JPH0747771B2 - Manufacturing method of structural steel with excellent fire resistance - Google Patents

Manufacturing method of structural steel with excellent fire resistance

Info

Publication number
JPH0747771B2
JPH0747771B2 JP1234783A JP23478389A JPH0747771B2 JP H0747771 B2 JPH0747771 B2 JP H0747771B2 JP 1234783 A JP1234783 A JP 1234783A JP 23478389 A JP23478389 A JP 23478389A JP H0747771 B2 JPH0747771 B2 JP H0747771B2
Authority
JP
Japan
Prior art keywords
strength
steel
temperature
fire resistance
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1234783A
Other languages
Japanese (ja)
Other versions
JPH03100118A (en
Inventor
豊 土田
良太 山場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1234783A priority Critical patent/JPH0747771B2/en
Publication of JPH03100118A publication Critical patent/JPH03100118A/en
Publication of JPH0747771B2 publication Critical patent/JPH0747771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造物の製作に用いられる鋼板を対象とし、耐
火材の被覆を簡略化あるいは省略しても、火災時におい
て十分な強度を有する鋼材の製造法に関わる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is intended for a steel plate used for manufacturing a structure, and has sufficient strength in a fire even if the coating of the refractory material is simplified or omitted. Involved in steel manufacturing methods.

(従来の技術) 鉄骨構造等の構造物では、火災時においても十分な強度
を保証するため、鋼材にロックウール等の耐火材の被覆
を施し、鋼材の温度が350℃以上に上昇しないように対
策することが義務付けられていた。
(Prior art) For structures such as steel structures, in order to ensure sufficient strength even in the event of a fire, the steel is coated with a refractory material such as rock wool to prevent the temperature of the steel from rising above 350 ° C. It was mandatory to take measures.

近年、鋼材の高温における強度に応じ耐火被覆を簡略あ
るいは省略することが許容されるようになった。即ち、
鋼材が600℃のような高温において十分な強度(常温の
規格降伏強度の2/3以上)を有する場合、耐火被覆を省
略し、裸使用が可能になると言われている。
In recent years, it has been permitted to simplify or omit the refractory coating depending on the strength of steel materials at high temperatures. That is,
It is said that if the steel has sufficient strength at high temperatures such as 600 ° C (2/3 or more of the normal yield strength at room temperature), the refractory coating can be omitted and bare use can be performed.

鋼材の高温での強度についてはこれまでにもよく調べら
れており、高温強度の優れた開発材はボイラー用鋼ある
いは圧力容器用鋼として規格化されている。また、特公
昭51-15188号公報のように、現在でも種々の改良・開発
等が継続実施されている。これらは、高温では数万ある
いは数十万時間といった長時間使用の場合の強度、すな
わちクリープ強度の高い鋼材である。
The strength of steel materials at high temperatures has been well investigated so far, and the developed materials with excellent high temperature strength have been standardized as steel for boilers or steel for pressure vessels. In addition, various improvements and developments are still in progress, as in Japanese Patent Publication No. S51-15188. These are steel materials having high strength when used for a long time such as tens of thousands or hundreds of thousands of hours at high temperatures, that is, high creep strength.

(発明が解決しようとする課題) 鉄骨構造等の構造物において、耐火被覆を省略する場合
の重要な特性である600℃での強度の改善された鋼材が
求められているが、本発明は耐火強度が火災時の高々数
時間以内での高度強度を有する鋼材の製造法を提供する
ことにある。
(Problems to be Solved by the Invention) In a structure such as a steel frame structure, a steel material having improved strength at 600 ° C., which is an important characteristic when omitting a fireproof coating, is required. It is intended to provide a method for manufacturing a steel material having a high strength within a few hours at the time of a fire.

