10-02 Hitachi, Ltd. Display method of spatial data relationships
WO2011034172A1 (en) * 2009-09-18 2011-03-24 株式会社アルバック Silicon purification method and silicon purification apparatus
WO2013011727A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278097B1 (en) 1999-07-12 2007-10-02 Hitachi, Ltd. Display method of spatial data relationships
WO2011034172A1 (en) * 2009-09-18 2011-03-24 株式会社アルバック Silicon purification method and silicon purification apparatus
CN102482105A (en) * 2009-09-18 2012-05-30 株式会社爱发科 Silicon purification method and silicon purification apparatus
JP5438768B2 (en) * 2009-09-18 2014-03-12 株式会社アルバック Silicon purification method and silicon purification apparatus
KR101395012B1 (en) * 2009-09-18 2014-05-14 가부시키가이샤 아루박 Silicon purification method and silicon purification apparatus
US8778143B2 (en) 2009-09-18 2014-07-15 Ulvac, Inc. Silicon purification method and silicon purification device
CN102482105B (en) * 2009-09-18 2015-01-21 株式会社爱发科 Silicon purification method and silicon purification apparatus
WO2013011727A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same

Similar Documents

Publication Publication Date Title
KR100263220B1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JP3205352B2 (en) Silicon purification method and apparatus
US4837376A (en) Process for refining silicon and silicon purified thereby
US7615202B2 (en) Method for producing high purity silicon
KR102303581B1 (en) Polycrystalline silicon rod and manufacturing method thereof
KR20180090774A (en) Method for producing high purity silicon from silica
JP4900600B2 (en) Manufacturing method of high purity silicon
JP4835867B2 (en) Silicon purification method
JP2011251853A (en) Method for purifying silicon
JPH05262512A (en) Purification of silicon
JP2005255417A (en) Method for purifying silicon
JP2010052960A (en) Method for production of high-purity silicon, production apparatus, and high-purity silicon
JPH0748114A (en) Method for purifying silicon
JP2846408B2 (en) Silicon purification method
JPH07267624A (en) Purification of silicon and apparatus therefor
JP3138003B2 (en) Method and apparatus for purifying silicon
JP5359119B2 (en) Manufacturing method of high purity silicon
JPH1149510A (en) Method for refining metal silicon and apparatus therefor
JP3300425B2 (en) Silicon purification method
JPH10203812A (en) Refining of metallic silicon
JPH10139415A (en) Solidification and purification of molten silicon
JPH05139713A (en) Method and device for refining silicon
JPH0416504A (en) Method for purifying silicon
JPH10212113A (en) Method for removing boron from metal silicon
JPH05246706A (en) Method for purifying silicon and device therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A02