JPH0747208B2 - Consumable electrode type arc welder - Google Patents

Consumable electrode type arc welder

Info

Publication number
JPH0747208B2
JPH0747208B2 JP3092067A JP9206791A JPH0747208B2 JP H0747208 B2 JPH0747208 B2 JP H0747208B2 JP 3092067 A JP3092067 A JP 3092067A JP 9206791 A JP9206791 A JP 9206791A JP H0747208 B2 JPH0747208 B2 JP H0747208B2
Authority
JP
Japan
Prior art keywords
arc
signal
output
short circuit
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3092067A
Other languages
Japanese (ja)
Other versions
JPH04322881A (en
Inventor
康司 濱本
直樹 河合
哲 印南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3092067A priority Critical patent/JPH0747208B2/en
Priority to US07/858,937 priority patent/US5270516A/en
Priority to EP92105544A priority patent/EP0508281B1/en
Priority to DE69211410T priority patent/DE69211410T2/en
Publication of JPH04322881A publication Critical patent/JPH04322881A/en
Publication of JPH0747208B2 publication Critical patent/JPH0747208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は消耗電極である溶接用ワ
イヤを自動送給してアーク溶接を行う消耗電極式アーク
溶接機に関し、特にその溶接用電源に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a consumable electrode type arc welding machine for automatically feeding a welding wire which is a consumable electrode to perform arc welding, and more particularly to a welding power source.

【0002】[0002]

【従来の技術】消耗電極式アーク溶接機の従来の技術
は、フィードバックされたアーク状態をもとに、アーク
から短絡への変化及び短絡からアークへの変化を検出
し、検出後に短絡時の出力波形とアーク時の出力波形を
切り換えることによって、出力波形を制御して溶接出力
制御を行っていた。
2. Description of the Related Art The conventional technology of a consumable electrode type arc welder is to detect a change from an arc to a short circuit and a change from a short circuit to an arc based on the fed back arc state, and after detection, output at the time of short circuit. The welding output was controlled by controlling the output waveform by switching the waveform and the output waveform during arcing.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記のよう
にフィードバックされたアーク状態をもとに、アークと
短絡の交互変化を検出し、検出後に出力波形を切り換え
て溶接出力制御を行っていたため、波形切り換えの遅れ
によって最適なアークを維持するのに不適切な出力波形
となり、出力状態を乱す要因となったり、短絡の開始時
期が予測できないため微小短絡が起こってもそれを確実
な短絡状態に移行できないためスパッタ発生の原因とな
ったり、短絡アークの繰り返し周期が一定にならないた
めに不均一な短絡移行となり、ビード外観が損なわれる
などの問題点があった。
However, since the alternating change of arc and short circuit is detected based on the fed-back arc state as described above, and the output waveform is switched after the detection, the welding output control is performed. Due to the delay of waveform switching, the output waveform becomes unsuitable for maintaining an optimum arc, which disturbs the output state, and the start time of the short circuit cannot be predicted. There is a problem in that spatter is caused because the transition cannot be made, and because the repeating cycle of the short-circuit arc is not constant, non-uniform short-circuit transition occurs and the bead appearance is impaired.

【0004】本発明は上記従来の問題点に鑑み、フィー
ドバック信号を元に短絡アークの繰り返し周期を計時
し、ファジィ理論による推論を用いて次の短絡アークの
切り替わりを予測し、最適な出力信号を形成して出力す
るようにした消耗電極式アーク溶接機を提供することを
目的とする。
In view of the above-mentioned conventional problems, the present invention measures the repetition cycle of a short-circuit arc based on a feedback signal, predicts the switching of the next short-circuit arc using inference based on fuzzy theory, and determines the optimum output signal. It is an object of the present invention to provide a consumable electrode type arc welder which is formed and output.

【0005】[0005]

【課題を解決するための手段】本発明の消耗電極式アー
ク溶接機は、出力電流値を計測して電流値信号として出
力する電流検出部と、出力電圧値を計測して電圧値信号
として出力する電圧検出部と、電圧値信号を入力として
前回の短絡開始時よりアーク発生までの時間及びアーク
発生から短絡までの時間を計時して短絡アーク周期信号
として出力する短絡アーク周期計時部と、電流値信号と
電圧値信号と短絡アーク周期信号を入力として予め定め
られた規則に従いファジィ推論を行い、前回のアークか
ら短絡への変化点より次回の短絡からアークへの変化点
までの時間又は前回の短絡からアークへの変化点より次
回のアークから短絡への変化点までの時間を予測し、推
論信号として出力するファジィ推論部と、推論信号を入
力として最適なアーク状態を実現するための出力波形を
形成し波形信号として出力する波形制御部と、波形信号
を入力として溶接電源のアーク出力を司る出力駆動素子
を駆動する駆動信号を出力する駆動制御部とを備えたこ
とを特徴とする。
The consumable electrode type arc welding machine of the present invention measures the output current value and outputs it as a current value signal, and the output voltage value is measured and output as a voltage value signal. The voltage detection unit, and the short-circuit arc period timer that outputs a short-circuit arc period signal by measuring the time from the start of the previous short-circuit to the arc occurrence and the time from the arc occurrence to the short-circuit by inputting the voltage value signal, and the current. The value signal, voltage value signal, and short-circuit arc period signal are input and fuzzy inference is performed according to a predetermined rule, and the time from the previous arc-to-short-circuit change point to the next short-circuit-to-arc change point or the previous time A fuzzy inference section that predicts the time from the point of change from a short circuit to an arc to the point of change from the next arc to a short circuit and outputs it as an inference signal, and an optimal signal with the inference signal as input. A waveform control unit that forms an output waveform for realizing the electric shock state and outputs it as a waveform signal; and a drive control unit that outputs a drive signal that drives the output drive element that controls the arc output of the welding power source by inputting the waveform signal. It is characterized by having.

【0006】[0006]

【作用】本発明によれば、上記構成によりフィードバッ
ク信号を元に短絡アークの繰り返し周期を計時し、出力
電流値・電圧値とも兼ね合わせたファジィ理論による推
論を行うことによって次の短絡アークの切り替わりを予
測し、最適な出力アーク状態となるように出力波形を制
御できる。
According to the present invention, the switching of the next short-circuit arc is performed by measuring the repetition period of the short-circuit arc based on the feedback signal and inferring the fuzzy theory that combines the output current value and the voltage value, based on the feedback signal. Can be predicted and the output waveform can be controlled so as to obtain the optimum output arc state.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1〜図3に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0008】図1に示すブロック図において、1はファ
ジィ推論部、2は波形制御部、3は短絡アーク周期計時
部、4は電圧検出部、5は電流検出部、6は駆動制御
部、7は駆動素子、8は入力端子、9は1次整流器、1
0はコンデンサ、11は主変圧器、12は2次整流器、
13はリアクトル、14は分流器、15a、15bは出
力端子、16は通電用コンタクトチップ、17は溶接用
ワイヤ、18は母材である。
In the block diagram shown in FIG. 1, 1 is a fuzzy reasoning section, 2 is a waveform control section, 3 is a short-circuit arc period timing section, 4 is a voltage detection section, 5 is a current detection section, 6 is a drive control section, and 7 is a drive control section. Is a driving element, 8 is an input terminal, 9 is a primary rectifier, 1
0 is a capacitor, 11 is a main transformer, 12 is a secondary rectifier,
13 is a reactor, 14 is a shunt, 15a and 15b are output terminals, 16 is a contact tip for energization, 17 is a welding wire, and 18 is a base material.

【0009】次に、これら各構成要素を詳細に説明す
る。
Next, each of these components will be described in detail.

【0010】電流検出部5は、分流器14を用いて出力
アーク電流値を計測し、リアルタイムな値と平均値より
成る電流値信号ASを出力する。電圧検出部4は出力端
子15a、15b間より出力アーク電圧値を計測し、リ
アルタイムな値と平均値より成る電圧値信号VSを出力
する。短絡アーク周期計時部3は、電圧検出部4より出
力された電圧値信号VSを入力とし、信号内のリアルタ
イムな値を用いて溶接用ワイヤ17と母材18間の状態
が短絡中であるのかアーク発生中であるのかを判断し、
短絡開始からアーク発生までの時間及びアーク発生から
短絡開始までの時間を計時して信号化し、短絡アーク周
期信号FSとして出力する。
The current detector 5 measures the output arc current value using the shunt 14 and outputs a current value signal AS consisting of a real-time value and an average value. The voltage detector 4 measures the output arc voltage value from between the output terminals 15a and 15b and outputs a voltage value signal VS consisting of a real-time value and an average value. The short-circuit arc period timer 3 receives the voltage value signal VS output from the voltage detector 4, and uses the real-time value in the signal to determine whether the state between the welding wire 17 and the base metal 18 is short-circuited. Determine whether an arc is occurring,
The time from the start of the short circuit to the occurrence of the arc and the time from the occurrence of the arc to the start of the short circuit are measured and converted into a signal, which is output as a short circuit arc cycle signal FS.

【0011】ファジィ推論部1は、電流値信号ASと電
圧値信号VSと短絡アーク周期信号FSを入力とし、電
流値信号ASのリアルタイムな値と平均値と、電圧値信
号VSの平均値と、短絡アーク周期信号FSの短絡開始
からアーク発生までの時間及びアーク発生から短絡開始
までの時間を推論の命題として取り入れ、多重ファジィ
推論法を用いて結論となる次回の短絡開始からアーク発
生までの時間、又はアーク発生から短絡開始までの時間
を推論し、推論結果を推論信号LSとして出力する。こ
のファジィ推論部1は、マイクロプロセッサ等の使用に
より容易に実現できる。
The fuzzy inference unit 1 receives the current value signal AS, the voltage value signal VS, and the short-circuit arc cycle signal FS as input, and the real-time value and average value of the current value signal AS, and the average value of the voltage value signal VS, The time from the start of the short circuit to the occurrence of the arc and the time from the start of the arc to the start of the short circuit of the short circuit arc period signal FS are taken as propositions of inference, and the time from the start of the next short circuit to the occurrence of the arc is concluded using the multiple fuzzy reasoning method. , Or the time from the arc occurrence to the start of the short circuit is inferred and the inference result is output as an inference signal LS. The fuzzy inference unit 1 can be easily realized by using a microprocessor or the like.

【0012】波形制御部2は、ファジィ推論部1より与
えられる推論信号LSを元にして次回の短絡時及びアー
ク発生時の出力波形を内部に持つメモリデータバンクよ
り選択し組み合わせて形成し、波形信号として出力す
る。駆動制御部6は、波形信号WSを入力として駆動信
号DSに変換し、出力駆動素子7に与える。
Based on the inference signal LS given from the fuzzy inference unit 1, the waveform control unit 2 selects and combines the output waveforms at the time of the next short circuit and the occurrence of an arc from the internal memory data bank to form a waveform. Output as a signal. The drive controller 6 receives the waveform signal WS as an input, converts the waveform signal WS into a drive signal DS, and supplies the drive signal DS to the output drive element 7.

【0013】図2は、ファジィ推論部1の動作説明図、
図3は電圧値信号と電流値信号の波形図である。ファジ
ィ推論部1の内部で行う推論は、メンバシップ関数μ
(x)に則り、多重ファジィ推論形式によって推論し、
MAX−MIN合成重心法を用いて結論を導き、出力す
る。推論部への入力は、図2(a)、(b)に示すよう
に6入力で、予め定められているルールに従って推論
し、結論としてts1又はta1を出力する。即ち、図2、
図3において、図2(a)に示すように今回の短絡時間
Ts1を推論する際には、前回の短絡時間Ts0と、前回の
アーク時間Ta0と、前回のアークから短絡への変化点電
流値Ib0と、前回の短絡からアークへの変化点電流値I
p0と、今回の短絡・アーク期間の出力電流平均値Iaと
出力電圧平均値Vaとをメンバシップ関数μ(x)に取
り入れ、所定のルールに従って推論し、結論として今回
の短絡時間推論値ts1を出力する。又、図2(b)に示
すように今回のアーク時間Ta1を推論する際には、前回
のアーク時間Ta0と、今回の短絡時間Ts1と、前回の短
絡からアークへの変化点電流値Ip0と、今回のアークか
ら短絡への変化点電流値Ib1と、その前のアーク・短絡
期間の出力電流平均値Ia’と出力電圧平均値Va’を
メンバシップ関数μ(x)に取り入れ、所定のルールに
従って推論し、結論としてアーク時間推論値ta1が出力
される。
FIG. 2 is a diagram for explaining the operation of the fuzzy inference unit 1.
FIG. 3 is a waveform diagram of the voltage value signal and the current value signal. The reasoning performed inside the fuzzy reasoning unit 1 is the membership function μ.
Infer by the multiple fuzzy inference form according to (x),
The MAX-MIN composite centroid method is used to draw conclusions and output. The input to the inference unit is 6 inputs as shown in FIGS. 2 (a) and 2 (b), inference is performed according to a predetermined rule, and ts 1 or ta 1 is output as a conclusion. That is, FIG.
In FIG. 3, when inferring the current short-circuit time Ts 1 as shown in FIG. 2A, the previous short-circuit time Ts 0 , the previous arc time Ta 0, and the change from the previous arc to the short-circuit. Point current value Ib 0 and the change point current value I from the previous short circuit to the arc
p 0 , the current output current average value Ia and the output voltage average value Va during the short-circuit / arc period are incorporated into the membership function μ (x), and they are inferred according to a predetermined rule, and as a conclusion, the current short-circuit time inferred value ts Output 1 Further, as shown in FIG. 2B, when the current arc time Ta 1 is inferred, the previous arc time Ta 0 , the current short circuit time Ts 1, and the change point current from the previous short circuit to the arc The value Ip 0 , the current value Ib 1 of the change point from the arc to the short circuit this time, and the average output current value Ia ′ and the average output voltage value Va ′ during the previous arc / short circuit period are set to the membership function μ (x). It is taken in, inferred according to a predetermined rule, and the arc time inferred value ta 1 is output as a conclusion.

【0014】上記ルールはIF〜(前件部)THEN…(後件
部)として記述され、その前件部の各入力値Ia、I
a’、Va、Va’、Ts0、Ts1、Ta0、Ip0、Ib0
Ib1についてのメンバシップ関数は、例えば図4に示す
ように、S(Small )、M(Medium)、B(Big )の3
変数とされ、後件部の各出力値ts1、ta1のメンバシッ
プ関数も上記と同様の3変数とされる。
The above rules are described as IF- (preceding part) THEN ... (consequent part), and the respective input values Ia, I of the precondition part.
a ′, Va, Va ′, Ts 0 , Ts 1 , Ta 0 , Ip 0 , Ib 0 ,
For example, as shown in FIG. 4, the membership function for Ib 1 is S (Small), M (Medium), and B (Big).
The membership functions of the output values ts 1 and ta 1 of the consequent part are also 3 variables similar to the above.

【0015】その場合、ファジィ変数Sのメンバシップ
関数μ(x)は x≦b1 :μ(x)=1 b1 ≦x≦b2 :μ(x)=1−(x−b1 )/(b2 −b1 ) b2 ≦x :μ(x)=0 又、ファジィ変数Mのメンバシップ関数μ(x)は μ(x)=max(0,1−|x−b2 |/(b3 −b2 )) 又、ファジィ変数Bのメンバシップ関数μ(x)は x≦b2 :μ(x)=0 b2 ≦x≦b3 :μ(x)=(x−b2 )/(b3 −b2 ) b3 ≦x :μ(x)=1 でそれぞれ与えられる。
In this case, the membership function μ (x) of the fuzzy variable S is x ≦ b 1 : μ (x) = 1 b 1 ≦ x ≦ b 2 : μ (x) = 1- (x-b 1 ). / (B 2 −b 1 ) b 2 ≦ x: μ (x) = 0 Further, the membership function μ (x) of the fuzzy variable M is μ (x) = max (0,1- | x−b 2 | / (B 3 −b 2 )) Further, the membership function μ (x) of the fuzzy variable B is x ≦ b 2 : μ (x) = 0 b 2 ≦ x ≦ b 3 : μ (x) = (x− b 2 ) / (b 3 −b 2 ) b 3 ≦ x: μ (x) = 1 respectively.

【0016】そして、上記ルールは、熟練溶接技術者の
経験則によって、例えば IF Ia=S and Va=M and Ts0=M and Ta0=M and Ip0=M and Ib0=M THEN ts1=M IF Ia’=S and Va’=M and Ts1=M and Ta0=M and Ip0=M and Ib1=M THEN ta1=M ・・・・・・・ ・・・ ・・・・・・・ ・・・ IF Ia=B and Va=S and Ts0=S and Ta0=B and Ip0=M and Ib0=S THEN ts1=B ・・・・・・・ ・・・ ・・・・・・・ ・・・ のように定められており、これら多重ファジィ推論形式
によって推論し、MAX−MIN合成重心法を用いて結
論を導き、出力する。
The above-mentioned rule is, for example, IF Ia = S and Va = M and Ts 0 = M and Ta 0 = M and Ip 0 = M and Ib 0 = M THEN ts 1 according to the rule of thumb of a skilled welding engineer. = M IF Ia '= S and Va' = M and Ts 1 = M and Ta 0 = M and Ip 0 = M and Ib 1 = M THEN ta 1 = M ······· ··· ···・ ・ ・ ・ ・ ・ ・ IF Ia = B and Va = S and Ts 0 = S and Ta 0 = B and Ip 0 = M and Ib 0 = S THEN ts 1 = B ・ ・ ・ ・........ is defined as follows, inference is performed by these multiple fuzzy inference forms, and the MAX-MIN combined centroid method is used to derive and output the conclusion.

【0017】[0017]

【発明の効果】以上説明したように、本発明の消耗電極
式アーク溶接機によれば、出力されている現時点でのア
ークの状態によって、次の短絡開始時及び次のアーク発
生時が予め予測でき、波形制御の時間遅れが無くなるほ
か、短絡開始時を制御できるために微小短絡を無くし、
確実な短絡発生へと移行できるため、スパッタの発生を
抑制でき、また均一性のあるアークとなって滑らかなビ
ード外観を実現でき、作業者が容易に安定した最適なア
ークを実現することが可能となり、産業上大なる効果を
発揮する。
As described above, according to the consumable electrode type arc welding machine of the present invention, the next short circuit start time and the next arc generation time are predicted in advance according to the current arc state being output. In addition to eliminating the time delay of waveform control, it is also possible to control the start of short circuit, eliminating micro short circuits,
Since it is possible to shift to the occurrence of a reliable short circuit, it is possible to suppress the occurrence of spatter, and it is possible to realize a smooth bead appearance with a uniform arc, and it is possible for the operator to easily realize a stable and optimum arc. And has a great effect on the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】ファジィ推論部の動作説明図である。FIG. 2 is an operation explanatory diagram of a fuzzy inference unit.

【図3】電圧値信号と電流値信号の波形図である。FIG. 3 is a waveform diagram of a voltage value signal and a current value signal.

【図4】メンバシップ関数の説明図である。FIG. 4 is an explanatory diagram of a membership function.

【符号の説明】[Explanation of symbols]

1 ファジィ推論部 2 波形制御部 3 短絡アーク周期計時部 4 電圧検出部 5 電流検出部 6 駆動制御部 7 出力駆動素子 1 Fuzzy inference part 2 Waveform control part 3 Short-circuit arc period timer part 4 Voltage detection part 5 Current detection part 6 Drive control part 7 Output drive element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 出力電流値を計測して電流値信号として
出力する電流検出部と、出力電圧値を計測して電圧値信
号として出力する電圧検出部と、電圧値信号を入力とし
て前回の短絡開始時よりアーク発生までの時間及びアー
ク発生から短絡までの時間を計時して短絡アーク周期信
号として出力する短絡アーク周期計時部と、電流値信号
と電圧値信号と短絡アーク周期信号を入力として予め定
められた規則に従いファジィ推論を行い、前回のアーク
から短絡への変化点より次回の短絡からアークへの変化
点までの時間又は前回の短絡からアークへの変化点より
次回のアークから短絡への変化点までの時間を予測し、
推論信号として出力するファジィ推論部と、推論信号を
入力として最適なアーク状態を実現するための出力波形
を形成し波形信号として出力する波形制御部と、波形信
号を入力として溶接電源のアーク出力を司る出力駆動素
子を駆動する駆動信号を出力する駆動制御部とを備えた
ことを特徴とする消耗電極式アーク溶接機。
1. A current detection unit that measures an output current value and outputs it as a current value signal, a voltage detection unit that measures an output voltage value and outputs it as a voltage value signal, and a previous short circuit with the voltage value signal as an input. The time from the start to the occurrence of an arc and the time from the occurrence of an arc to the short circuit are measured and output as a short circuit arc cycle signal, and a current value signal, voltage value signal and short circuit arc cycle signal are input in advance. The fuzzy inference is performed according to the established rules, and the time from the change point from the previous arc to short circuit to the change point from the next short circuit to arc or from the previous change point from short circuit to arc to the next arc to short circuit Predict the time to the change point,
A fuzzy inference unit that outputs as an inference signal, a waveform control unit that inputs an inference signal to form an output waveform for realizing an optimum arc state and outputs it as a waveform signal, and an arc output of a welding power source as an input of the waveform signal. A consumable electrode type arc welder, comprising: a drive control unit that outputs a drive signal that drives an output drive element that controls it.
JP3092067A 1991-04-01 1991-04-23 Consumable electrode type arc welder Expired - Lifetime JPH0747208B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3092067A JPH0747208B2 (en) 1991-04-23 1991-04-23 Consumable electrode type arc welder
US07/858,937 US5270516A (en) 1991-04-01 1992-03-26 Arc welding machine
EP92105544A EP0508281B1 (en) 1991-04-01 1992-03-31 Arc welding machine
DE69211410T DE69211410T2 (en) 1991-04-01 1992-03-31 Arc welding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092067A JPH0747208B2 (en) 1991-04-23 1991-04-23 Consumable electrode type arc welder

Publications (2)

Publication Number Publication Date
JPH04322881A JPH04322881A (en) 1992-11-12
JPH0747208B2 true JPH0747208B2 (en) 1995-05-24

Family

ID=14044126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092067A Expired - Lifetime JPH0747208B2 (en) 1991-04-01 1991-04-23 Consumable electrode type arc welder

Country Status (1)

Country Link
JP (1) JPH0747208B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087627A (en) * 1998-09-21 2000-07-11 Lincoln Global, Inc. Method of controlling a welding process and controller therefor
JP3786122B2 (en) * 2004-03-26 2006-06-14 松下電器産業株式会社 Welding equipment
US9415457B2 (en) * 2010-10-22 2016-08-16 Lincoln Global, Inc. Method to control an arc welding system to reduce spatter
CN114749766A (en) * 2022-04-22 2022-07-15 唐山松下产业机器有限公司 Welding current waveform adjusting method and device

Also Published As

Publication number Publication date
JPH04322881A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
US6717107B1 (en) Two stage welder and method of operating same
KR100281315B1 (en) Welding power supply and its manufacturing method
JP3802832B2 (en) Apparatus and method for controlling an electric arc welder
CN112743196A (en) System and method for providing welding-type arc starting and arc stabilization with reduced open circuit voltage
JPH0747208B2 (en) Consumable electrode type arc welder
JP4854927B2 (en) Two-stage welding machine and method for operating the same
US5365035A (en) Method and apparatus for TIG welding
JPS5829575A (en) Electric power source device for welding
JPH01162573A (en) Arc welding power source
JPH03474A (en) Method for controlling output of consumable electrode arc welding power source
JPH0394977A (en) Method and equipment for pulse arc welding
JPH01299769A (en) Output control method for gas shielded arc welding power source
JP2589414B2 (en) Consumable electrode type arc welding machine
JP3391168B2 (en) Consumable electrode AC arc welding method
JPH0631443A (en) Method for controlling ac tig welding
JP2742232B2 (en) Arc welding machine
JP3607648B2 (en) Manufacturing method of welding power supply device
JPH02187270A (en) Consumable electrode arc welding output controller
JPH0542367A (en) Output control method for gas shielded arc welding power source
JPS63126674A (en) Power source for welding
JPH0349665B2 (en)
JPH0635058B2 (en) DC arc welding machine
JPS5886978A (en) Arc welding device
JPH09271941A (en) Power source for arc welding
JPH01178368A (en) Welding arc starting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 16

EXPY Cancellation because of completion of term