(課題を解決するための手段) 本発明者らは、600℃での構造用鋼材の強度に及ぼす化
学成分および製造工程の効果を種々検討した結果、Cr,M
o,V,NbおよびBの含有量を制限し、加熱−圧延−熱処理
条件を適切に選択することが極めて有効であることを見
出した。
(Means for Solving the Problems) As a result of various studies on the effects of chemical components and manufacturing processes on the strength of structural steel materials at 600 ° C., the present inventors have found that Cr, M
It has been found that it is extremely effective to limit the contents of o, V, Nb and B and appropriately select the heating-rolling-heat treatment conditions.

本発明ははこの知見を基に成されたものであり、 (1)重量%にて、Cr,Mo,V,NbおよびBを(%Cr)+2
(%Mo)+10(%V)+20(%Nb)+200(%B)=0.2
〜3%含有し、且つ炭素当量(Ceq=C+Mn/6+Si/24+
Ni/40+Mo/4+Cr/5+V/14)が0.30〜0.50%である鋼
を、1000〜1280℃に加熱し、Ar3〜1000℃で熱間圧延を
終了し、Ar3−50℃〜Ar3+50℃の温度で水冷開始し、20
0℃以下に水冷した後、400〜600℃で焼戻すことを特徴
とする耐火強度の優れた構造用鋼材の製造法及び、
(2)重量%にて、Cr,Mo,V,NbおよびBを(%Cr)+2
(%Mo)+10(%V)+20(%Nb)+200(%B)=0.2
〜3%含有し、且つ炭素当量(Ceq=C+Mn/6+Si/24+
Ni/40+Mo/4+Cr/5+V/14)が0.30〜0.50%である鋼
を、1000〜1280℃に加熱し、Ar3〜1000℃で熱間圧延を
終了し、引続きAr3−50℃〜Ar3+50℃の温度で水冷開始
し、表面温度が400〜600℃で水冷を停止し、ついで放冷
することを特徴とする耐火強度の優れた構造用鋼材の製
造法を要旨とする。
The present invention has been made based on this finding. (1) Cr, Mo, V, Nb and B (% Cr) + 2% by weight
(% Mo) +10 (% V) +20 (% Nb) +200 (% B) = 0.2
~ 3% content and carbon equivalent (Ceq = C + Mn / 6 + Si / 24 +
Ni / 40 + Mo / 4 + Cr / 5 + V / 14) steel with 0.30 to 0.50% is heated to 1000 to 1280 ° C, hot rolling is completed at Ar 3 to 1000 ° C, and Ar 3 −50 ° C to Ar 3 +50 Start water cooling at a temperature of ℃, 20
After cooling with water to 0 ℃ or less, tempered at 400 ~ 600 ℃, and a method of manufacturing a structural steel material having excellent fire resistance strength,
(2) Cr, Mo, V, Nb and B (% Cr) + 2 in% by weight
(% Mo) +10 (% V) +20 (% Nb) +200 (% B) = 0.2
~ 3% content and carbon equivalent (Ceq = C + Mn / 6 + Si / 24 +
Ni / 40 + Mo / 4 + Cr / 5 + V / 14) 0.30 to 0.50% steel is heated to 1000 to 1280 ℃, hot rolling is completed at Ar 3 to 1000 ℃, and then Ar 3 -50 ℃ to Ar 3 A method for producing a structural steel material having excellent fire resistance strength, which is characterized by starting water cooling at a temperature of + 50 ° C, stopping water cooling at a surface temperature of 400 to 600 ° C, and then allowing to cool.

(作用) 以下、本発明についてさらに詳細に説明する。(Operation) Hereinafter, the present invention will be described in more detail.

