JPH0746158B2 - Reactor core flow measurement device - Google Patents

Reactor core flow measurement device

Info

Publication number
JPH0746158B2
JPH0746158B2 JP61203748A JP20374886A JPH0746158B2 JP H0746158 B2 JPH0746158 B2 JP H0746158B2 JP 61203748 A JP61203748 A JP 61203748A JP 20374886 A JP20374886 A JP 20374886A JP H0746158 B2 JPH0746158 B2 JP H0746158B2
Authority
JP
Japan
Prior art keywords
pump
flow rate
cooling water
differential pressure
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61203748A
Other languages
Japanese (ja)
Other versions
JPS6361190A (en
Inventor
好則 高原
昭夫 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61203748A priority Critical patent/JPH0746158B2/en
Publication of JPS6361190A publication Critical patent/JPS6361190A/en
Publication of JPH0746158B2 publication Critical patent/JPH0746158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉圧力容器内部に冷却水の循環ポンプを
内蔵した原子炉に係り、特に循環ポンプ部分台数運転時
の炉心流量測定に好適なように改良した原子炉内炉心流
量測定装置に関するものである。
TECHNICAL FIELD The present invention relates to a nuclear reactor having a circulating water circulation pump inside a reactor pressure vessel, and is particularly suitable for core flow rate measurement during operation of a partial number of circulation pumps. The present invention relates to an improved core flow rate measuring device in a nuclear reactor.

〔従来の技術〕[Conventional technology]

原子炉圧力容器に直接取り付けられた複数の循環ポンプ
を有する原子炉内の冷却水循環流量測定装置としては、
特開昭58-10692号に記載のような次の二方法が公知であ
る。
As a cooling water circulation flow rate measuring device in a reactor having a plurality of circulation pumps directly attached to the reactor pressure vessel,
The following two methods as described in JP-A-58-10692 are known.

1つの方法は、第3図に示されるように、原子炉圧力容
器1の内部を仕切板2によつて隔てられた炉心部17から
気水分離器3を通つて循環する冷却水を、炉心17の入口
部に設置された炉心支持板18(あるいは炉心に設置され
ている燃料集合体の入口部にも適用可能であるが)の部
分に複数個の炉心入口部差圧計10の導圧管の開口部15A,
15Bを設置し、得られた値を差圧流量変換器12に入力す
る方法である。また、もう1つの方法は、上記方法の校
正用ならびにバツクアツプとして、複数個の循環ポンプ
4の出入口近傍にポンプ差圧計8の導圧管の開口部16A,
16Bを設置し、この測定値と駆動用モータ6に取り付け
られた速度計7からの測定値とを利用して炉心17の循環
流量を求める方法である。即ち、循環ポンプ4は予め試
験装置によつて流量とポンプ部差圧との相関関係をポン
プ速度毎に採取しておき、ポンプ部差圧とポンプ速度の
測定からポンプ部演算器9で流量が演算され、これの総
和として冷却水量が演算器11に示されるものである。こ
こで後者のポンプ部差圧とポンプ速度を利用して炉心流
量を求める方法は、循環ポンプの一部を停止した部分台
数運転状態では、停止循環ポンプからの逆流が生じる為
冷却水量の測定が困難になることから、従来において
は、炉心支持板差圧による差圧流量変換器12とポンプデ
ツキ部差圧とを利用した演算器11の信号を較正切換え器
13を介して運転監視装置14に接続することにより、通常
運転時は差圧流量変換器12の信号を使用し、この較正及
び後ろだてとして演算器11の信号を利用する構成として
いた。
One method is, as shown in FIG. 3, cooling water circulating through a steam-water separator 3 from a core portion 17 separated by a partition plate 2 inside a reactor pressure vessel 1. At the core support plate 18 installed at the inlet of 17 (or it is also applicable to the inlet of the fuel assembly installed at the core), a plurality of core inlet differential pressure gauges 10 Opening 15A,
15B is installed and the obtained value is input to the differential pressure flow rate converter 12. Another method is to calibrate the above method and as a back-up, in the vicinity of the inlets and outlets of the plurality of circulation pumps 4, the opening 16A of the pressure guide tube of the pump differential pressure gauge 8,
16B is installed, and the circulating flow rate of the core 17 is obtained by using this measured value and the measured value from the speedometer 7 attached to the drive motor 6. That is, the circulation pump 4 previously collects the correlation between the flow rate and the pump section differential pressure for each pump speed by a test device, and the flow rate is measured by the pump section calculator 9 from the measurement of the pump section differential pressure and the pump speed. The amount of cooling water is calculated and the total amount of the cooling water is shown in the calculator 11. Here, in the latter method of calculating the core flow rate by using the differential pressure and pump speed of the pump part, the cooling water amount can be measured because the backflow from the stopped circulation pump occurs in the partial number operation mode in which part of the circulation pump is stopped. Since it becomes difficult, the signal of the arithmetic unit 11 using the differential pressure flow rate converter 12 and the differential pressure of the pump deck part due to the differential pressure of the core support plate is conventionally used as a calibration switch.
By connecting to the operation monitoring device 14 via 13, the signal of the differential pressure flow rate converter 12 is used during normal operation, and the signal of the calculator 11 is used for this calibration and backing.

しかしながら、炉心入口部差圧計10による冷却水量の測
定は、工場試験等により差圧と流量の相互関係を直接得
ることが困難なことから、次に示すような手順で較正を
行う必要がある。
However, in the measurement of the amount of cooling water by the core inlet differential pressure gauge 10, it is difficult to directly obtain the interrelationship between the differential pressure and the flow rate by a factory test or the like, so it is necessary to calibrate in the following procedure.

第4図は、炉心支持板18の上流側と下流側との差圧を利
用した場合の冷却水循環流量算出手順(従来例)であ
る。本図に示されるように、炉心支持板差圧と流量との
関係を求めるには、ポンプ流量の総和QPTを求め、曲線4
1によつて炉心支持板差圧ΔPCとの較正を行うことにな
る。
FIG. 4 is a cooling water circulation flow rate calculation procedure (conventional example) when the differential pressure between the upstream side and the downstream side of the core support plate 18 is used. As shown in this figure, in order to obtain the relationship between the core support plate differential pressure and the flow rate, the total pump flow rate Q PT is calculated, and the curve 4
According to 1, the calibration with the core support plate differential pressure ΔP C will be performed.

ポンプ流量の総和QPTは、個々のポンプ流量QPの和とし
て求められるが、個々のポンプ流量QPは、ポンプデツキ
部差圧ΔPDとポンプ回転数により算出される。従つて最
終的に炉心支持板差圧ΔPCと炉心流量QCの較正曲線を作
成する際は、次のような誤差因子が含まれることにな
る。
Sum Q PT pump flow rate is determined as the sum of the individual pump flow rate Q P, individual pump flow rate Q P is calculated by Ponpudetsuki section differential pressure [Delta] P D and the pump rotational speed. Therefore, when the calibration curve of the differential pressure ΔP C of the core support plate and the core flow rate Q C is finally created, the following error factors are included.

ポンプデツキ差圧計の誤差 ポンプ回転数誤差 工場試験におけるポンプ水力特性曲線上の誤差 炉心支持板差圧計の誤差 炉心支持板差圧と流量曲線上の誤差 以上のような誤差に加え、表示用の計器上の誤差も生じ
る。従つて従来の炉心支持板差圧を利用した冷却水循環
流量測定装置は、正確な炉心流量を測定する上で精度上
の問題を有していた。
Error of pump differential pressure gauge Error of pump rotation speed Error on pump hydraulic characteristic curve in factory test Error of core support plate differential pressure gauge Error on core support plate differential pressure and flow curve In addition to the above errors, on the display instrument There is also an error of. Therefore, the conventional cooling water circulation flow rate measuring device using the differential pressure of the core support plate has a problem in accuracy in measuring the accurate core flow rate.

また、ポンプの一部が停止したような循環ポンプ部分台
数運転時においても、計測精度の悪くなる炉心支持板18
等による流量測定装置に代わる測定精度の向上したシス
テムが必要となる。
In addition, even when the number of circulating pump parts is in operation such that part of the pump is stopped, the accuracy of measurement deteriorates.
Therefore, a system with improved measurement accuracy is required to replace the flow rate measuring device.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

沸騰水型原子炉においては、運転状態を絶えず監視する
ことが必要であり、この監視の為には冷却水が原子炉内
に十分流れていることを正確に測定する必要がある。特
に、原子炉内の冷却材循環流量は安全保護系に係る信号
として使用されており、精度の良い測定が要求される。
In a boiling water reactor, it is necessary to constantly monitor the operating state, and for this monitoring, it is necessary to accurately measure that the cooling water is sufficiently flowing into the reactor. In particular, the coolant circulation flow rate in the nuclear reactor is used as a signal related to the safety protection system, and accurate measurement is required.

また、原子炉圧力容器1内に、循環ポンプ4を複数台設
置した沸騰水型原子炉では、全台数の内1台の循環ポン
プ4が停止した場合でも、通常、定格出力運転を行うこ
とが可能である為、1台のポンプが停止した部分台数運
転となる通常運転状態も生じうる。従つて、停止した循
環ポンプ4を通して逆流が発生している状態でも精度良
く循環流量を測定しなければならない。
Further, in a boiling water reactor in which a plurality of circulation pumps 4 are installed in the reactor pressure vessel 1, it is possible to normally perform the rated output operation even when one circulation pump 4 of all the units is stopped. Since this is possible, a normal operation state in which one pump is stopped and a partial operation is performed may occur. Therefore, the circulating flow rate must be accurately measured even in the state where the backflow is generated through the stopped circulation pump 4.

このためには、工場試験等で直接差圧と流量の相関関係
を求めることが困難であることから、一度ポンプデツキ
差圧と流量とから両者の相関関係を求め、この相関関係
から炉心支持板等の差圧と流量の相関関係を求める方法
では、誤差因子を多く含むことになり適切ではない。
For this reason, it is difficult to directly determine the correlation between the differential pressure and the flow rate in factory tests, etc., so once determine the correlation between the pump differential pressure difference and the flow rate, and then use this correlation to determine the core support plate, etc. The method of obtaining the correlation between the differential pressure and the flow rate is not appropriate because it contains many error factors.

この為、循環ポンプ4の部分台数運転状態でも工場試験
等で直接的に差圧と流量の関係を利用した測定システム
が必要となる。
For this reason, a measurement system that directly uses the relationship between the differential pressure and the flow rate is necessary in a factory test or the like even when the number of circulating pumps 4 is in partial operation.

本発明は上述の事情に鑑みて為されたもので、冷却水循
環ポンプの全台数運転時にも、1部台数運転時にも、高
精度で循環流量を測定し得る装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a device capable of measuring a circulating flow rate with high accuracy during operation of all cooling water circulation pumps and during operation of a single copy cooling pump. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、 原子炉容器内の炉心に冷却水を供給する複数の冷却水供
給ポンプを前記原子炉容器内に備えた原子炉の炉心流量
測定装置において、 各前記冷却水供給ポンプ毎に冷却水出,入口の差圧を検
出するポンプ部差圧計と、 各前記冷却水供給ポンプ毎の回転速度を検出する速度計
と、 該速度計の計測値から運転中であると判定された前記冷
却水供給ポンプに対応する前記ポンプ部差圧計の検出値
および前記速度計の計測値に基づいて当該冷却水供給ポ
ンプの順方向の第1冷却水流量を算出する第1算出手段
と、 前記速度計の計測値から運転停止中であると判定された
前記冷却水供給ポンプに対応する前記ポンプ部差圧計の
検出値および予め求めておいた差圧と逆流量との相関関
係から当該冷却水供給ポンプにおける逆方向の第2冷却
水量を算出する第2算出手段と、 前記第1冷却水流量から前記第2冷却水量を引いて炉心
流量を算出する第3算出手段と を備えることで、達成される。
In the reactor core flow rate measuring device having a plurality of cooling water supply pumps for supplying cooling water to the reactor core in the reactor vessel, cooling water is supplied to each of the cooling water supply pumps. A pump section differential pressure gauge that detects the differential pressure between the outlet and the inlet, a speedometer that detects the rotational speed of each cooling water supply pump, and the cooling water that is determined to be operating based on the measured values of the speedometer First calculation means for calculating a forward first cooling water flow rate of the cooling water supply pump based on a detection value of the pump differential pressure gauge corresponding to the supply pump and a measurement value of the speedometer; In the cooling water supply pump from the correlation between the detected value of the pump section differential pressure gauge corresponding to the cooling water supply pump determined to be out of operation from the measured value and the previously obtained differential pressure and the reverse flow rate Second cooling in the opposite direction The provision and second calculating means for calculating an amount, and a third calculation means for calculating the core flow rate from the first coolant flow rate by subtracting the second amount of cooling water is achieved.

〔作用〕[Action]

速度計が計測した冷却水供給ポンプの回転速度に基づい
て冷却水ポンプの「運転中」「運転停止中」を判定する
ので、この判定を確実に行うことが可能となる。しか
も、予め求めておいた差圧と逆流量との相関関係から運
転停止中の冷却水供給ポンプにおける逆流量を求め、こ
の逆流量を順方向の冷却水流量から減算して炉心流量を
求めるので、冷却水供給ポンプの部分台数運転時での炉
心流量を高精度に求めることが可能となる。
Since it is determined whether the cooling water pump is “operating” or “in operation stopped” based on the rotation speed of the cooling water supply pump measured by the speedometer, this determination can be reliably performed. Moreover, since the reverse flow rate in the cooling water supply pump that is not in operation is obtained from the previously obtained correlation between the differential pressure and the reverse flow rate, this reverse flow rate is subtracted from the forward cooling water flow rate to obtain the core flow rate. , It becomes possible to obtain the core flow rate with high accuracy during the partial operation of the cooling water supply pump.

〔実施例〕〔Example〕

以下に示す本発明の実施例の基本的な原理を、まず、説
明する。
First, the basic principle of the embodiment of the present invention will be described.

複数個のポンプの内の1部を運転して、残りの停止中の
ポンプに逆流が生じたときも、ポンプデツキ部には差圧
が発生し、その差圧ΔPBは、逆流量−QPに応じて増加す
る。即ち、逆流状態においても第5図に示すような、差
圧と逆流量の関係を求めることができる。しかも、この
両者の関係は、工場試験等によつて直接、求めることが
可能である。
When one of the multiple pumps is operated and a backflow occurs in the rest of the pumps that are stopped, a differential pressure is generated in the pump deck, and the differential pressure ΔP B is the reverse flow rate −Q P Increase accordingly. That is, even in the reverse flow state, the relationship between the differential pressure and the reverse flow rate as shown in FIG. 5 can be obtained. Moreover, the relationship between the two can be directly obtained by a factory test or the like.

この場合、原子炉内の冷却材流量QCは、次式で評価され
る。
In this case, the coolant flow rate Q C in the reactor is evaluated by the following equation.

QC=QP1+QP2+……+QPn −QPn (但し、添字nはポンプ番号であり、上式は第n番目の
循環ポンプが停止) 従つて、ポンプ全数運転時は、ポンプデツキ部の順方向
流れによつて生じる差圧ΔPnからポンプ流量QPを求め、
各流量の総和でQCを求める演算を使用しポンプ部分台数
運転時は、停止ポンプについてはポンプデツキ部の逆方
向流れによつて生じる差圧ΔPBから逆流量を求め、各ポ
ンプ流量の加算及び減算により原子炉圧力容器内の冷却
材流量QCを、工場試験等で求めた差圧と流量の直接的な
相関関係より、精度良く測定することが可能となる。
Q C = Q P1 + Q P2 + …… + Q P n 1- Q P n (However, the subscript n is the pump number, and the above formula stops the n-th circulation pump.) Therefore, when all pumps are operating, the differential pressure ΔPn caused by the forward flow of the pump deck part. Calculate the pump flow rate Q P from
When operating the number of pump parts using the calculation of Q C from the total of each flow rate, for the stopped pump, calculate the reverse flow rate from the differential pressure ΔP B caused by the reverse flow of the pump deck part, and add the respective pump flow rates. The subtraction enables the coolant flow rate Q C in the reactor pressure vessel to be accurately measured based on the direct correlation between the differential pressure and the flow rate obtained in a factory test or the like.

上述の原理に基づいた本発明の実施例を説明する。An embodiment of the present invention based on the above principle will be described.

以下、本発明の一実施例を第1図により説明する。原子
炉内に冷却水の循環ポンプを組み込んだ構造の沸騰水型
原子炉は第1図に示すように、循環ポンプ4を仕切板2
の下端付近に設置し、循環ポンプ4の駆動用モータ6を
シヤフト5を介し原子炉圧力容器1の外側底部に設置し
たものである。冷却水は原子炉圧力容器1の内部を仕切
板2によつて隔てられた炉心部17から気水分離装置3を
通つて循環し、原子炉圧力容器1の下部に組み込んだ複
数個の循環ポンプ4によつて昇圧され炉心部17へ送りこ
まれる構造になつている。
An embodiment of the present invention will be described below with reference to FIG. As shown in FIG. 1, a boiling water reactor having a structure in which a cooling water circulation pump is incorporated into the reactor has a circulation pump 4 and a partition plate 2 as shown in FIG.
Is installed near the lower end of the reactor, and the drive motor 6 of the circulation pump 4 is installed at the outer bottom of the reactor pressure vessel 1 via the shaft 5. The cooling water circulates through the steam-water separator 3 from the core part 17 separated by the partition plate 2 inside the reactor pressure vessel 1, and a plurality of circulation pumps incorporated in the lower part of the reactor pressure vessel 1. The structure is such that the pressure is increased by 4 and is sent to the core part 17.

冷却水の循環流量を測定する為に、複数個の循環ポンプ
4の出入口近傍にポンプデツキ部21の差圧を測定する導
圧管の開口部16を設ける。またポンプ駆動モータ6に取
り付けられた速度計7によつて循環ポンプ4の回転数を
測定する。
In order to measure the circulating flow rate of the cooling water, an opening 16 of the pressure guiding tube for measuring the differential pressure of the pump deck portion 21 is provided near the inlet and outlet of the plurality of circulation pumps 4. Further, the rotation speed of the circulation pump 4 is measured by a speedometer 7 attached to the pump drive motor 6.

循環ポンプ全数運転時には、次の方法と装置により炉心
流量を求める。循環ポンプ4は予め試験装置によつて流
量とポンプ部差圧との相関関係をポンプ速度毎に評価し
ておく。ポンプ部差圧とポンプ速度の測定とからポンプ
部演算器(I)9で流量が演算されこれの総和として冷
却水量が演算器11で算出され、さらに原子炉の運転状態
を監視する運転監視装置14に表示される。なお、第4図
では、循環ポンプは2台表示されているが、3個以上の
ポンプでも同様であり、ポンプデツキ差圧測定用の導圧
管個数の数も限定されるものではない。
When all circulation pumps are in operation, the core flow rate is determined by the following method and equipment. For the circulation pump 4, the correlation between the flow rate and the pump section differential pressure is evaluated in advance by a test device for each pump speed. A pump monitoring unit (I) 9 calculates the flow rate based on the measurement of the pump differential pressure and the pump speed, and the calculator 11 calculates the total amount of the cooling water. The operation monitoring device monitors the operating state of the reactor. Displayed on 14. Although two circulation pumps are shown in FIG. 4, the same applies to three or more pumps, and the number of pressure guiding tubes for measuring the pump differential pressure is not limited.

次に、一部のポンプが停止した部分台数運転時には、以
下の方法により炉心流量を測定する。ポンプ駆動用モー
タ6に取り付けられたポンプ速度計7の信号は、各々中
央制御室の監視盤に設置されたポンプ速度表示盤19に表
示される。本表示盤19によつて、停止した循環ポンプ4
を確認した後、ポンプ部差圧計8から信号を切換設定点
22により、ポンプ部演算器(II)20に伝えられるように
する。ポンプ部演算器(II)20には、予め試験装置によ
つて、ポンプデツキ部差圧と逆流量との相関関係を評価
しておく。ポンプ演算器(II)20によつて求められた逆
流流量を演算器11に伝え、この演算器11により順方向流
量と逆流流量の加算・減算により冷却材流量を求め、運
転監視装置14に伝送し流量を表示する。
Next, during partial operation with some pumps stopped, the core flow rate is measured by the following method. The signals of the pump speedometer 7 attached to the pump driving motor 6 are displayed on the pump speed display board 19 installed on the monitoring board of the main control room. Circulation pump 4 stopped by this display board 19
After checking, switch the signal from the pump differential pressure gauge 8 and set point
22 to be transmitted to the pump unit arithmetic unit (II) 20. In the pump unit calculator (II) 20, the correlation between the pump deck differential pressure and the reverse flow rate is evaluated by a test device in advance. The backflow rate obtained by the pump computing unit (II) 20 is transmitted to the computing unit 11, and the computing unit 11 calculates the coolant flow rate by adding / subtracting the forward flow rate and the backward flow rate, and transmits it to the operation monitoring device 14. Display the flow rate.

本実施例によれば、ポンプ全数運転時及び部分台数運転
時いずれの場合も、試験装置によつて直接得られた差圧
と流量との相関関係を用いることができるため、誤差の
少ない精度の向上した原子炉内冷却材循環流量測定が可
能となる。
According to the present embodiment, the correlation between the differential pressure and the flow rate directly obtained by the test device can be used in both cases of the total pump operation and the partial number operation, so that the accuracy with a small error can be obtained. It is possible to improve the coolant circulation flow rate measurement in the reactor.

次に本発明の他の実施例を第2図に示す。第2図は、ポ
ンプ速度計7からの速度信号をポンプ速度表示盤19に表
示すると共に、ポンプの運転及び停止を判断するポンプ
運転状態監視器23に入力しポンプが設定回転数以下とな
つた場合は、ポンプ停止(トリツプ)と判定し、自動的
に切換設定点22によりポンプ部演算器9から同演算器
(II)20に切換えるものである。本構成により、常時正
確な冷却材循環流量の測定が可能となる。ただし、通常
のポンプ起動及び停止時には、トリツプ信号をバイパス
する機能を持たせるものとする。前述した第1図及び第
2図の各実施例は、計器誤差を除くと次の誤差因子を含
むだけである。
Next, another embodiment of the present invention is shown in FIG. In FIG. 2, the speed signal from the pump speedometer 7 is displayed on the pump speed display panel 19 and is also input to the pump operating condition monitor 23 for judging whether the pump is operating or stopped, so that the pump is kept below the set speed. In this case, it is determined that the pump is stopped (trip), and the switching set point 22 automatically switches the pump unit computing unit 9 to the computing unit (II) 20. With this configuration, it is possible to always measure the coolant circulation flow rate accurately. However, the function to bypass the trip signal at the time of normal pump start and stop shall be provided. The above-described embodiments of FIGS. 1 and 2 only include the following error factors, excluding instrument errors.

a.ポンプ全数運転時、 ポンプデツキ差圧計の誤差、 ポンプ回転数誤差、 工場試験におけるポンプ水力特性曲線上の誤差。a. When all pumps are in operation, errors in the pump differential pressure gauge, errors in pump speed, and errors on the pump hydraulic characteristic curve in factory tests.

b.ポンプ部分台数運転時、 ポンプデツキ差圧計の誤差、 工場試験におけるデツキ差圧と逆流量曲線上の誤差。b. During operation of the number of pump parts, the error of the pump differential pressure gauge, the error of the differential pressure in the factory test and the error on the reverse flow rate curve.

[発明の効果] 本発明によれば、運転停止中と判定された冷却水供給ポ
ンプにおける逆流量を、予め求めておいた差圧と逆流量
との相関関係から求めて、順方向の冷却水流量から減算
するので、冷却水供給ポンプの部分台数運転において
も、炉心流量を精度良く求めることができる。
[Effects of the Invention] According to the present invention, the reverse flow rate in the cooling water supply pump determined to be in operation stop is determined from the previously obtained correlation between the differential pressure and the reverse flow rate, and the forward cooling water is obtained. Since it is subtracted from the flow rate, the core flow rate can be accurately obtained even in the partial operation of the cooling water supply pump.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例を示す制御系統図、第2図は
上記と異なる実施例の制御系統図である。第3図は従来
の原子炉内冷却材流量測定装置の系統図、第4図は炉心
支持板差圧を利用した場合の原子炉内冷却材流量測定装
置の説明図、第5図は循環ポンプに逆方向の流れを発生
させたときの流量とポンプデツキ部差圧の関係を示す図
表。 1……原子炉圧力容器、2……仕切板、3……気水分離
器、4……循環ポンプ、5……シヤフト、6……駆動用
モータ、7……速度計、8……ポンプデツキ差圧計、9
……ポンプ演算器I、10……炉心支持板差圧計、11……
演算器、12……差圧流量変換器、13……較正切換器、14
……運転監視装置、15……炉心支持板差圧測定用導圧
管、16……ポンプデツキ差圧測定用導圧管、17……速度
計、18……炉心支持板、19……ポンプ速度表示盤、20…
…ポンプ演算器II、21……ポンプデツキ部、22……切換
設定。
FIG. 1 is a control system diagram showing one embodiment of the present invention, and FIG. 2 is a control system diagram of an embodiment different from the above. FIG. 3 is a system diagram of a conventional coolant flow rate measuring device in the reactor, FIG. 4 is an explanatory diagram of the coolant flow rate measuring device in the reactor when the pressure difference of the core support plate is used, and FIG. 5 is a circulation pump. 6 is a chart showing the relationship between the flow rate and the differential pressure of the pump deck when a reverse flow is generated in the flow chart. 1 ... Reactor pressure vessel, 2 ... Partition plate, 3 ... Steam separator, 4 ... Circulation pump, 5 ... Shaft, 6 ... Drive motor, 7 ... Speedometer, 8 ... Pump deck Differential pressure gauge, 9
...... Pump calculator I, 10 ...... Reactor support plate differential pressure gauge, 11 ……
Calculator, 12 …… Differential pressure flow converter, 13 …… Calibration switch, 14
...... Operation monitoring device, 15 ...... Pressure tube for measuring differential pressure of core support plate, 16 ...... Pressure tube for measuring differential pressure of pump deck, 17 …… Speedometer, 18 …… Core support plate, 19 …… Pump speed display panel , 20 ...
… Pump calculator II, 21 …… Pump detector, 22 …… Switch setting.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−129293(JP,A) 特開 昭58−144787(JP,A) 特開 昭60−213886(JP,A) 特開 昭60−57291(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 58-129293 (JP, A) JP 58-144787 (JP, A) JP 60-213886 (JP, A) JP 60- 57291 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉容器内の炉心に冷却水を供給する複
数の冷却水供給ポンプを前記原子炉容器内に備えた原子
炉の炉心流量測定装置において、 各前記冷却水供給ポンプ毎に冷却水出,入口の差圧を検
出するポンプ部差圧計と、 各前記冷却水供給ポンプ毎の回転速度を検出する速度計
と、 該速度計の計測値から運転中であると判定された前記冷
却水供給ポンプに対応する前記ポンプ部差圧計の検出値
および前記速度計の計測値に基づいて当該冷却水供給ポ
ンプの順方向の第1冷却水流量を算出する第1算出手段
と、 前記速度計の計測値から運転停止中であると判定された
前記冷却水供給ポンプに対応する前記ポンプ部差圧計の
検出値および予め求めておいた差圧と逆流量との相関関
係から当該冷却水供給ポンプにおける逆方向の第2冷却
水量を算出する第2算出手段と、 前記第1冷却水流量から前記第2冷却水量を引いて炉心
流量を算出する第3算出手段と を備えたことを特徴とする原子炉の炉心流量測定装置。
1. A reactor core flow rate measuring apparatus having a plurality of cooling water supply pumps for supplying cooling water to a core in a reactor vessel, wherein the cooling water supply pumps cool each of the cooling water supply pumps. A pump section differential pressure gauge that detects the differential pressure at the water outlet and inlet, a speedometer that detects the rotation speed of each cooling water supply pump, and the cooling that is determined to be operating based on the measured values of the speedometer First calculating means for calculating a forward first cooling water flow rate of the cooling water supply pump based on a detection value of the pump section differential pressure gauge corresponding to the water supply pump and a measurement value of the speedometer; The cooling water supply pump from the detected value of the pump section differential pressure gauge corresponding to the cooling water supply pump determined to be in the operation stop from the measured value of and the correlation between the previously obtained differential pressure and the reverse flow rate. Second cooling water in the opposite direction A reactor core flow rate measuring device comprising: a second calculation means for calculating the amount; and a third calculation means for calculating the core flow rate by subtracting the second cooling water quantity from the first cooling water flow rate. .
JP61203748A 1986-09-01 1986-09-01 Reactor core flow measurement device Expired - Fee Related JPH0746158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203748A JPH0746158B2 (en) 1986-09-01 1986-09-01 Reactor core flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203748A JPH0746158B2 (en) 1986-09-01 1986-09-01 Reactor core flow measurement device

Publications (2)

Publication Number Publication Date
JPS6361190A JPS6361190A (en) 1988-03-17
JPH0746158B2 true JPH0746158B2 (en) 1995-05-17

Family

ID=16479190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203748A Expired - Fee Related JPH0746158B2 (en) 1986-09-01 1986-09-01 Reactor core flow measurement device

Country Status (1)

Country Link
JP (1) JPH0746158B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118461A (en) * 1989-02-17 1992-06-02 Kabushiki Kaisha Toshiba Flow rate measuring apparatus
CN105741893A (en) * 2016-05-06 2016-07-06 上海核工程研究设计院 Reactor coolant pump flow monitoring system of nuclear power plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129293A (en) * 1982-01-27 1983-08-02 株式会社日立製作所 Coolant flow rate measuring device
JPS58144787A (en) * 1982-02-24 1983-08-29 株式会社日立製作所 Reactor core flowrate measuring device
JPS60213886A (en) * 1984-04-09 1985-10-26 株式会社日立製作所 Measuring device for flow rate at core

Also Published As

Publication number Publication date
JPS6361190A (en) 1988-03-17

Similar Documents

Publication Publication Date Title
US20020170349A1 (en) Method and device for monitoring performance of internal pump
JPS6337332B2 (en)
SE513882C2 (en) Method and apparatus for detecting leakage from a chemical soda boiler system
JPH0746158B2 (en) Reactor core flow measurement device
US4842806A (en) Device for measuring recirculating flow rate in a nuclear reactor
EP0383628B1 (en) Coolant flow measuring and power controlling apparatus in a boiling-water reactor
JPH0252837B2 (en)
JPS63293496A (en) Instrument for measuring circulating flow rate of coolant in nuclear reactor
JPS6112236B2 (en)
JP2945907B1 (en) Core flow monitoring system
JPH02257096A (en) Instrument for measuring circulating flow rate of cooling water in nuclear reactor
JP2691243B2 (en) Process abnormality monitoring method and apparatus thereof
JP2945906B1 (en) Core flow monitoring system
JPH1023713A (en) Device for monitoring gas lfakage to cooling water circulating system
JPH02118495A (en) Reactor flow rate measuring instrument
JPH06180269A (en) Pump loop diagnostic device
JPH04326094A (en) Core flow measurement device
JPS58129293A (en) Coolant flow rate measuring device
JPH05323087A (en) Control rod driving time measuring device
JPH11237493A (en) Core flow measuring device
JPS5866036A (en) Leak detector for nuclear reactor coolant purification system
JPS60224024A (en) Flow rate measuring insturument for coolant of reactor core
KR19990028049A (en) Construction Equipment Diagnosis Device
JPS6148793A (en) Monitor device for abnormality of nuclear power plant instrumentation system
JPS6321203B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees