JPH02118495A - Reactor flow rate measuring instrument - Google Patents

Reactor flow rate measuring instrument

Info

Publication number
JPH02118495A
JPH02118495A JP63270682A JP27068288A JPH02118495A JP H02118495 A JPH02118495 A JP H02118495A JP 63270682 A JP63270682 A JP 63270682A JP 27068288 A JP27068288 A JP 27068288A JP H02118495 A JPH02118495 A JP H02118495A
Authority
JP
Japan
Prior art keywords
differential pressure
flow rate
pump
support plate
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63270682A
Other languages
Japanese (ja)
Inventor
Kentaro Hirabayashi
健太郎 平林
Takao Kuboniwa
久保庭 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63270682A priority Critical patent/JPH02118495A/en
Publication of JPH02118495A publication Critical patent/JPH02118495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To measure a core flow rate with high accuracy by calibrating a core support plate differential pressure flowmeter by a core support plate differential pressure flow rate calibrating device throughout normal operation. CONSTITUTION:Cooling water is passed through an air-water separating device 3 from a core part 17 formed by partitioning the inside of a nuclear reactor pressure vessel 1, increased in pressure by a circulation pump 4 at the lower part of the vessel 1, and then sent in the core part 17 to circulate. Then a pump differential pressure gauge 8 measures the differential pressure between the entrance and exit of the pump 4, a velocimeter 7 measures the rotating speed of the pump 4, and they are processed 9, so that the flow rate of the cooling water is indicated on a pump part differential pressure flowmeter 11. Further, a core support plate meter 10 measures the differential pressure of the core support plate and a core support plate differential pressure-flow rate computing element 12 processes the differential pressure, so that the flow rate of the cooling water is displayed on a core support plate differential pressure flowmeter 13. At this time, a differential flow rate detector 22 detects the difference between cooling flow rates indicated on the flowmeters 11 and 13 and the cooling water flow rate difference is inputted to a core support plate differential pressure flow rate calibrating device 14 to calibrate an arithmetic expression incorporated in the computing element 12. Consequently, the accuracy of the flowmeter 13 is raised to the same level of the flowmeter 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉圧力容器内部に冷却水の循環ポンプを
内蔵した原子炉に係り、特に、循環ポンプ部分台数運転
時の炉心流量測定に好適な原子炉内炉心流量測定装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear reactor that has a cooling water circulation pump built into the reactor pressure vessel, and is particularly applicable to the measurement of core flow rate when a number of circulation pumps are operated. The present invention relates to a suitable nuclear reactor core flow rate measuring device.

〔従来の技術〕[Conventional technology]

原子炉圧力容器に、直接、取り付けられた複数の循環ポ
ンプをもつ原子炉内の冷却水循環流量測定装置としては
、特開昭58−10692号及び特開昭58−9289
5号公報に記載のような次の二つの方法がある。
As a cooling water circulation flow measuring device in a nuclear reactor having a plurality of circulation pumps directly attached to the reactor pressure vessel, Japanese Patent Application Laid-Open No. 58-10692 and Japanese Patent Application Laid-Open No. 58-9289 are known.
There are the following two methods as described in Publication No. 5.

その第一は、第2図に示すように、原子炉圧力容器1の
内部を仕切板2によって隔てられた炉心部17から気水
分旅器3を通って循環する冷却水を、炉心17の入口部
に設置された炉心支持板18、あるいは、炉心に設置さ
れている燃料集合体の入口部にも適用可能であるが、こ
の部分に複数個の炉心入口部差圧計10の導圧管の開口
部15を設置し、得られた値を炉心支持板差圧流量変換
器12に入力し流量を求める方法である。
First, as shown in FIG. It can also be applied to the core support plate 18 installed in the core support plate 18 installed in the core or the inlet of the fuel assembly installed in the core, but the openings of the impulse pipes of the plurality of core inlet differential pressure gauges 10 are installed in this part. 15 is installed, and the obtained value is input to the core support plate differential pressure flow converter 12 to determine the flow rate.

第二の方法は、上記の方法の較正用に用いられる方法で
あり、複数個の循環ポンプ4の出入口近傍にポンプ差圧
計8の導圧管の開口部16を設置し、この測定値と駆動
用モータ6に取り付けられた速度計7からの測定値を利
用して炉心17の循環流量を求める方法である。即ち、
循環ポンプ4は予め試験装置によって流量とポンプ部差
圧との相関関係をポンプ速度毎に採取しておき、ポンプ
部差圧とポンプ速度の測定からポンプ部演算器9で流量
が演算され、これの総和として冷却水量が演算機11に
示されるものである。ここで、通常運転監視には後者の
ポンプ部差圧とポンプ速度を利用して炉心流量を求める
方法は、循環ポンプの一部が停止した部分台数運転状態
では、停止循環ポンプからの逆流が生じるため冷却水量
の精度が低下する。又、前者の炉心支持板差圧計10に
よる冷却水量の測定は、工場試験等により差圧と流量の
相互関係を得ることが困難なことから、第3図に示すよ
うに、実機においてポンプ部差圧流量it a+lJ計
により求めたポンプ流量の総和Qprを求めて、炉心支
持板差圧ΔPcとの較正を行なうことになる。又、較正
は、試運転時に行なうため1通常、プラント運転中に発
生した炉心圧損の変化は反映出来ないため以下の誤差を
含むことになる。
The second method is a method used for calibrating the above method, in which the opening 16 of the impulse pipe of the pump differential pressure gauge 8 is installed near the inlet and outlet of a plurality of circulation pumps 4, and this measured value and the driving This is a method of determining the circulating flow rate of the reactor core 17 using the measured value from the speed meter 7 attached to the motor 6. That is,
In the circulation pump 4, the correlation between the flow rate and the differential pressure at the pump section is collected in advance for each pump speed using a test device, and the flow rate is calculated by the pump section calculator 9 from the measurement of the pump section differential pressure and pump speed. The amount of cooling water is shown to the computing device 11 as the sum of the amounts. Here, for normal operation monitoring, the latter method of determining the core flow rate using the pump section differential pressure and pump speed is not recommended.In a partial operation state where some of the circulation pumps are stopped, backflow from the stopped circulation pumps occurs. Therefore, the accuracy of cooling water amount decreases. In addition, when measuring the amount of cooling water using the former core support plate differential pressure gauge 10, it is difficult to obtain the correlation between differential pressure and flow rate through factory tests, etc., so as shown in Fig. The total sum Qpr of the pump flow rates determined by the pressure flow rate it a+lJ meter is determined and calibrated with the core support plate differential pressure ΔPc. In addition, since calibration is performed at the time of trial operation, changes in core pressure drop that occur during plant operation cannot normally be reflected, so the following errors will be included.

■ポンプデツキ差圧計誤差 ■ポンプ回転数変化誤差 ■工場試験におけるポンプ水力特性曲線上の誤差 ■炉心支持板差圧計の誤差 (■炉心圧損の経時変化 〔発明が解決しようとする課題〕 上記従来技術では、ポンプ部分台数運転、及び、ポンプ
回転数不拘W1運転時の炉心流量計ΔllI精度が低下
する可能性がある。
■Pump deck differential pressure gauge error ■Pump rotation speed change error ■Error on pump hydraulic characteristic curve in factory test ■Error in core support plate differential pressure gauge (■Change in core pressure drop over time [Problem to be solved by the invention]) In the above conventional technology, , there is a possibility that the accuracy of the core flowmeter ΔllI during pump partial number operation and W1 operation regardless of the pump rotation speed may be reduced.

本発明の目的は、高精度炉心流量計測方法を程供するこ
とにある。
An object of the present invention is to provide a high-precision core flow rate measurement method.

〔課題を解決するための手段〕[Means to solve the problem]

沸騰水型原子炉では、運転状態を絶えず監視することが
必要であり、この監視には冷却水が原子炉内に十分流九
でいることを正確に3111定する必要がある。特に、
原子炉内の冷却材循環流量、は安全保護系に係る信号と
して使用されており、精度の良い測定が要求される。
Boiling water reactors require constant monitoring of operating conditions, and this monitoring requires accurately determining that cooling water is flowing sufficiently within the reactor. especially,
The circulating flow rate of coolant within a nuclear reactor is used as a signal related to the safety protection system, and requires highly accurate measurement.

また、原子炉圧力容器1内に、循環ポンプ4を複数台設
置した沸騰水型原子炉では、全台数の内通常−台の循環
ポンプ4が停止した場合でも、定格出力運転を行なうこ
とができるように計画しているので、−台のポンプが停
止した部分台数運転となる運転状態もある。
In addition, in a boiling water reactor in which a plurality of circulation pumps 4 are installed in the reactor pressure vessel 1, rated output operation can be performed even if one or more circulation pumps 4 out of the total number stop. Since the schedule is as follows, there may be an operation state in which a partial number of pumps is operated with -1 pumps stopped.

従って、停止した@環ポンプ4を通して逆流が発生して
いる状態でも、精度良く循環流量を測定しなければなら
ない。
Therefore, even when backflow is occurring through the stopped @ring pump 4, it is necessary to accurately measure the circulation flow rate.

上記の目的を達成するには、ポンプ部の差圧によりポン
プ流量Qp を求め、各ポンプの流量の総和として炉心
流量を算出するポンプ部差圧流量計測系から、炉心支持
板の差圧により直接炉心流獣を求める炉心支持板差圧流
量計測を用いることにする。しかし、この炉心支持板差
圧流量計測系は、ポンプ部差圧流量計測系を用いて試運
転時に較正し、その後、較正は行なえないことと、二相
流が流れる炉心圧損の影響を受けるためポンプ部差圧流
量計測系より精度が低下する。
To achieve the above objective, the pump flow rate Qp is determined by the differential pressure of the pump part, and the core flow rate is calculated as the sum of the flow rates of each pump. We will use core support plate differential pressure flow measurement to determine the core flow rate. However, this core support plate differential pressure flow measurement system is calibrated at the time of trial operation using the pump section differential pressure flow measurement system, and cannot be calibrated afterwards. Accuracy is lower than that of the differential pressure flow measurement system.

これは、試運転時だけでなく通常運転中にも炉心支持板
差圧と流量の相関関係を較正しておき、ポンプ部分台数
運転、及び、ポンプ回転数不均衡運転のように、ポンプ
部差圧流量計測系の精度が低下する時には、炉心支持板
差圧流量計測系へ炉心流量計測機能を移すことにより解
決される。
This is done by calibrating the correlation between the core support plate differential pressure and flow rate not only during test runs but also during normal operation, and by calibrating the relationship between the core support plate differential pressure and flow rate, and determining the pump part differential pressure, such as pump partial number operation and pump rotation speed imbalance operation. When the accuracy of the flow rate measurement system decreases, it can be resolved by transferring the core flow rate measurement function to the core support plate differential pressure flow rate measurement system.

〔作用〕[Effect]

通常運転中、常に、炉心支持板差圧流量較正装置を用い
て、炉心支持板差圧流量計を較正しておくことにより、
炉心流量計測精度の向上を図ることが出来る。それによ
って、炉心支持板差圧流量計はポンプ部分台数運転時の
ようなポンプ部差圧流量計の精度が低下するような運転
時に、ポンプ部差圧流量計の代わりに、炉心流量計測を
精度良く行なうことが出来る。
During normal operation, by always calibrating the core support plate differential pressure flow meter using the core support plate differential pressure flow calibration device,
It is possible to improve the accuracy of core flow rate measurement. As a result, the core support plate differential pressure flowmeter can be used to accurately measure the core flow rate in place of the pump differential pressure flowmeter during operations where the accuracy of the pump differential pressure flowmeter decreases, such as when operating multiple pumps. I can do it well.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。原子
炉内に冷却水の循環ポンプを組み込んだ構造の沸騰水型
原子炉は、第1図に示すように、循環ポンプ4を仕切板
2の下端付近に設置し、循環ポンプ4の駆動用モータ6
をシャフト5を介して原子炉圧力容器1の外側底部に設
置したものである。冷却水は原子炉圧力容器1の内部を
仕切板2によって隔てられた炉心部17から気水分子a
装置3を通って循環し原子炉圧力容器1の下部に組み込
んだ複数個の循環ポンプ4によって昇圧され、炉心部1
7へ送り込まれる。
An embodiment of the present invention will be described below with reference to FIG. In a boiling water reactor that has a structure in which a circulation pump for cooling water is built into the reactor, as shown in FIG. 6
is installed at the outer bottom of the reactor pressure vessel 1 via a shaft 5. Cooling water flows from the reactor core 17, which is separated from the inside of the reactor pressure vessel 1 by the partition plate 2, into steam and water molecules a.
The pressure is increased by a plurality of circulation pumps 4 installed in the lower part of the reactor pressure vessel 1, and the pressure is increased through the reactor pressure vessel 1.
Sent to 7.

冷却水の循環流量を測定するため、複数個の循環ポンプ
4の出入口近傍にポンプ出入口部の差圧を測定する導圧
管の開口部16を設ける。また。
In order to measure the circulating flow rate of cooling water, an opening 16 of a pressure conduit is provided near the inlets and outlets of a plurality of circulation pumps 4 to measure the differential pressure at the pump inlets and outlets. Also.

ポンプ駆動モータ6に取り付けられた速度計7から循環
ポンプの回転数を測定する。
The rotation speed of the circulation pump is measured from a speed meter 7 attached to the pump drive motor 6.

循環ポンプの通常運転中には、ポンプ回転数、ポンプ部
差圧との相関関係を用いて、ポンプ演算器9により流量
力腎寅算され、こjtの総和として冷却水量がポンプ部
差圧流量計11に示される。
During normal operation of the circulation pump, the flow rate is calculated by the pump calculator 9 using the correlation between the pump rotation speed and the differential pressure at the pump section, and the cooling water amount is calculated as the sum of the pump section differential pressure flow rate. A total of 11 are shown.

一方、炉心支持板の差圧は、炉心支持板差圧ぶ圧管15
を用いて炉心支持板差圧計10により測定され、炉心支
持板差圧−流量演算器12で演算を行ない、冷却水量が
炉心支持板差圧流量計13に表示される。
On the other hand, the differential pressure of the core support plate is
The amount of cooling water is measured by the core support plate differential pressure gauge 10, calculated by the core support plate differential pressure-flow rate calculator 12, and displayed on the core support plate differential pressure flow meter 13.

この時、ポンプ部差圧流量計11と炉心支持板差圧流量
計に示された冷却水流量差△Qを、差流量検出器22で
検出し、この△Qを炉心支持板差圧流量較正装置14に
入力し、炉心支持板差圧−流量演算器12に組み込まれ
ている演算式を較正する。
At this time, the cooling water flow rate difference △Q indicated by the pump differential pressure flowmeter 11 and the core support plate differential pressure flowmeter is detected by the differential flow rate detector 22, and this △Q is used as the core support plate differential pressure flow rate calibration. The calculation formula is input to the device 14 and is incorporated in the core support plate differential pressure-flow rate calculator 12 to calibrate it.

これにより、炉心支持板差圧流量計13の精度をポンプ
部差圧流量計11と同じレベルに出来る。
As a result, the accuracy of the core support plate differential pressure flow meter 13 can be made to the same level as the pump section differential pressure flow meter 11.

次に、ポンプ部分台数運転時には、停止ポンプより逆流
が発生するため、ポンプ部差圧流量計13の計測精度が
悪くなる。このような運転状態を運転状態監視装置23
により検出し、切り替え装置19により、プラント運転
制御装置20を送る冷却水通条件を、炉心支持板差圧流
量計13からの信号に切り替えることにする。これによ
り、ポンプ部分台数運転時等のポンプ部差圧流量計11
の精度が低下する場合でも、炉心支持板差圧流量計12
により精度良く炉心流量を計測することが出来る。
Next, when several pumps are operated, backflow occurs from the stopped pumps, so the measurement accuracy of the pump differential pressure flow meter 13 deteriorates. The operating state monitoring device 23 monitors such operating states.
, and the switching device 19 switches the cooling water flow conditions to be sent to the plant operation control device 20 to the signal from the core support plate differential pressure flowmeter 13. This allows the pump section differential pressure flowmeter 11 to
Even if the accuracy of the core support plate differential pressure flowmeter 12 decreases,
This makes it possible to measure the core flow rate with high accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炉心支持板差圧流量計の精度向上が図
れ、ポンプ部分台数運転時等のポンプ部差圧流量計の精
度が低下するような運転時に、精度の良い炉心支持板差
圧流量計に切り替えることが出来るため、炉心流量計測
精度が向上する。
According to the present invention, it is possible to improve the accuracy of the core support plate differential pressure flowmeter, and to improve the accuracy of the core support plate differential pressure flowmeter during operation where the accuracy of the pump section differential pressure flowmeter decreases, such as when operating a plurality of pumps. Since it can be switched to a flowmeter, the accuracy of core flow rate measurement will be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の原子炉冷却材流量測定装置
の系統図、第2図は従来の原子炉内冷却材流ffi測定
装置の系統図、第3図はポンプ部差圧流量謂定装置と炉
心支持板差圧流量測定装置の説明図である。 1・・原子炉圧力容器、2・・仕切板、3・・・気水分
雅器、4・・・循環ポンプ55・・・シャツh、6・・
・駆動用モータ、7・・・速度計、8・・ポンプ部差圧
計。 )ミー−1、/ 茅 口 竿 目
Fig. 1 is a system diagram of a reactor coolant flow measuring device according to an embodiment of the present invention, Fig. 2 is a system diagram of a conventional reactor coolant flow ffi measuring device, and Fig. 3 is a system diagram of a pump section differential pressure flow rate. FIG. 2 is an explanatory diagram of a control device and a core support plate differential pressure flow measuring device. 1...Reactor pressure vessel, 2...Partition plate, 3...Steam drain, 4...Circulation pump 55...Shirt h, 6...
・Drive motor, 7...speed meter, 8...pump differential pressure gauge. ) Me-1, / Chikuchirodome

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉圧力容器と、前記原子炉圧力容器内の炉心部
を囲む仕切板と前記原子炉圧力容器の下部に設けられた
循環ポンプと、この冷却材の出入口部に設けた導圧管に
より差圧を検出するポンプ部差圧計と前記循環ポンプの
回転数を検知する速度計と前記ポンプ部差圧計と前記速
度計から前記循環ポンプの流量を演算するポンプ部差圧
流量計と、前記炉心支持板間の差圧を検出する炉心支持
板差圧計と、炉心支持板差圧により炉心流量を演算する
炉心支持板差圧流量計より成る炉心流量測定装置におい
てポンプ部差圧流量計からの信号により、炉心支持板差
圧流量計の較正装置を設けたことを特徴とする炉心流量
測定装置。2、特許請求の範囲第1項において、ポンプ
部差圧流量演算装置による炉心流量計測精度が低下する
ポンプ運転状態に、前記ポンプ部差圧流量計から前記炉
心支持板差圧流量計に切り換えることを特徴とする炉心
流量測定装置。
1. There is a difference between the reactor pressure vessel, the partition plate surrounding the reactor core in the reactor pressure vessel, the circulation pump installed at the bottom of the reactor pressure vessel, and the impulse pipe installed at the entrance and exit of the coolant. a pump section differential pressure gauge for detecting pressure, a speed meter for detecting the rotation speed of the circulation pump, a pump section differential pressure flowmeter for calculating the flow rate of the circulation pump from the pump section differential pressure gauge and the speed meter, and the core support In a core flow measuring device consisting of a core support plate differential pressure meter that detects the differential pressure between the plates and a core support plate differential pressure flowmeter that calculates the core flow rate based on the core support plate differential pressure, the signal from the pump differential pressure flowmeter is used. , a core flow rate measuring device characterized by being provided with a calibrating device for a core support plate differential pressure flowmeter. 2. In claim 1, switching from the pump differential pressure flowmeter to the core support plate differential pressure flowmeter is provided in a pump operating state in which the accuracy of core flow rate measurement by the pump differential pressure flow calculation device is reduced. A reactor core flow measurement device featuring:
JP63270682A 1988-10-28 1988-10-28 Reactor flow rate measuring instrument Pending JPH02118495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63270682A JPH02118495A (en) 1988-10-28 1988-10-28 Reactor flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63270682A JPH02118495A (en) 1988-10-28 1988-10-28 Reactor flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH02118495A true JPH02118495A (en) 1990-05-02

Family

ID=17489479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63270682A Pending JPH02118495A (en) 1988-10-28 1988-10-28 Reactor flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH02118495A (en)

Similar Documents

Publication Publication Date Title
JP5164954B2 (en) Device diagnostic method and device diagnostic device
EP0380280A2 (en) BWR core flow measurement
US5682410A (en) Method for determining core flow rate and water temperature/density in boiling water reactor
EP0383628B1 (en) Coolant flow measuring and power controlling apparatus in a boiling-water reactor
JPH02118495A (en) Reactor flow rate measuring instrument
JPS63293496A (en) Instrument for measuring circulating flow rate of coolant in nuclear reactor
JPH02290596A (en) Flow rate measuring instrument and operating device for nuclear reactor utilizing this instrument
JPS6361190A (en) Cooling-water circulating flow measuring device in nuclear reactor
JPH0252837B2 (en)
JPH02147990A (en) Reactor core flow measurement method
JP2945907B1 (en) Core flow monitoring system
JPH0437395B2 (en)
JPH06213700A (en) Instrument error testing device for flow meter
JPS60224024A (en) Flow rate measuring insturument for coolant of reactor core
JPH0210917B2 (en)
JPH0574034B2 (en)
JPH0650796A (en) Position sensor of prover
JPS63290995A (en) Boiling water reactor
JPS60183590A (en) Measuring device for flow rate at core of boiling-water typereactor
JP2945906B1 (en) Core flow monitoring system
JPS61246625A (en) Flow rate detector
JPS6322279B2 (en)
RU2143669C1 (en) Process of metrological diagnostics of flowmeters
JPH11295474A (en) Water leakage monitor in nuclear reactor container
RU2091721C1 (en) Method of diagnosis and calibration of flowmeter