0.1%C−0.15%Si−1.2%Mn−0.015%P−0.005%S−
0.55%Cr−0.32%Mo−0.05%V鋼を1250℃で加熱した後
35mm厚に圧延し、種々の温度から水冷を開始し100℃以
下まで冷却し、500℃で30分焼戻した場合の、常温での
耐力(0.2%耐力)と耐火強度の比を第1図に示す。
0.1% C-0.15% Si-1.2% Mn-0.015% P-0.005% S-
After heating 0.55% Cr-0.32% Mo-0.05% V steel at 1250 ℃
Fig. 1 shows the ratio of the proof stress (0.2% proof stress) at room temperature to the refractory strength when rolled to a thickness of 35 mm, water-cooled at various temperatures, cooled to below 100 ° C, and tempered at 500 ° C for 30 minutes. Show.

この場合、600℃での耐火強度を求めるに際し、火災時
の鋼材温度の上昇挙動を考慮し、第3図のような昇温パ
ターンで試験片を加熱し、600℃にて15分加熱保持後0.1
5%/minの引張速度で変形させ、塑性歪みが0.2%での強
度を耐火強度として求めた。
In this case, when determining the fireproof strength at 600 ℃, considering the rising behavior of the steel material temperature during a fire, the test piece was heated in the temperature rising pattern as shown in Fig. 3, and after heating and holding at 600 ℃ for 15 minutes. 0.1
It was deformed at a tensile rate of 5% / min, and the strength at a plastic strain of 0.2% was determined as the fire resistance strength.

第1図に示すように、水冷開始温度がAr3−50℃以上Ar3
+50℃以下の場合に耐火強度/常温耐力の比が向上し、
常温耐力に対し優れた耐火強度が得られている。
As shown in Fig. 1, the water cooling start temperature is Ar 3 -50 ℃ or more Ar 3
When the temperature is below + 50 ° C, the ratio of fireproof strength / room temperature yield strength improves,
Excellent fire resistance is obtained with respect to room temperature proof stress.

ここでAr3(℃)はAr3(℃)=−396C%+24.6Si%−6
8.1Mn%−36.1Ni%−20.7Cu%−24.8Cr%+29.6Mo%+8
68より求めた。
Here, Ar 3 (℃) is Ar 3 (℃) = -396C% + 24.6Si% -6
8.1Mn% -36.1Ni% -20.7Cu% -24.8Cr% + 29.6Mo% + 8
I got it from 68.

第1図の結果から、水冷開始温度をAr3−50℃以上Ar3
50℃以下に制限する。
From the results shown in Fig. 1, the water cooling start temperature is Ar 3 −50 ° C. or higher Ar 3 +
Limit to 50 ° C or less.

さらに、第2図に示すように、鋼中のCr,Mo,V,Nbおよび
Bにより計算されるCr%+2Mo%+10V%+20Nb%+100B
%の値が0.3%以上3%以下の場合に、本発明の製造工
程の効果が顕著に現われる。このため、鋼中のCr,Mo,V,
NbおよびBの量をCr%+2Mo%+10V%+20Nb%+100B%
の値が0.3%以上3%以下となるように制限する。Cr,M
o,V,NbおよびBは少なくとも1種を上記の計算式で規制
される量含めばよいが、2種以上を添加してもよい。
Further, as shown in FIG. 2, Cr% + 2Mo% + 10V% + 20Nb% + 100B calculated by Cr, Mo, V, Nb and B in the steel.
When the value of% is 0.3% or more and 3% or less, the effect of the manufacturing process of the present invention is remarkable. Therefore, Cr, Mo, V,
The amount of Nb and B is Cr% + 2Mo% + 10V% + 20Nb% + 100B%
Value is limited to 0.3% or more and 3% or less. Cr, M
At least one kind of o, V, Nb and B may be included in an amount regulated by the above calculation formula, but two or more kinds may be added.

