JPH0542367A - Output control method for gas shielded arc welding power source - Google Patents

Output control method for gas shielded arc welding power source

Info

Publication number
JPH0542367A
JPH0542367A JP22511491A JP22511491A JPH0542367A JP H0542367 A JPH0542367 A JP H0542367A JP 22511491 A JP22511491 A JP 22511491A JP 22511491 A JP22511491 A JP 22511491A JP H0542367 A JPH0542367 A JP H0542367A
Authority
JP
Japan
Prior art keywords
welding
output control
arc
control
gas shielded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22511491A
Other languages
Japanese (ja)
Inventor
Kunio Yomo
邦夫 四方
Masahiro Aoyama
雅洋 青山
Haruo Moriguchi
晴雄 森口
Kunio Kano
国男 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP22511491A priority Critical patent/JPH0542367A/en
Publication of JPH0542367A publication Critical patent/JPH0542367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To omit complicated adjusting work before welding and during welding and to remarkably improve welding performance in performing gas shielded arc welding while at least one of a welding current and the welding voltage is controlled based on an output control pattern. CONSTITUTION:Excess and deficiency of the output control quantity based on the output control pattern are subjected to fuzzy inference according to an analyzed result of a welding state based on detected values of the welding current and welding voltage during welding and above-mentioned output control quantity is corrected so as to enhance stability of an arc according to a result of the inference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスシールドされた消
耗電極,母材を通流する溶接電流及び溶接電圧の少なく
とも一方を設定された制御パターンにしたがって制御
し、前記電極と前記母材との間で短絡とアークを交互に
発生させるガスシールドアーク溶接電源の出力制御方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention controls at least one of a gas shielded consumable electrode, a welding current flowing through a base metal and a welding voltage in accordance with a set control pattern so that the electrode and the base metal are connected to each other. The present invention relates to an output control method for a gas shielded arc welding power source that alternately generates a short circuit and an arc between the two.

【0002】[0002]

【従来の技術】従来、ガスシールドアーク溶接におい
て、アークを安定させて溶接性を向上させるということ
は、スパッタの発生を抑制して高速度の溶接作業を可能
にすることに等しい。そして、前記の目的を達成するた
め、この種ガスシールドアーク溶接電源の出力制御方法
においては、特願昭63−126792号,同63−1
26793号,同63−212797号の出願の明細書
及び図面に記載されているように、短絡発生,アーク発
生の状態変化に追従して溶接電流,溶接電圧の少なくと
も一方を可変制御する。
2. Description of the Related Art Conventionally, in gas shielded arc welding, stabilizing the arc to improve weldability is equivalent to suppressing spatter generation and enabling high-speed welding work. In order to achieve the above object, an output control method of this type of gas shielded arc welding power source is disclosed in Japanese Patent Application Nos. 63-126792 and 63-1.
As described in the specification and drawings of the applications of No. 26793 and No. 63-212797, at least one of the welding current and the welding voltage is variably controlled in accordance with the state change of short circuit occurrence and arc occurrence.

【0003】つぎに、従来のガスシールドアーク溶接電
源の出力制御方法につき、図5を参照して説明する。同
図において、1は商用電源等の交流電源に接続された入
力側整流部、2は整流部1に接続された平滑部、3は平
滑部2に接続された高周波インバータ部であり、平滑部
2の出力を交流に変換するスイッチング素子からなる。
Next, a conventional output control method for a gas shielded arc welding power source will be described with reference to FIG. In the figure, 1 is an input side rectification unit connected to an AC power source such as a commercial power source, 2 is a smoothing unit connected to the rectification unit 1, 3 is a high frequency inverter unit connected to the smoothing unit 2, and a smoothing unit It is composed of a switching element that converts the output of 2 into alternating current.

【0004】4はインバータ部3の出力電圧を変圧する
変圧器、5は変圧器4の2次側出力を整流する出力側整
流部、6は整流部5の一方の出力端子に接続された給電
チップ、7は給電チップ6を介して通電される消耗電極
であり、溶接中に溶接母材8方向に所定速度で送給され
る溶接ワイヤからなる。
Reference numeral 4 is a transformer for transforming the output voltage of the inverter unit 5, 5 is an output side rectifying unit for rectifying the secondary side output of the transformer 4, and 6 is a power supply connected to one output terminal of the rectifying unit 5. The tip 7 is a consumable electrode that is energized via the power feed tip 6, and is composed of a welding wire that is fed at a predetermined speed in the direction of the welding base metal 8 during welding.

【0005】9は母材8と整流部5の他方の出力端子と
の間に設けられた電流検出器、10は電圧検出器であ
り、給電チップ6,母材8間の電圧を検出する。
Reference numeral 9 is a current detector provided between the base material 8 and the other output terminal of the rectifying section 5, and 10 is a voltage detector, which detects the voltage between the feeding chip 6 and the base material 8.

【0006】11は基準電流設定器、12は基準電圧設
定器、13はしきい電圧設定器、14は検出器9の検出
値と設定器11の電流基準値との差を出力する誤差増幅
器、15は検出器10の検出値と設定器12の電圧基準
値との差を出力する誤差増幅器、16は検出器10の検
出値としきい電圧設定器13のしきい値とを比較して電
極7,母材8間の短絡発生,アーク発生を弁別する弁別
器、17はアーク発生からTd時間作動するタイマ、18
はマイクロコンピュータ構成の制御部であり、誤差増幅
器14,15及びタイマ17の出力に基づき各部の制御
を行う。
Reference numeral 11 is a reference current setting device, 12 is a reference voltage setting device, 13 is a threshold voltage setting device, 14 is an error amplifier for outputting the difference between the detection value of the detector 9 and the current reference value of the setting device 11, Reference numeral 15 is an error amplifier that outputs the difference between the detected value of the detector 10 and the voltage reference value of the setter 12, and 16 is the electrode 7 comparing the detected value of the detector 10 with the threshold value of the threshold voltage setter 13. , A discriminator for discriminating the occurrence of a short circuit between the base materials 8 and the occurrence of arc, 17 is a timer which operates for Td time from the occurrence of arc, 18
Is a control unit having a microcomputer configuration, which controls each unit based on the outputs of the error amplifiers 14 and 15 and the timer 17.

【0007】19は100〜500Hzの高周波発振器、
20は制御部18からの割込信号により発振器19の出
力周波数の矩形パルスを発生するパルス発生器、21は
インバータ駆動部であり、制御部18により動作制御さ
れてインバータ部3のスイッチング素子を駆動し、イン
バータ部3の出力を制御する。
19 is a high frequency oscillator of 100 to 500 Hz,
Reference numeral 20 denotes a pulse generator that generates a rectangular pulse having an output frequency of the oscillator 19 in response to an interrupt signal from the control unit 18. Reference numeral 21 denotes an inverter drive unit, which is controlled in operation by the control unit 18 and drives a switching element of the inverter unit 3. Then, the output of the inverter unit 3 is controlled.

【0008】そして、シールドガス雰囲気中で電極7が
母材8方向に定速送給されるとともに、小電流域の短絡
移行(short circuiting transfer) 型のアーク溶接で
は、制御部18の出力制御に基づくインバータ3の駆動
により電極7,母材8に直流電力が供給され、毎溶接周
期Tに電極7,母材8間の短絡発生とアーク発生とが交
互に行われる。
In the shield gas atmosphere, the electrode 7 is fed at a constant speed in the direction of the base metal 8, and in the short circuiting transfer type arc welding of the small current region, the output control of the control unit 18 is performed. DC power is supplied to the electrode 7 and the base metal 8 by driving the inverter 3 based on the above, and a short circuit and an arc are alternately generated between the electrode 7 and the base metal 8 at every welding cycle T.

【0009】この短絡発生,アーク発生の期間をTshor
t,Tarc とすると、それらの期間Tshort,Tarc に制御部
18は誤差増幅器14,15の溶接電流,溶接電圧の基
準値に対する差の出力及び弁別器16の判別結果に基づ
くタイマ17の出力により溶接状態を把握し、予め設定
された制御パターンに基づき、短絡発生,アーク発生に
追従して出力制御量を可変設定し、この出力制御量に応
じた出力設定信号によりインバータ駆動部21を制御し
て溶接電流(出力電流),溶接電圧(出力電圧)の少な
くとも一方の大きさ,形状等を可変調整する。
[0009] The period of occurrence of this short circuit and arc is Tshor
Assuming t and Tarc, during those periods Tshort and Tarc, the control unit 18 uses the welding currents of the error amplifiers 14 and 15 and the output of the difference of the welding voltage from the reference value and the output of the timer 17 based on the discrimination result of the discriminator 16. By grasping the state, based on a preset control pattern, the output control amount is variably set in accordance with the occurrence of short circuit and arc, and the inverter drive unit 21 is controlled by the output setting signal according to this output control amount. Adjust the size and shape of at least one of welding current (output current) and welding voltage (output voltage).

【0010】ところで、溶接電流,溶接電圧の制御パタ
ーンの1例は、図6,図7に示すようになる。これらの
図において、大きさIs,Ip1,Ip2及び期間Tsは溶接電流の
4つの制御要素(パラメータ)であり、大きさΔV ,期
間Td,波形の傾斜角θ,パルス波形(波形状)Vpulseは
溶接電圧の4つの制御要素である。
By the way, an example of the control patterns of the welding current and the welding voltage is as shown in FIGS. 6 and 7. In these figures, the magnitudes Is, Ip1, Ip2 and the period Ts are four control elements (parameters) of the welding current, and the magnitude ΔV, the period Td, the inclination angle θ of the waveform, and the pulse waveform (wave shape) Vpulse are There are four control elements for the welding voltage.

【0011】そして、期間Td,Vpulseの波形はタイマ1
7の出力,発生器20の出力により決まり、残りの大き
さIs,Ip1,Ip2, ΔV 及び角θは溶接条件等に応じて予め
与えられる。また、図6において、実線はアーク移行に
よって実際にアークが発生するときの制御パターンであ
り、1点鎖線はアーク移行により一定期間Ip1 に保持し
てもアークが発生しないときの制御パターンである。
The waveforms of the periods Td and Vpulse are timer 1
7 and the output of the generator 20, and the remaining magnitudes Is, Ip1, Ip2, ΔV and the angle θ are given in advance according to welding conditions and the like. Further, in FIG. 6, the solid line is a control pattern when an arc is actually generated by the arc transition, and the one-dot chain line is a control pattern when the arc is not generated even if the arc is retained for a certain period of time Ip1.

【0012】さらに、図7に示すように、アーク移行後
の溶接電圧は、一定期間経過しても短絡に移行しないと
きにのみパルス波形Vpulseに制御して短絡移行を促す。
そして、溶接電流,溶接電圧を共に制御したときの制御
結果の1例を図8に示す。
Further, as shown in FIG. 7, the welding voltage after the arc transition is controlled to the pulse waveform Vpulse only when the short circuit does not transit to the short circuit even after a certain period of time, so as to promote the transition to the short circuit.
Then, FIG. 8 shows an example of a control result when the welding current and the welding voltage are both controlled.

【0013】ところで、溶接電流の大きさを変えると、
図9に示すようにアーク移行の形態が小電流域の短絡移
行,中電流域のグロビュール移行(Glaubular transfe
r),大電流域のスプレー移行(Spray transfer) に変化
する。なお、図9はある条件でのアーク移行の形態の変
化を示し、SHは短絡移行の領域,Gはグロビュール移
行の領域,SPはスプレー移行の領域である。
By the way, when the magnitude of the welding current is changed,
As shown in Fig. 9, the arc transfer forms are short-circuit transfer in the small current region and globular transfer in the medium current region.
r), and changes to spray transfer in the large current range. Note that FIG. 9 shows a change in the form of arc transfer under a certain condition, where SH is a short-circuit transfer region, G is a globule transfer region, and SP is a spray transfer region.

【0014】そして、短絡移行の領域SHでは100%
の制御を要するがスプレー移行の領域SPでは制御が全
く不要になる。そこで、従来は図10に示すように、グ
ロビュール移行の領域Gの適当な溶接電流,例えば23
0(A) をしきい値とし、この電流以下,以上により制御
量を100%(制御の度合1.0),0%(制御の度合
0)に切換えることも行われている。
In the short-circuit transition area SH, 100%
Control is required, but control is completely unnecessary in the spray transfer area SP. Therefore, conventionally, as shown in FIG. 10, an appropriate welding current in the region G of the globule transition, for example, 23
With 0 (A) as the threshold value, the control amount is switched to 100% (degree of control 1.0) or 0% (degree of control 0) depending on the current or above.

【0015】[0015]

【発明が解決しようとする課題】前記図5の従来のガス
シールドアーク溶接電源の出力制御方法の場合、溶接電
流,溶接電圧を設定された制御パターンに基づき、いわ
ゆる固定の関数でフォワード制御するため、この関数の
パラメータとしての溶接電流,溶接電圧それぞれの例え
ば前記各4つの制御要素(Is,Ip1,Ip2,Ts),( ΔV ,Td,
θ,Vpulse)は、それぞれを種々に変えながら試験的な溶
接を多数回くり返して適当な値に設定しなければなら
ず、極めて煩雑なパラメータ設定作業を要する問題点が
ある。
In the case of the conventional output control method of the gas shielded arc welding power source shown in FIG. 5, the welding current and the welding voltage are forward controlled by a so-called fixed function based on the set control pattern. , Each of the four control elements (Is, Ip1, Ip2, Ts) of the welding current and welding voltage as parameters of this function, (ΔV, Td,
(θ, Vpulse) must be set to an appropriate value by repeating trial welding a number of times while changing each, and there is a problem that extremely complicated parameter setting work is required.

【0016】しかも、設定された各制御要素の値は、通
常、溶接条件のある程度の範囲しかカバーしない中途半
端な値にしかならず全範囲をカバーするものでない。そ
のため、実際の溶接作業中に、適当な1又は複数の制御
要素,例えば期間Tdを微調整しなければならず、作業中
にも煩雑な調整を要する問題点がある。
Moreover, the set values of the respective control elements are usually halfway values that cover only a certain range of welding conditions, and do not cover the entire range. Therefore, an appropriate control element or a plurality of control elements, for example, the period Td must be finely adjusted during the actual welding work, and there is a problem that complicated adjustment is required during the work.

【0017】さらに、アークの状態が実際には電極7の
成分の配合,溶接中のトーチ移動速度,母材8を形成す
る溶接物の形状等の種々の要因で種々に異なるため、ア
ークの安定性を高めるには、これらの各要因のすべてを
考慮して溶接電流,溶接電圧を制御しなければならない
が、実際には各要因すべてを考慮することは不可能であ
り、アークの安定性を十分に高められない問題点があ
る。
Further, since the state of the arc actually varies depending on various factors such as the composition of the components of the electrode 7, the torch moving speed during welding, the shape of the welded material forming the base metal 8, etc., the arc stability is stable. In order to enhance the stability, it is necessary to control the welding current and welding voltage in consideration of all of these factors, but in reality it is impossible to consider all of these factors, and the stability of the arc is There is a problem that it cannot be raised sufficiently.

【0018】また、アーク移行の形態の変化に対し、図
10のようにしきい値を境界として制御量100%,0
%の二者択一の単純な制御を行うため、とくに短絡移行
とスプレー移行が混在した図9のグロビュール移行の領
域Gにおいては適切な制御が行えない問題点がある。
Further, as shown in FIG. 10, the control amount 100%, 0
Since a simple alternative control of% is performed, there is a problem that appropriate control cannot be performed particularly in the region G of the globule transition of FIG. 9 in which the short-circuit transition and the spray transition are mixed.

【0019】本発明は、従来の煩雑な調整作業を行うこ
となく、アークが安定化するように最適な制御状態にリ
アルタイムで自動制御できるようにし、溶接性能を飛躍
的に向上することを目的とする。
An object of the present invention is to enable automatic control in real time to an optimum control state so as to stabilize the arc without performing the conventional complicated adjustment work, and to dramatically improve welding performance. To do.

【0020】[0020]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明のガスシールドアーク溶接電源の出力制御
方法においては、溶接電流,溶接電圧の検出値に基づく
溶接状態の分析結果により、出力制御パターンに基づく
出力制御量の過不足をファジィ推論し、該推論の結果に
よりアークの安定性を高めるように前記出力制御量を補
正する。
In order to achieve the above-mentioned object, in the output control method of the gas shielded arc welding power source of the present invention, the welding state analysis result based on the detected values of welding current and welding voltage Fuzzy inference is performed on the excess or deficiency of the output control amount based on the output control pattern, and the output control amount is corrected based on the result of the inference so as to enhance the stability of the arc.

【0021】[0021]

【作用】前記のように構成された本発明のガスシールド
アーク溶接電源の出力制御方法の場合、溶接中の溶接電
流,溶接電圧の検出値から求まる時々刻々の溶接状態の
分析結果により出力制御量の過不足がファジィ推論さ
れ、この推論の結果によりアークの安定性を高めるよう
に出力制御量が自動的に補正される。したがって、従来
の実際の溶接前,溶接中の煩雑な調整作業を行うことな
く、溶接中のファジィ推論により、出力制御量が種々の
要因を考慮した最適量にリアルタイムに自動的に調整さ
れる。
In the output control method of the gas shielded arc welding power source of the present invention configured as described above, the output control amount is obtained from the analysis result of the welding state obtained every moment, which is obtained from the detected values of welding current and welding voltage during welding. The excess or deficiency of is inferred by fuzzy reasoning, and the result of this inference automatically corrects the output control amount so as to improve the stability of the arc. Therefore, the output control amount is automatically adjusted in real time to the optimum amount in consideration of various factors by fuzzy inference during welding without performing the conventional complicated adjustment work before and during actual welding.

【0022】[0022]

【実施例】1実施例について、図1ないし図4を参照し
て説明する。装置構成を示した図1において、図5の従
来構成と異なる点は、LSI,マイクロコンピュータ構
成のファジィ推論部22を付加した点である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment will be described with reference to FIGS. 1 showing the device configuration is different from the conventional configuration in FIG. 5 in that a fuzzy inference unit 22 having an LSI and a microcomputer configuration is added.

【0023】そして、制御部18は誤差増幅器14,1
5の差の出力及びタイマ17の出力により溶接状態を把
握し、予め設定された例えば図6,図7の制御パターン
に基づき、短絡発生,アーク発生に追従して出力制御量
を可変設定し、この出力制御量に応じた出力設定信号を
インバータ制御部21に供給して溶接電流,溶接電圧の
少なくとも一方を制御する。このとき、制御部18は溶
接状態の分析結果に基づく推論部22のファジィ推論の
結果により、電極7,母材8間のアークの安定性を高め
るように前記両制御パラメータの各制御要素Is, …,Vpu
lse を調整して前記出力制御量を補正する。
The control unit 18 then controls the error amplifiers 14, 1
The welding state is grasped by the output of the difference of 5 and the output of the timer 17, and the output control amount is variably set in accordance with the occurrence of a short circuit and the occurrence of an arc based on a preset control pattern of, for example, FIGS. An output setting signal corresponding to the output control amount is supplied to the inverter control unit 21 to control at least one of welding current and welding voltage. At this time, the control unit 18 uses the result of the fuzzy inference by the inference unit 22 based on the analysis result of the welding state to increase the stability of the arc between the electrode 7 and the base metal 8 by controlling each control element Is, …, Vpu
The lse is adjusted to correct the output control amount.

【0024】つぎに、推論部22のファジィ推論の結果
に基づく各制御要素Is, …,Vpulseの調整につき、制御
要素(期間)Tdを例にして説明する。期間Tdについては
例えばアーク発生の期間Tarc(アークタイム)及び溶接
電流からその過不足を推論する。
Next, adjustment of each control element Is, ..., Vpulse based on the result of the fuzzy inference by the inference unit 22 will be described by taking the control element (period) Td as an example. Regarding the period Td, for example, the excess or deficiency is inferred from the period Tarc (arc time) of arc generation and the welding current.

【0025】そのため、制御部18は溶接電流,溶接電
圧から図2に示すようなアークタイムの度数分布を常時
求める。そして、図2のように65(msec)が最頻出のア
ークタイムになり、このとき、溶接電流が230(A) の
一定値に保持されていれば、制御部18から推論部22
にアークタイム,溶接電流の分析結果の情報として、6
5(msec),230(A) の情報が伝送される。
Therefore, the control unit 18 constantly obtains the frequency distribution of the arc time as shown in FIG. 2 from the welding current and the welding voltage. Then, as shown in FIG. 2, 65 (msec) is the most frequent arc time. At this time, if the welding current is maintained at a constant value of 230 (A), the control unit 18 causes the inference unit 22
As information of the analysis result of arc time and welding current, 6
Information of 5 (msec) and 230 (A) is transmitted.

【0026】さらに、推論部22は各制御要素の推論に
必要な種々のメンバーシップ関数が設定され、アークタ
イムの「長い」,「やや長い」及び溶接電流の「かなり
大きい」並びに期間Tdの「かなり短く」,「やや短く」
のメンバーシップ関数が図3の(a),(b) 及び(c),(d) 並
びに(e),(f) それぞれに示す形状の場合、例えば溶接電
流を「かなり大きい」としてアークタイム, 溶接電流の
「長い」, 「かなり大きい」の組合せ及び「やや長
い」, 「かなり大きい」の組合せそれぞれから最小値合
成( MIN合成)により期間Tdの過不足の度合を推論す
る。
Further, the inference unit 22 is set with various membership functions required for inference of each control element, and the arc time is “long”, “slightly long” and the welding current is “significantly large” and the period Td is “long”. "Slightly short", "Slightly short"
When the membership function of is the shape shown in (a), (b) and (c), (d) and (e), (f) of FIG. The degree of excess or deficiency of the period Td is inferred by the minimum value synthesis (MIN synthesis) from the combinations of "long" and "significantly large" and "slightly long" and "significantly large" of the welding current.

【0027】すなわち、アークタイム65(msec)の「長
い」,「やや長い」での適合度を0.5,0.25それ
ぞれとし、溶接電流230(A) の「かなり大きい」での
適合度を0.35とすると、図3の(a),(c)のMIN合
成により同図の(e) の斜線部を期間Tdの「かなり短く」
の適合度の範囲として求め、同図の(b),(d) のMIN合
成により同図の(f) の斜線部を期間Tdの「やや短く」の
適合度の範囲として求める。
That is, the suitability of "long" and "slightly long" of arc time 65 (msec) is set to 0.5 and 0.25, respectively, and the suitability of welding current 230 (A) at "reasonably large". Is 0.35, the shaded area in (e) of FIG. 3 is “substantially short” by the MIN composition of (a) and (c) in FIG.
Then, the shaded area in (f) of the figure is obtained as the range of the "slightly short" fitness of the period Td by the MIN composition of (b) and (d) of the figure.

【0028】さらに、図3の(e),(f) の斜線部を最大値
合成(MAX合成)して同図の(g)の斜線部の関数形状
を求め、この関数形状に重心法を適用し、重心の位置で
の度合(−0.7)を期間Tdの過不足の程度として推論
する。
Further, the shaded portions of (e) and (f) of FIG. 3 are combined by maximum value (MAX synthesis) to obtain the function shape of the shaded portion of (g) of FIG. 3, and the centroid method is applied to this function shape. It is applied and the degree (−0.7) at the position of the center of gravity is inferred as the degree of excess or deficiency of the period Td.

【0029】そして、推論部22の推論結果が制御部1
8に伝送され、制御要素Tdの度合が−0.7であれば、
この度合が0になるように図7の制御パターンの期間Td
が調整されて出力制御量が補正される。
The inference result of the inference unit 22 is the control unit 1
8 and the degree of control element Td is -0.7,
The control pattern period Td of FIG. 7 is set so that this degree becomes 0.
Is adjusted to correct the output control amount.

【0030】ところで、各制御要素Is, …,Vpulse それ
ぞれにつき、前記と同様の推論が実行されて図6,図7
の制御パターンの各制御要素Is, …,Vpulse が調整され
る。これらの調整が実溶接中にくり返し行われる結果、
従来は不可能であった出力制御量の溶接状態に応じた溶
接中のリアルタイムの自動補正が可能になり、従来のよ
うに溶接前に試験的な溶接をくり返して各制御要素を確
定することなく、しかも、溶接中に調整することもな
く、アークを極めて安定に保ってガスシールドアーク溶
接が行える。
By the way, the same inference as described above is executed for each of the control elements Is, ..., Vpulse.
Each control element Is,…, Vpulse of the control pattern of is adjusted. As a result of these adjustments being repeated during actual welding,
Real-time automatic correction during welding according to the welding state of the output control amount, which was not possible in the past, is possible, without repeating the trial welding before welding to determine each control element as before. Moreover, the gas shielded arc welding can be performed with the arc kept extremely stable without adjustment during welding.

【0031】さらに、アークの状態をファジィ推論で制
御するため、電極7の素材の配合成分,溶接中のトーチ
移動速度,母材8を形成する溶接物の形状等の既知,未
知の種々のアーク変動要因につき、いずれも個々に分析
したり検出したりすることなく、総合的に考慮した最適
な補正が施される。
Furthermore, in order to control the state of the arc by fuzzy reasoning, various known and unknown arcs such as the composition of the material of the electrode 7, the torch moving speed during welding, the shape of the welded material forming the base metal 8 and the like. Optimum correction is comprehensively taken into consideration without individually analyzing or detecting the fluctuation factors.

【0032】そのため、実溶接前及び溶接中の従来の煩
雑な調整作業を省いて極めて優れた特性の溶接が行え、
溶接性能が著しく向上する。
Therefore, it is possible to perform welding with extremely excellent characteristics by omitting the conventional complicated adjustment work before and during actual welding.
Welding performance is significantly improved.

【0033】また、溶接電流に応じてアーク移行が図9
の短絡移行,グロビュール移行,スプレー移行に変化す
る際にも、領域判定のメンバーシップ関数を用意してお
き、ファジィ推論により例えば図4の実線に示すように
グロビュール移行の領域Gの範囲で制御の度合を段階的
(連続的)に可変し、最適な制御を行うことが可能であ
る。そして、溶接電流,溶接電圧の少なくとも一方を制
御する場合の出力制御に適用することができる。
In addition, the arc transition is shown in FIG. 9 according to the welding current.
Even when changing to short-circuit transition, globule transition, or spray transition, a membership function for area determination is prepared, and fuzzy reasoning is used to control the area within the area G of globule transition as shown by the solid line in FIG. It is possible to change the degree stepwise (continuously) and perform optimum control. Then, it can be applied to output control when controlling at least one of welding current and welding voltage.

【0034】なお、ファジィ推論の手法及びメンバーシ
ップ関数等は実施例に限定されるものではない。
The fuzzy reasoning method, membership function, etc. are not limited to those in the embodiment.

【0035】また、前記実施例では推論部22を制御部
18と別個の構成としたが、推論部22,制御部18を
1個のマイクロコンピュータ等で構成してもよい。さら
に、推論部22をハードウエアのロジック回路とアナロ
グ回路の組合せで形成してもよい。
Further, although the inference unit 22 and the control unit 18 are configured separately from each other in the above-described embodiment, the inference unit 22 and the control unit 18 may be configured by one microcomputer or the like. Further, the inference unit 22 may be formed by a combination of a hardware logic circuit and an analog circuit.

【0036】[0036]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。溶接中の溶
接電流,溶接電圧の検出値から時々刻々の溶接状態の分
析結果を求めて出力制御量の過不足をファジィ推論し、
この推論の結果によりアークの安定性を高めるように出
力制御量を自動的に補正したため、従来の実際の溶接
前,溶接中の煩雑な調整作業を行うことなく、溶接中の
ファジィ推論により、出力制御量を種々の要因を考慮し
た最適量にリアルタイムに自動的に調整し、溶接電流,
溶接電圧を溶接状態に応じた最適値に制御することがで
き、溶接性能を飛躍的に向上することができる。
Since the present invention is configured as described above, it has the following effects. From the detected values of welding current and welding voltage during welding, the result of analysis of the welding state is obtained every moment, and the fuzzy inference of the output control amount is fuzzy inferred,
The output control amount was automatically corrected based on the result of this inference so as to improve the arc stability. Therefore, fuzzy inference during welding can be used to perform output without performing complicated adjustment work before and during actual welding. The control amount is automatically adjusted in real time to the optimum amount considering various factors, and the welding current,
The welding voltage can be controlled to an optimum value according to the welding state, and the welding performance can be dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガスシールドアーク溶接電源の出力制
御方法の1実施例のブロック図である。
FIG. 1 is a block diagram of an embodiment of an output control method of a gas shielded arc welding power source of the present invention.

【図2】図1の制御説明用のアーク時間の発生分布図で
ある。
FIG. 2 is an arc time generation distribution diagram for explaining the control of FIG.

【図3】(a) 〜(g) は図2の特性に基づくファジィ推論
の説明図である。
3A to 3G are explanatory diagrams of fuzzy reasoning based on the characteristics of FIG.

【図4】アーク移行に基づく図1の制御量変化の説明図
である。
FIG. 4 is an explanatory diagram of changes in the control amount of FIG. 1 based on arc transfer.

【図5】従来例のブロック図である。FIG. 5 is a block diagram of a conventional example.

【図6】溶接電流の制御パターンの説明図である。FIG. 6 is an explanatory diagram of a control pattern of welding current.

【図7】溶接電圧の制御パターンの説明図である。FIG. 7 is an explanatory diagram of a welding voltage control pattern.

【図8】従来例の溶接電流,溶接電圧の制御特性図であ
る。
FIG. 8 is a control characteristic diagram of welding current and welding voltage of a conventional example.

【図9】アーク移行の説明図である。FIG. 9 is an explanatory diagram of arc transition.

【図10】アーク移行に基づく図5の制御量変化の説明
図である。
10 is an explanatory diagram of changes in the control amount of FIG. 5 based on arc transfer.

【符号の説明】[Explanation of symbols]

7 消耗電極 8 溶接母材 9 電流検出器 10 電圧検出器 18 制御部 22 ファジィ推論部 7 Consumable Electrode 8 Welding Base Material 9 Current Detector 10 Voltage Detector 18 Control Section 22 Fuzzy Reasoning Section

フロントページの続き (72)発明者 狩野 国男 大阪市東淀川区淡路2丁目14番3号 株式 会社三社電機製作所内Front page continued (72) Inventor Kunio Kano 2-14-3 Awaji, Higashiyodogawa-ku, Osaka City Sansha Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 消耗電極,溶接母材を通流する溶接電
流,溶接電圧の少なくとも一方を設定された出力制御パ
ターンにしたがって制御し、ガスシールドされた前記消
耗電極と前記母材との間で短絡とアークを交互に発生さ
せるガスシールドアーク溶接電源の出力制御方法におい
て、 前記溶接電流,前記溶接電圧の検出値に基づく溶接状態
の分析結果により、前記パターンに基づく出力制御量の
過不足をファジィ推論し、該推論の結果によりアークの
安定性を高めるように前記出力制御量を補正することを
特徴とするガスシールドアーク溶接電源の出力制御方
法。
1. A consumable electrode, at least one of a welding current flowing through a welding base material and a welding voltage is controlled in accordance with a set output control pattern, and between the gas shielded consumable electrode and the base material. In a power control method of a gas shielded arc welding power source for alternately generating a short circuit and an arc, the result of analysis of a welding state based on the detected values of the welding current and the welding voltage is used to determine whether the output control amount based on the pattern is excessive or insufficient. An output control method for a gas shielded arc welding power source, which comprises making an inference and correcting the output control amount so as to enhance arc stability based on the result of the inference.
JP22511491A 1991-08-09 1991-08-09 Output control method for gas shielded arc welding power source Pending JPH0542367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22511491A JPH0542367A (en) 1991-08-09 1991-08-09 Output control method for gas shielded arc welding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22511491A JPH0542367A (en) 1991-08-09 1991-08-09 Output control method for gas shielded arc welding power source

Publications (1)

Publication Number Publication Date
JPH0542367A true JPH0542367A (en) 1993-02-23

Family

ID=16824196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22511491A Pending JPH0542367A (en) 1991-08-09 1991-08-09 Output control method for gas shielded arc welding power source

Country Status (1)

Country Link
JP (1) JPH0542367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614116A (en) * 1994-10-31 1997-03-25 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
JP2005144543A (en) * 2003-11-20 2005-06-09 Yaskawa Electric Corp Welding system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171178A (en) * 1984-09-14 1986-04-12 Hitachi Seiko Ltd Optimum controlling method of arc welding
JPH04322882A (en) * 1991-04-23 1992-11-12 Matsushita Electric Ind Co Ltd Consumable electrode type arc welding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171178A (en) * 1984-09-14 1986-04-12 Hitachi Seiko Ltd Optimum controlling method of arc welding
JPH04322882A (en) * 1991-04-23 1992-11-12 Matsushita Electric Ind Co Ltd Consumable electrode type arc welding machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614116A (en) * 1994-10-31 1997-03-25 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
USRE36926E (en) * 1994-10-31 2000-10-31 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
JP2005144543A (en) * 2003-11-20 2005-06-09 Yaskawa Electric Corp Welding system

Similar Documents

Publication Publication Date Title
US4485293A (en) Short circuit transfer arc welding machine
KR100490241B1 (en) System and method for controlling an electric arc welder
JPS5823569A (en) Dc arc welding device
JPH02268971A (en) Pulse arc welding machine
JPH0542367A (en) Output control method for gas shielded arc welding power source
Chae et al. A novel mixed current and voltage control scheme for inverter arc welding machines
US5683602A (en) Welding power supply
JP3458632B2 (en) Welding voltage detection method and arc welding machine
JP3173159B2 (en) Control method of AC TIG welding
EP0063619B1 (en) Pulse arc welding method and device
JP2686183B2 (en) AC TIG welding machine
JPH09271942A (en) Pulsed mag arc welding method and welding equipment
JPH0790366B2 (en) AC TIG welding method
JPS6240974A (en) Welding control method
JP2587343B2 (en) Power supply for pulse arc welding
JPH03474A (en) Method for controlling output of consumable electrode arc welding power source
JP2675624B2 (en) AC TIG welding method and apparatus
JPH0747208B2 (en) Consumable electrode type arc welder
JPH02187270A (en) Consumable electrode arc welding output controller
JP2584140B2 (en) AC TIG welding machine
JPH10175067A (en) Self-shielded arc welding method
JPH05237657A (en) Dc tig arc welding machine
JP2705208B2 (en) Pulse arc welding machine
JPS58176072A (en) Arc welding machine
JPH1034350A (en) Resistance welding equipment