CeqはCeq=C+Mn/6+Si/24+Ni/40+Mo/4+Cr/5+Mo/4
+V/14として定義され、溶接性に関する指標であるとと
もに、常温での強度との相関が深い。製造熱処理条件に
もよるが、Ceqが0.30%より小さいと構造用の鋼材とし
ての強度が得られず、Ceqが0.50%より大きいと強度が
上がり過ぎ、延性、靱性および溶接性の低下が問題とな
る。
Ceq is Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Mo / 4 + Cr / 5 + Mo / 4
Defined as + V / 14, it is an index for weldability and has a strong correlation with strength at room temperature. Depending on the manufacturing heat treatment conditions, if Ceq is less than 0.30%, the strength as a structural steel material cannot be obtained, and if Ceq is more than 0.50%, the strength becomes too high, and ductility, toughness, and weldability deteriorate. Become.

このため、耐火強度確保のためCr%+2Mo%+10V%+20
Nb%+100B%の値を上記のように規制する他、Ceqとし
て0.30〜0.50%となるように、C,Si,Mn,Ni等を規制す
る。
Therefore, Cr% + 2Mo% + 10V% + 20 to secure fire resistance
In addition to regulating the value of Nb% + 100B% as described above, C, Si, Mn, Ni, etc. are regulated so that Ceq is 0.30 to 0.50%.

各元素は下記の範囲内であるとが好ましい。Each element is preferably within the following range.

Cは常温強度および耐火強度を高めるのに有効な元素で
あり、0.05%以上の添加が好ましい。しかし、添加量が
多過ぎると溶接性を害するので添加量の上限は0.15%が
好ましい。
C is an element effective in increasing the room temperature strength and the fire resistance strength, and is preferably added in an amount of 0.05% or more. However, if the addition amount is too large, the weldability is impaired, so the upper limit of the addition amount is preferably 0.15%.

Siは脱酸のため0.02%以上添加するが、添加量が多いと
靱性を低下するため上限を0.5%とするのが好ましい。
Since Si is deoxidized, 0.02% or more is added, but if the addition amount is large, the toughness decreases, so the upper limit is preferably 0.5%.

MnはSを固定し、強度を高めるのに有効な元素である
が、添加量が多いと材料内の偏析を著しくし、靱性の異
方性を増すため、0.1〜1.5%とするのが好ましい。
Mn is an element effective for fixing S and increasing the strength, but if the addition amount is large, segregation in the material becomes remarkable and the anisotropy of toughness is increased, so Mn is preferably 0.1 to 1.5%. .

Niは鋼材の靱性を向上させる元素であり、このような効
果を要する時、0.05%以上添加する。しかし、0.5%超
では添加コストが上昇しすぎ、構造用鋼材として不適当
であるため、上限を0.5%とすることが好ましい。
Ni is an element that improves the toughness of steel, and when such effects are required, it is added in an amount of 0.05% or more. However, if it exceeds 0.5%, the addition cost is too high and it is unsuitable as a structural steel material. Therefore, it is preferable to set the upper limit to 0.5%.

Pは靱性を低下させる元素でありまたミクロ偏析し溶接
性を阻害するため、上限を0.03%とすることが好まし
い。
P is an element that lowers toughness and also causes microsegregation to impede weldability, so the upper limit is preferably made 0.03%.

Sは鋼中で非金属介在物MnSを形成し、靱性の方向差を
大きくし、且つシャルピー試験での上部棚エネルギーを
低下させるため、上限を0.02%とすることが好ましい。
S forms a non-metallic inclusion MnS in the steel, increases the toughness direction difference, and lowers the upper shelf energy in the Charpy test, so the upper limit is preferably made 0.02%.

Cuは鋼材の焼入れ性を上昇し、また耐食性を向上する元
素である。このような効果を要する時、0.05%以上を添
加する。しかし、0.5%超の添加で熱間加工性を損な
う。このためCuの添加量の上限を0.5%とすることが好
ましい。
Cu is an element that enhances the hardenability of steel and also improves the corrosion resistance. When such effects are required, 0.05% or more is added. However, addition of more than 0.5% impairs hot workability. Therefore, the upper limit of the amount of Cu added is preferably 0.5%.

Tiは炭窒化物を形成し、鋼の耐火強度を向上させる効果
を有する。このような効果を必要とする場合、0.005%
以上の添加が必要である。しかし、0.05%を超えるとTi
Cが増えすぎ、却って靱性を害するので上限は0.05%と
することが好ましい。
Ti forms carbonitrides and has the effect of improving the fire resistance of steel. If you need such effects, 0.005%
The above additions are necessary. However, if it exceeds 0.05%, Ti
The upper limit is preferably set to 0.05% because C increases too much and adversely affects toughness.

Alは鋼の脱酸に不可欠な元素であり、また窒素を有効に
固定し、Bによる焼入れ性向上効果の阻害要因となるBN
の形成を阻止する。これらの目的から0.01%以上を添加
する。しかし、0.10%超の添加は不必要であるため、0.
01〜0.10%が好ましい。
Al is an element that is indispensable for deoxidation of steel, and also effectively fixes nitrogen, which is a factor that hinders the hardenability improvement effect of B.
Prevent the formation of. For these purposes, 0.01% or more is added. However, addition of more than 0.10% is unnecessary, so
01 to 0.10% is preferable.

Nは鋼の耐火強度を上昇させるが、添加量が多過ぎると
溶接性を害するため、添加を0.02%以下とすることが好
ましい。
N increases the refractory strength of the steel, but if the addition amount is too large, the weldability is impaired, so the addition amount is preferably 0.02% or less.

次に、加熱−圧延−熱処理条件について述べる。Next, heating-rolling-heat treatment conditions will be described.

前記のような化学成分を有する鋼は転炉、電気炉で溶製
した後、必要に応じて取鍋精錬や真空脱ガス処理を施し
て得られ、通常鋳型あるいは一方向凝固鋳型で造塊した
後、分塊でスラブとされる。また、スラブは連続鋳造法
により溶鋼から直接製造しても良い。
Steel having the above-mentioned chemical components is obtained by subjecting it to melting in a converter or an electric furnace, and then subjecting it to ladle refining or vacuum degassing treatment if necessary, and ingoting it in a normal mold or a unidirectionally solidified mold. Later, it is made into a slab in chunks. Further, the slab may be directly manufactured from molten steel by a continuous casting method.

分塊での均熱・圧下はいかなるものであっても構わな
い。即ち、スラブを冷却した後均熱してもよく、分塊の
まま熱片で均熱炉に装入しても良い。1000〜1300℃で均
熱の後、圧延または鍛造によりスラブとする。スラブ厚
は製品板厚の1.3〜2.5倍程度が好ましい。
Any soaking and rolling in the slab may be used. That is, the slab may be cooled and then subjected to soaking, or the slab may be charged into the soaking furnace as a slab with hot pieces. After soaking at 1000 to 1300 ℃, slab is made by rolling or forging. The slab thickness is preferably about 1.3 to 2.5 times the product plate thickness.

最終圧延前の加熱温度は添加した元素の固溶のため1000
℃以上とする。しかし、1280℃を超えると、オーステナ
イト粒が粗大化しすぎ、圧延によって細粒化を図ること
が困難になるため、1280℃以下とすることが好ましい。
The heating temperature before final rolling is 1000 because of the solid solution of the added elements.
℃ or above. However, if the temperature exceeds 1280 ° C, the austenite grains become too coarse and it becomes difficult to reduce the grain size by rolling. Therefore, the temperature is preferably 1280 ° C or less.

圧延終了温度はAr3温度以上1000℃以下とする。すなわ
ち、Ar3温度未満では二相域圧延となるため強度が却っ
て低下し、1000℃を超えると、圧延によるオーステナイ
ト粒の細粒化が十分でなく、組織が粗くなり靱性確保が
困難になり好ましくない。
The rolling end temperature is not less than Ar 3 temperature and not more than 1000 ° C. That is, when the temperature is lower than Ar 3 temperature, the strength is rather decreased because rolling becomes a two-phase region rolling, and when it exceeds 1000 ° C., the austenite grains are not sufficiently refined by rolling and the structure becomes rough and it becomes difficult to secure toughness, which is preferable. Absent.

次に圧延後の冷却条件は既に述べたように加速冷却を採
用する。水冷開始温度はAr3−50℃以上Ar3+50℃温度以
下とする。水量密度は板厚にもよるが、0.5m3/cm2/s以
上1.0m3/cm2/sが好ましい。1.0m3/cm2/s以上では冷却効
果が飽和し、不必要である。
Next, as the cooling condition after rolling, accelerated cooling is adopted as described above. Water cooling initiation temperature is the Ar 3 -50 ° C. or more Ar 3 + 50 ° C. Temperature below. The water amount density depends on the plate thickness, but is preferably 0.5 m 3 / cm 2 / s or more and 1.0 m 3 / cm 2 / s. If it is 1.0 m 3 / cm 2 / s or more, the cooling effect is saturated and unnecessary.

水冷は200℃以下の温度まで行い、強度と靱性を調整す
るため400〜600℃で焼戻しを行う。400℃未満では、常
温での強度が高く、低温靱性が得にくい。600℃を超え
ると、靱性は改善されるが構造材料として必要な強度が
得られなくなる。また圧延後の水冷途中に表面温度が40
0〜600℃で水冷を停止した後放冷し、焼戻しの代替を行
っても良い。
Water cooling is performed up to a temperature of 200 ° C or less, and tempering is performed at 400 to 600 ° C to adjust strength and toughness. If it is less than 400 ° C, the strength at room temperature is high and it is difficult to obtain low temperature toughness. When it exceeds 600 ° C, the toughness is improved but the strength required as a structural material cannot be obtained. During the water cooling after rolling, the surface temperature is
It is also possible to stop the water cooling at 0 to 600 ° C. and then allow it to cool to substitute for tempering.

ここに、水冷停止温度が400℃未満では、常温での強度
が高く、低温靱性が得にくい。600℃を超えると、靱性
は改善されるが構造材料として必要な強度が得られなく
なる。
Here, when the water cooling stop temperature is less than 400 ° C., the strength at normal temperature is high and it is difficult to obtain low temperature toughness. When it exceeds 600 ° C, the toughness is improved but the strength required as a structural material cannot be obtained.

このようにして製造した鋼板は切断、溶接等の加工の
後、構造材料として使用できる。
The steel sheet produced in this way can be used as a structural material after processing such as cutting and welding.

(実施例) 第1表に示す化学成分を有する鋼を、第2表中の条件で
制御圧延、制御冷却し、水冷終了温度に応じて焼戻しを
行った。引張試験およびシャルピー衝撃試験結果を第2
表に示す。
(Example) Steel having the chemical composition shown in Table 1 was subjected to controlled rolling and controlled cooling under the conditions shown in Table 2, and tempered according to the water cooling end temperature. Second tensile test and Charpy impact test results
Shown in the table.

本発明鋼である板番A1,B1,C1,D1,D2,E1およびF1は優れ
た常温強度を示すとともに、耐火強度と常温耐力の比
(PS600/PSRT)も0.75〜0.83と高い。靱性もvRo>10kgf
−mと優れている。
The steel numbers A1, B1, C1, D1, D2, E1 and F1 which are steels of the present invention show excellent room temperature strength, and the ratio of fire resistance strength to room temperature proof strength (PS 600 / PS RT ) is as high as 0.75 to 0.83. Toughness is also vRo> 10kgf
-M is excellent.

これに対し、A2,B2,D3およびF3は圧延終了温度が低い
(A2)、水冷停止温度が低い(B2)あるいは焼戻し温度
が高すぎる(D3)ため、常温での強度が低いばかりでな
く耐火強度も低い。鋼板C2では、圧延終了温度が高すぎ
るため、強度、耐火強度は十分であるが、靱性は劣る。
鋼板F3は焼戻し温度が低いため、常温での強度が高い割
に耐火強度が低く靱性も悪い。鋼板G1はCr%+2Mo%+1
0V%+20Nb%+200B%の値が0.2%より小さいため、耐
火強度が劣る。鋼板H1はCr%+2Mo%+10V%+20Nb%+
200B%の値が0.2%より大きく耐火強度は十分であるがC
eqが0.5%より高く靱性が劣っている。
On the other hand, A2, B2, D3 and F3 have low rolling end temperature (A2), low water cooling stop temperature (B2) or too high tempering temperature (D3), so they not only have low strength at room temperature but also fire resistance. The strength is also low. Steel plate C2 has a sufficiently high rolling end temperature, and therefore has sufficient strength and fire resistance, but has poor toughness.
Steel plate F3 has a low tempering temperature, so its strength at room temperature is high, but its fire resistance is low and its toughness is poor. Steel plate G1 is Cr% + 2Mo% + 1
The value of 0V% + 20Nb% + 200B% is less than 0.2%, so the fire resistance is poor. Steel plate H1 is Cr% + 2Mo% + 10V% + 20Nb% +
The value of 200B% is larger than 0.2% and the fire resistance is sufficient, but C
eq is higher than 0.5% and toughness is poor.

(発明の効果) 本方法による鋼板は溶接構造用鋼材(JIS G3106)の常
温での降伏強さ、引張強さおよび靱性を満足するばかり
でなく、耐火鋼として重要である高温での耐火強度が優
れており、鉄骨構造等の建築物の製作において耐火被覆
を簡略あるいは省略可能であり、工業的価値が大きい。
(Effect of the invention) The steel sheet produced by this method not only satisfies the yield strength, tensile strength and toughness of the welded structural steel material (JIS G3106) at room temperature, but also has a high fire resistance strength, which is important as a fire resistant steel. It is excellent, and the refractory coating can be simplified or omitted in the production of buildings such as steel structures, which has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は水冷停止温度による耐火強度と常温耐力の比の
変化を示す図表、第2図はCr%+2Mo%+10V%+20Nb%
+200B%の値により耐火強度と常温耐力の比の変化を表
す図表、第3図は耐火強度を求める場合の試験片の昇温
パターンを表わす図表である。
Fig. 1 is a chart showing the change in the ratio of fireproof strength to room temperature proof strength depending on the water cooling stop temperature, and Fig. 2 is Cr% + 2Mo% + 10V% + 20Nb%.
Fig. 3 is a chart showing the change in the ratio of fireproof strength to room temperature yield strength by the value of + 200B%, and Fig. 3 is a chart showing the temperature rise pattern of the test piece when the fireproof strength is obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%にて、Cr,Mo,V,NbおよびBを(%C
r)+2(%Mo)+10(%V)+20(%Nb)+200(%
B)=0.2〜3%含有し、且つ炭素当量(Ceq=C+Mn/6
+Si/24+Ni/40+Mo/4+Cr/5+V/14)が0.30〜0.50%で
ある鋼を、1000〜1280℃に加熱し、Ar3〜1000℃で熱間
圧延を終了し、Ar3−50℃〜Ar3+50℃の温度で水冷開始
し、200℃以下に水冷した後、400〜600℃で焼戻すこと
を特徴とする耐火強度の優れた構造用鋼材の製造法。
1. Cr, Mo, V, Nb and B (% C
r) +2 (% Mo) +10 (% V) +20 (% Nb) +200 (%
B) = 0.2 to 3%, and carbon equivalent (Ceq = C + Mn / 6
+ Si / 24 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14) steel with 0.30 to 0.50% is heated to 1000 to 1280 ° C, hot rolling is finished at Ar 3 to 1000 ° C, and Ar 3 −50 ° C to Ar A method for producing a structural steel material having excellent fire resistance, which is characterized by starting water cooling at a temperature of 3 + 50 ° C, cooling to 200 ° C or less, and then tempering at 400 to 600 ° C.
【請求項2】重量%にて、Cr,Mo,V,NbおよびBを(%C
r)+2(%Mo)+10(%V)+20(%Nb)+200(%
B)=0.2〜3%含有し、且つ炭素当量(Ceq=C+Mn/6
+Si/24+Ni/40+Mo/4+Cr/5+V/14)が0.30〜0.50%で
ある鋼を、1000〜1280℃に加熱し、Ar3〜1000℃で熱間
圧延を終了し、Ar3−50℃〜Ar3+50℃の温度で水冷開始
し、表面温度が400〜600℃で水冷を停止し、ついで放冷
することを特徴とする耐火強度の優れた構造用鋼材の製
造法。
2. Cr, Mo, V, Nb and B (% C
r) +2 (% Mo) +10 (% V) +20 (% Nb) +200 (%
B) = 0.2 to 3%, and carbon equivalent (Ceq = C + Mn / 6
The + Si / 24 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14) is from .30 to 0.50% steel, and heated to from 1,000 to 1,280 ° C., to exit the hot rolled at Ar 3 ~1000 ℃, Ar 3 -50 ℃ ~Ar A method for manufacturing a structural steel material having excellent fire resistance, which is characterized by starting water cooling at a temperature of 3 + 50 ° C, stopping water cooling at a surface temperature of 400 to 600 ° C, and then allowing to cool.
JP1234783A 1989-09-12 1989-09-12 Manufacturing method of structural steel with excellent fire resistance Expired - Fee Related JPH0747771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234783A JPH0747771B2 (en) 1989-09-12 1989-09-12 Manufacturing method of structural steel with excellent fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234783A JPH0747771B2 (en) 1989-09-12 1989-09-12 Manufacturing method of structural steel with excellent fire resistance

Publications (2)

Publication Number Publication Date
JPH03100118A JPH03100118A (en) 1991-04-25
JPH0747771B2 true JPH0747771B2 (en) 1995-05-24

Family

ID=16976308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234783A Expired - Fee Related JPH0747771B2 (en) 1989-09-12 1989-09-12 Manufacturing method of structural steel with excellent fire resistance

Country Status (1)

Country Link
JP (1) JPH0747771B2 (en)

Also Published As

Publication number Publication date
JPH03100118A (en) 1991-04-25

Similar Documents

Publication Publication Date Title
CN100473731C (en) Method for producing high tensile steel sheet
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP6344191B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
JP6795048B2 (en) Non-treated low yield ratio high-strength thick steel sheet and its manufacturing method
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
US4299623A (en) Corrosion-resistant weldable martensitic stainless steel, process for the manufacture thereof and articles
JP5082500B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JPH0832945B2 (en) Steel material for building structure having excellent fire resistance and its manufacturing method
KR920005617B1 (en) Making process for high tensile steel
KR100368553B1 (en) Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JPH0747771B2 (en) Manufacturing method of structural steel with excellent fire resistance
US4374680A (en) Corrosion-resistant weldable martensitic stainless steel, process for the manufacture thereof and articles
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
JPH072968B2 (en) Method for manufacturing structural steel with excellent fire resistance
JP2812706B2 (en) Structural steel with excellent fire resistance and method for producing the same
JP2687067B2 (en) Method for producing high Cr ferritic steel sheet having excellent creep strength and good workability
JP2828356B2 (en) Method for producing boron-treated thin steel for structural use with excellent fire resistance
JPH10287949A (en) (400 to 800) n/mm2 class high strength hot rolled steel plate, excellent in toughness and workability, and its production
JPH07207342A (en) Production of high toughness martensitic stainless steel sheet excellent in wear resistance
JPH06287637A (en) Production of high tensile strength steel plate excellent in weldability and minimal in acoustic anisotropy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees