JPH0746083B2 - Air-fuel ratio measuring device - Google Patents
Air-fuel ratio measuring deviceInfo
- Publication number
- JPH0746083B2 JPH0746083B2 JP61315849A JP31584986A JPH0746083B2 JP H0746083 B2 JPH0746083 B2 JP H0746083B2 JP 61315849 A JP61315849 A JP 61315849A JP 31584986 A JP31584986 A JP 31584986A JP H0746083 B2 JPH0746083 B2 JP H0746083B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- oxygen concentration
- exhaust
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素濃度センサを用いて内燃機関の排気ガス用
の残留酸素濃度を検出することにより、燃焼用混合気の
空燃比を測定する装置に関するものである。The present invention relates to an apparatus for measuring an air-fuel ratio of a combustion mixture by detecting a residual oxygen concentration for exhaust gas of an internal combustion engine using an oxygen concentration sensor. It is about.
内燃機関の性能試験や診断においては、シリンダ内に供
給される燃焼用混合気の空燃比を測定することが必要で
ある。従来、空燃比の測定は排気系に配置された酸素濃
度センタを用いて排気ガス中の残留酸素濃度を検出する
ことにより行うことが知られている。例えば特開昭59−
211840号公報に開示された空燃比測定装置においては、
エンジンの排気系から採取した排気ガスに外界から取入
れた新鮮な空気を所定割合で混合することにより既知量
の酸素を添加し、この混合ガスを酸化触媒装置に送って
排気ガス中の未燃焼成分を完全燃焼させた後混合ガス中
の残留酸素濃度を検出し、この検出された残留酸素濃度
を所定の計算式に代入して計算し燃焼用混合気の空燃比
を求めるようにしている。In the performance test and diagnosis of an internal combustion engine, it is necessary to measure the air-fuel ratio of the combustion mixture supplied into the cylinder. Conventionally, it has been known that the measurement of the air-fuel ratio is performed by detecting the residual oxygen concentration in the exhaust gas by using an oxygen concentration center arranged in the exhaust system. For example, JP-A-59-
In the air-fuel ratio measuring device disclosed in Japanese Patent No. 211840,
A known amount of oxygen is added to the exhaust gas collected from the exhaust system of the engine by mixing the fresh air taken from the outside at a predetermined ratio, and this mixed gas is sent to the oxidation catalyst device and the unburned components in the exhaust gas are added. After complete combustion, the residual oxygen concentration in the mixed gas is detected, and the detected residual oxygen concentration is substituted into a predetermined calculation formula to calculate the air-fuel ratio of the combustion mixture.
上記のような、酸素濃度センサを用いる空燃比測定装置
において、その測定精度を上げるには、酸素濃度センサ
の温度を一定に保つ必要があるが、このセンサの周りを
囲む壁面の温度の変化によりセンサ温度が影響を受け、
測定精度が低下するという問題がある。In the air-fuel ratio measuring device using the oxygen concentration sensor as described above, in order to improve the measurement accuracy, it is necessary to keep the temperature of the oxygen concentration sensor constant, but due to the change in the temperature of the wall surface surrounding the sensor, Sensor temperature is affected,
There is a problem that the measurement accuracy decreases.
また酸素濃度センサの出力安定化のためにはセンサ温度
を約700℃の高温に維持する必要があるが、従来の承知
ではその放熱損失を低減するために大きな厚さの断熱材
を要し、そのため空燃比測定装置が大型化しこれが車輛
搭載上の障害となるという問題がある。Also, in order to stabilize the output of the oxygen concentration sensor, it is necessary to maintain the sensor temperature at a high temperature of about 700 ° C, but with the conventional knowledge, a large thickness of heat insulating material is required to reduce the heat radiation loss, Therefore, there is a problem that the air-fuel ratio measuring device becomes large and this becomes an obstacle in mounting the vehicle.
本発明は上記の問題点を、酸素濃度センサの周囲に排気
ガスの熱を利用した保温、排燃回収及び燃交換の手段を
施すことにより解決する。すなわち上記問題点を解決す
るための本発明の構成は、排気ガス中に新鮮な空気を混
合しこの混合ガスの完全燃焼後の残留酸素濃度を検出す
る空燃比測定装置において、酸素濃度センサの周りを前
記混合ガスが通過する環状通路からなる2重壁にて取巻
き、この2重壁の外周に前記混合ガスが通過する円筒状
の排熱回収器を配置し、さらにこの排熱回収器の外周に
前記排気ガス通路と前記新鮮空気の通路とを相互に近接
配置した熱交換器を配置したことを特徴とするものであ
る。The present invention solves the above-mentioned problems by providing a means for heat retention, exhaust fuel recovery, and fuel exchange using the heat of exhaust gas around the oxygen concentration sensor. That is, the configuration of the present invention for solving the above-mentioned problems, in the air-fuel ratio measuring apparatus for mixing the fresh air in the exhaust gas and detecting the residual oxygen concentration after the complete combustion of this mixed gas, around the oxygen concentration sensor. Is surrounded by a double wall composed of an annular passage through which the mixed gas passes, and a cylindrical exhaust heat recovery device through which the mixed gas passes is arranged on the outer circumference of the double wall. And a heat exchanger in which the exhaust gas passage and the fresh air passage are arranged close to each other.
上記構成からなる本発明においては、排気ガスと外界か
ら取入れられた新鮮空気とは熱交換器により熱交換され
て均一温度となって混合され、この混合ガスが触媒を介
して完全燃焼した後酸素濃度センサにより混合ガス中の
残留酸素濃度が検出され、この検出された残留酸素濃度
に基づき燃焼用混合気の空燃比が算出される。酸素濃度
センサを通過した高温の混合ガスはこのセンサ周りの2
重壁内を通過してこれを保温した後、排熱回収器を流れ
ながらその外周の熱交換器中を流れる排気ガスと新鮮空
気とを加熱し、その後外部に排出される。このようにし
て、酸素濃度センサの周りの温度は一定に保たれかつこ
のセンサの温度も高温に維持され、そのためセンサの測
定精度が向上し、その出力が安定化される。In the present invention having the above-mentioned configuration, the exhaust gas and the fresh air taken in from the outside are heat-exchanged by the heat exchanger to have a uniform temperature and mixed, and the mixed gas is completely burned through the catalyst and then oxygen is mixed. The concentration sensor detects the residual oxygen concentration in the mixed gas, and the air-fuel ratio of the combustion mixture is calculated based on the detected residual oxygen concentration. The high temperature gas mixture passing through the oxygen concentration sensor is
After passing through the heavy wall to keep it warm, the exhaust gas and fresh air flowing in the heat exchanger around the outer wall are heated while flowing through the exhaust heat recovery device, and then discharged to the outside. In this way, the temperature around the oxygen concentration sensor is kept constant and the temperature of this sensor is also kept high, which improves the measurement accuracy of the sensor and stabilizes its output.
本発明の実施例について図面を参照にして以下に説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の第1の実施例を示すもので、空燃比測
定装置は、検出ユニット19、バッテリ16、ヒータコント
ローラ15、空燃比演算表示装置14、圧力計13で構成され
る。検出ユニット19は機関排気系のテールパイプ17にク
ランプ18により固定されたハウジング10を有し、このハ
ウジング10内には断熱材詰物11を介してステンレス製ブ
ロック1が保持されている。ブロック1内には、相互に
近接し、2重らせんをなすように交互に配置された排気
ガスの通路101および新鮮な空気の通路102、混合機構10
5、攪伴機構100、二重壁の保温用管103および排熱回収
器104が形成されている。FIG. 1 shows a first embodiment of the present invention. The air-fuel ratio measuring device comprises a detection unit 19, a battery 16, a heater controller 15, an air-fuel ratio calculation display device 14, and a pressure gauge 13. The detection unit 19 has a housing 10 fixed to a tail pipe 17 of an engine exhaust system by a clamp 18, and the stainless block 1 is held in the housing 10 via a heat insulating material filling 11. In the block 1, exhaust gas passages 101 and fresh air passages 102, which are close to each other and are alternately arranged so as to form a double helix, and a mixing mechanism 10.
5. An agitation mechanism 100, a double-walled heat insulation pipe 103, and an exhaust heat recovery device 104 are formed.
排気ガス通路101および空気通路102は、夫々排気ガス採
取管8および空気取入管9に接続されている。排気ガス
採取管8の上流端83はテールパイプ17中に挿入してお
り、上流端83には動圧用ポート81と静圧用ポート82が設
けてある。The exhaust gas passage 101 and the air passage 102 are connected to the exhaust gas sampling pipe 8 and the air intake pipe 9, respectively. The upstream end 83 of the exhaust gas sampling pipe 8 is inserted into the tail pipe 17, and the upstream end 83 is provided with a dynamic pressure port 81 and a static pressure port 82.
空気取入管9の上流管93には大気に開口した空気取入ポ
ート92が設けてある。空気取入管9の中間部91はU字形
に弯曲させてあり、テールパイプ17内に延長している。The upstream pipe 93 of the air intake pipe 9 is provided with an air intake port 92 opening to the atmosphere. The middle portion 91 of the air intake pipe 9 is bent in a U shape and extends into the tail pipe 17.
排気ガス通路101と空気通路102とは2重らせんをなし、
熱交換器を形成している。The exhaust gas passage 101 and the air passage 102 form a double helix,
It forms the heat exchanger.
混合機構105は排気ガス計量オリフィス4と空気計量オ
リフィス5を有する。The mixing mechanism 105 has an exhaust gas metering orifice 4 and an air metering orifice 5.
混合ガス通路107内には、電熱ヒータ3、触媒コンバー
タ6、熱電対7、および酸素濃度センサ2が配置されて
いる。Inside the mixed gas passage 107, an electric heater 3, a catalytic converter 6, a thermocouple 7, and an oxygen concentration sensor 2 are arranged.
混合ガス通路107には攪伴機構100が設けてある。この攪
伴機構100は、混合ガス流路の向きを180゜、複数回変化
させ、かつその向きの変化時に流路の急縮小、急拡大を
なす構造を有している。A mixing mechanism 100 is provided in the mixed gas passage 107. This agitation mechanism 100 has a structure in which the direction of the mixed gas flow path is changed by 180 ° a plurality of times, and when the direction is changed, the flow path is rapidly contracted or expanded.
2重壁管103及び排熱回収器104は、混合ガス通路107を
順次囲む位置に配置されている。排熱回収器104は、2
重円筒状通路の軸方向に複数枚のフィンが形成され、排
熱回収器104を囲む2重らせん流路101,102との間で、対
向流形式の熱交換器を形成する。The double wall tube 103 and the exhaust heat recovery device 104 are arranged at positions that sequentially surround the mixed gas passage 107. Exhaust heat recovery unit 104 has 2
A plurality of fins are formed in the axial direction of the heavy-cylindrical passage to form a counterflow type heat exchanger with the double spiral flow passages 101 and 102 surrounding the exhaust heat recovery device 104.
排熱回収器104下流端は、排出管20に接続する。排出管2
0は真空ポンプ12に接続する。The downstream end of the exhaust heat recovery device 104 is connected to the exhaust pipe 20. Discharge pipe 2
0 is connected to the vacuum pump 12.
検出ユニット19は、排気系から排気ガスを採取し、採取
した排気ガスに所定割合で新鮮な空気を混合して酸素を
添加し、この混合ガスを酸化させて未燃焼成分を完全燃
焼させ、混合ガス中の残留酸素濃度を検出することによ
り、燃焼用混合気の空燃比に応じたアナログ信号を空燃
比演算表示装置14に出力する。The detection unit 19 collects the exhaust gas from the exhaust system, mixes the collected exhaust gas with fresh air at a predetermined ratio to add oxygen, oxidizes the mixed gas to completely burn unburned components, and then mixes them. By detecting the residual oxygen concentration in the gas, an analog signal corresponding to the air-fuel ratio of the combustion mixture is output to the air-fuel ratio calculation display device 14.
テールパイプ17内を流れる排気ガスの一部は、排気ガス
採取管8の上流端83より採取される。このとき、テール
パイプ17内を流れる排気ガスの動圧と静圧を相殺し、ほ
ぼ大気圧の排気ガスを採取管8内に導入するため、採取
管上流端83には動圧用ポート81と静圧用ポート82が設け
てある。Part of the exhaust gas flowing through the tail pipe 17 is collected from the upstream end 83 of the exhaust gas collecting pipe 8. At this time, the dynamic pressure and the static pressure of the exhaust gas flowing in the tail pipe 17 are canceled out, and the exhaust gas at almost atmospheric pressure is introduced into the sampling pipe 8, so that the sampling pipe upstream end 83 has a dynamic pressure port 81 and a static pressure. A pressure port 82 is provided.
空気取入管9の上流管93より取入れられた空気は、空気
取入管中間部91にて、テールパイプ17内を流れる排気ガ
スの熱により予熱される。The air taken in from the upstream pipe 93 of the air intake pipe 9 is preheated in the air intake pipe intermediate portion 91 by the heat of the exhaust gas flowing in the tail pipe 17.
2重らせんをなす排気ガス通路101と空気通路102を流れ
る採取排気ガスと新鮮空気は、2重らせんを形成する隔
壁を通じて互いに熱交換し、両者の温度は均一化される
と同時に、排熱回収器104との間で熱交換し、予熱され
る。The collected exhaust gas and fresh air flowing through the exhaust gas passage 101 and the air passage 102 forming the double helix exchange heat with each other through the partition wall forming the double helix, and the temperatures of the two are equalized, and at the same time, the exhaust heat is recovered. It exchanges heat with the vessel 104 and is preheated.
真空ポンプ12の様な吸引手段により混合室106に負圧を
作用させると、採取排気ガスおよび空気はそれぞれ採取
管8および空気取入管9内に吸い込まれ、通路101,102
を経てほぼ大気圧でオリフィス4,5に到達し、オリフィ
スで計量されながら所定の流量で混合室106に流入し混
合される。When a negative pressure is applied to the mixing chamber 106 by a suction means such as a vacuum pump 12, the sampling exhaust gas and the air are sucked into the sampling tube 8 and the air intake tube 9, respectively, and the passages 101 and 102 are taken.
After passing through, it reaches the orifices 4 and 5 at about atmospheric pressure, flows into the mixing chamber 106 at a predetermined flow rate and is mixed while being metered by the orifices.
混合ガス通路107内に設けられた熱電対7の出力はヒー
トコントローラ15に入力される。このヒートコントロー
ラ15は熱電対7で検出した混合ガスの温度を酸素濃度セ
ンサ2の活性化温度範囲に制御する。触媒コンバータ6
は多孔質セラミックからなる担体に白金等の酸化触媒を
担持させた公知のもので、混合ガス中の未燃焼成分を完
全燃焼させるものである。酸素濃度センサ2はジルコニ
ア素子から成る公知の型式のもので、混合ガス中の残留
酸素濃度に比例したアナログ信号を空燃比演算表示装置
14に出力する。周知の様に酸素濃度センサ2は電熱ヒー
タ(図示せず)を内蔵しており、ヒートコントローラ15
により一定出力に制御される。The output of the thermocouple 7 provided in the mixed gas passage 107 is input to the heat controller 15. The heat controller 15 controls the temperature of the mixed gas detected by the thermocouple 7 within the activation temperature range of the oxygen concentration sensor 2. Catalytic converter 6
Is a known one in which an oxidation catalyst such as platinum is supported on a carrier made of a porous ceramic and completely burns unburned components in the mixed gas. The oxygen concentration sensor 2 is of a known type including a zirconia element, and an analog signal proportional to the residual oxygen concentration in the mixed gas is used as an air-fuel ratio calculation display device.
Output to 14. As is well known, the oxygen concentration sensor 2 has a built-in electric heater (not shown), and the heat controller 15
Is controlled to a constant output.
攪伴機構100は混合ガスを十分攪伴し、混合ガスの混合
むらをなくし酸素濃度センサ2の出力精度を向上させる
と同時に、混合ガスの温度むらをなくし熱電対7の出力
精度を向上させる。The stirrer 100 sufficiently stirs the mixed gas to eliminate the unevenness of the mixed gas to improve the output accuracy of the oxygen concentration sensor 2 and at the same time eliminate the uneven temperature of the mixed gas to improve the output accuracy of the thermocouple 7.
2重壁管103は、その内壁内を混合ガスが通過後、さら
にその外側を流れるよう環状の通路を有する構造であ
り、混合ガスの保温効果により2重壁管103の温度変化
を減少させ、周囲壁面温度の影響を大きく受ける酸素濃
度センサ2の出力精度を向上させている。The double-walled pipe 103 has a structure having an annular passage so that the mixed gas passes through the inner wall of the double-walled pipe 103 and then flows further outside thereof. The double-walled pipe 103 reduces the temperature change of the double-walled pipe 103 due to the heat retaining effect of the mixed gas, The output accuracy of the oxygen concentration sensor 2, which is greatly affected by the ambient wall temperature, is improved.
排熱回収器104は、2重壁管103の外側に位置し、2重壁
管103を通過した混合ガスは排熱回収器104を流入し、排
熱回収器104の外側に位置する2重らせん流路101,102を
流れる採取排気ガスおよび空気を予熱する。ここで、温
度の最も高い酸素濃度センサ2を中心に、外側へ向って
順次温度の低い2重壁管103、排熱回収器104、2重らせ
ん流路101,102を配置することにより、放熱損失を低減
している。The exhaust heat recovery unit 104 is located outside the double wall tube 103, and the mixed gas that has passed through the double wall tube 103 flows into the exhaust heat recovery unit 104 and is located outside the exhaust heat recovery unit 104. Preheat the collected exhaust gas and air flowing through the spiral flow paths 101, 102. Here, by disposing the double-walled pipe 103, the exhaust heat recovery unit 104, and the double-helix flow passages 101, 102 having a lower temperature sequentially toward the outside with the oxygen concentration sensor 2 having the highest temperature as the center, heat radiation loss is reduced. It is decreasing.
排出管20内の絶対圧力は圧力計13により計測され、その
出力は空燃比演算表示装置14に入力される。空燃比演算
表示装置14はマイクロコンピュータを含んで成り、酸素
濃度センサ2からのアナログ信号と圧力計13からのアナ
ログ信号を2進数デーダに変換し、これらのデータに基
い所定の計算式により空燃比を演算し表示する様にプロ
グラムされている。The absolute pressure in the discharge pipe 20 is measured by the pressure gauge 13, and its output is input to the air-fuel ratio calculation display device 14. The air-fuel ratio calculation display device 14 includes a microcomputer, converts the analog signal from the oxygen concentration sensor 2 and the analog signal from the pressure gauge 13 into binary number data, and uses a predetermined calculation formula based on these data to empty the data. It is programmed to calculate and display the fuel ratio.
この検出ユニット19および空燃比測定装置の作動は次の
とおりである。真空ポンプ12を作動させると、排気ガス
の一部は採取管8により採取され、新鮮な空気は空気取
入管9から取入られる。この空気は予熱部91により予熱
される。空気と採取排気ガスは2重らせん構造と通路10
1,102内を流れながら隔壁を介して熱交換して温度が均
一化されると共に、排熱回収器104の混合ガスにより加
熱され、オリフィス4,5を通過して混合される。混合ガ
スは触媒コンバータ6により完全酸化処理され、ヒータ
3により約650℃に加熱され、攪伴機構100により十分に
攪拌され、酸素濃度センサ2に接触する。酸素濃度セン
サ2は混合ガス中の残留酸素濃度に応じたアナログ信号
を空燃比演算表示装置14に出力する。空燃比演算表示装
置14は酸素濃度センサ2および圧力計13からの信号に基
いて所与の計算式に従い燃焼用混合気の空燃比を演算し
表示する。The operation of the detection unit 19 and the air-fuel ratio measuring device is as follows. When the vacuum pump 12 is operated, part of the exhaust gas is collected by the sampling pipe 8 and fresh air is taken in through the air intake pipe 9. This air is preheated by the preheating unit 91. Air and collected exhaust gas have a double helix structure and passage 10
While flowing in the inside of 1,102, heat is exchanged through the partition wall to make the temperature uniform, and at the same time, it is heated by the mixed gas of the exhaust heat recovery device 104 and passes through the orifices 4 and 5 to be mixed. The mixed gas is completely oxidized by the catalytic converter 6, heated to about 650 ° C. by the heater 3, sufficiently stirred by the stirring mechanism 100, and brought into contact with the oxygen concentration sensor 2. The oxygen concentration sensor 2 outputs an analog signal according to the residual oxygen concentration in the mixed gas to the air-fuel ratio calculation display device 14. The air-fuel ratio calculation display device 14 calculates and displays the air-fuel ratio of the combustion mixture according to a given calculation formula based on the signals from the oxygen concentration sensor 2 and the pressure gauge 13.
空燃比計算式を以下に示す。The formula for calculating the air-fuel ratio is shown below.
A/F=λe×(A/F)t …式(1) 但し、A/F…空燃比(質量比定義) (A/F)t…理論空燃比 λe…排ガスの酸素過剰率 λm…混合ガスの酸素化乗率 X…空気用オリフィスと排ガス用オリフィスの質量流量
比(同一条件の同一気体に対して) ρe…排気ガスの密度(λeに対応) ρa…空気の密度 Cm…混合ガス中の酸素濃度 CA…空気中の酸素濃度 n…燃料の成分について炭素原子1個あたりの水素原子
の個数 P02…酸素濃度センサ部での混合ガス中の酸素分圧 Pa…酸素濃度センサ部での混合ガスの絶対圧力 第2図は本発明の第2の実施例における検出ユニットの
ブロックを示す。A / F = λ e × (A / F) t ... Formula (1) However, A / F ... air-fuel ratio (mass ratio definition) (A / F) t ... theoretical air-fuel ratio λ e ... oxygen excess ratio of exhaust gas λ m ... oxygenation multiplication factor of mixed gas X ... air orifice and exhaust gas orifice Mass flow ratio (for the same gas under the same conditions) ρ e ... Exhaust gas density (corresponding to λe) ρ a ... Air density C m ... Oxygen concentration in mixed gas C A ... Oxygen concentration in air n … Regarding fuel components Number of hydrogen atoms per carbon atom P 02 … Oxygen partial pressure in mixed gas at oxygen concentration sensor Pa… Absolute pressure of mixed gas at oxygen concentration sensor Fig. 2 shows the present invention 2 shows a block of the detection unit in the second embodiment of FIG.
第2の実施例では、排熱回収器104、2重らせんをなす
排気ガス通路および吸気通路101,102の軸方向の長さを
伸ばし、ヒータ3および攪伴機構100の外側をも囲む構
造とすることにより、放熱損失を一層減少させる効果を
得るようにしている。In the second embodiment, the length of the exhaust heat recovery unit 104, the exhaust gas passage and the intake passages 101, 102 forming the double helix in the axial direction is extended, and the heater 3 and the outside of the stirring mechanism 100 are also surrounded. Thus, the effect of further reducing the heat radiation loss is obtained.
本発明は、酸素濃度センサの周りに配置された2重壁、
排熱回収器及び熱交換器により、酸素濃度センサの温度
は一定に保たれその測定精度を上げることができる。ま
た上記の酸素濃度センサ周りの配置構造により酸素濃度
センサの温度は高温に維持されそのため出力の安定化を
図ることができるとともに、この高温維持に大きな厚さ
の断熱材を要しないため空燃比測定装置の大型化を回避
することができ車輛搭載上有利なものとなる。The present invention provides a double wall disposed around an oxygen concentration sensor,
With the exhaust heat recovery device and the heat exchanger, the temperature of the oxygen concentration sensor can be kept constant and the measurement accuracy can be improved. Also, due to the arrangement structure around the oxygen concentration sensor, the temperature of the oxygen concentration sensor is maintained at a high temperature, so that the output can be stabilized and the air-fuel ratio measurement can be performed because a large thickness of heat insulating material is not required to maintain this high temperature. It is possible to avoid an increase in the size of the device, which is advantageous for mounting on a vehicle.
第1図は本発明の第1実施例の全体構成図、第2図は本
発明の第2実施例の要部の縦断面図である。 1……検出ユニットブロック、 2……酸素濃度センサ、6……触媒コンバータ、 8……排気ガス採取管、9……空気取入管、 12……真空ポンプ、13……圧力計、 14……空燃比演算表示装置、 15……ヒーターコントローラ、 16……バッテリ、19……検出ユニット、 20……排気管、101……排気ガス通路、 102……空気通路、103……2重壁管、 104……排熱回収器、105……混合機構、 106……混合室、107……混合ガス通路。FIG. 1 is an overall configuration diagram of a first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a main part of a second embodiment of the present invention. 1 ... Detection unit block, 2 ... Oxygen concentration sensor, 6 ... Catalytic converter, 8 ... Exhaust gas sampling pipe, 9 ... Air intake pipe, 12 ... Vacuum pump, 13 ... Pressure gauge, 14 ... Air-fuel ratio calculation display device, 15 ... Heater controller, 16 ... Battery, 19 ... Detection unit, 20 ... Exhaust pipe, 101 ... Exhaust gas passage, 102 ... Air passage, 103 ... Double wall pipe, 104 ... Exhaust heat recovery device, 105 ... Mixing mechanism, 106 ... Mixing chamber, 107 ... Mixed gas passage.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 神谷 茂 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 内田 謙一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 澤野 昌行 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Kamiya 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute, Inc. (72) Inventor Kenichi Uchida 1 Toyota-cho, Toyota-shi, Aichi Toyota Automobile Co., Ltd. (72) Inventor Masayuki Sawano 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.
Claims (3)
新鮮空気を混合することにより該排気ガス中に酸素を添
加し、この混合ガス中の未燃焼成分を完全燃焼させた
後、酸素濃度センサにより前記混合ガス中の残留酸素濃
度を検出する空燃比測定装置において、前記酸素濃度セ
ンサの周りを、前記混合ガスが通過する環状通路を有す
る2重壁にて取巻き、該2重壁の外周に、前記混合ガス
が通過する円筒状の排熱回収器を設け、該排熱回収器の
外周に、前記排気ガスの通路と前記新鮮空気の通路とを
近接配置して構成した熱交換器を設けたことを特徴とす
る空燃比測定装置。Claim: What is claimed is: 1. By mixing fresh air with exhaust gas collected from an exhaust system of an internal combustion engine to add oxygen to the exhaust gas and completely burning unburned components in the mixed gas, and then oxygen concentration. In an air-fuel ratio measuring device for detecting a residual oxygen concentration in the mixed gas by a sensor, the oxygen concentration sensor is surrounded by a double wall having an annular passage through which the mixed gas passes, and an outer periphery of the double wall. A cylindrical heat recovery unit through which the mixed gas passes, and a heat exchanger configured by disposing the exhaust gas passage and the fresh air passage in proximity to each other on the outer periphery of the exhaust heat recovery unit. An air-fuel ratio measuring device characterized by being provided.
ンを有する円筒体からなる特許請求の範囲第1項記載の
空燃比測定装置。2. The air-fuel ratio measuring device according to claim 1, wherein the exhaust heat recovery device is a cylindrical body having a plurality of fins in the axial direction.
通路とを交互に近接配置した2重らせん構造の熱交換器
である特許請求の範囲第1項記載の空燃比測定装置。3. The air-fuel ratio measuring device according to claim 1, wherein the heat exchanger is a heat exchanger having a double helix structure in which exhaust gas passages and fresh air passages are alternately arranged close to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61315849A JPH0746083B2 (en) | 1986-12-29 | 1986-12-29 | Air-fuel ratio measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61315849A JPH0746083B2 (en) | 1986-12-29 | 1986-12-29 | Air-fuel ratio measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63168550A JPS63168550A (en) | 1988-07-12 |
JPH0746083B2 true JPH0746083B2 (en) | 1995-05-17 |
Family
ID=18070319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61315849A Expired - Lifetime JPH0746083B2 (en) | 1986-12-29 | 1986-12-29 | Air-fuel ratio measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0746083B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304813B1 (en) * | 1999-03-29 | 2001-10-16 | Toyota Jidosha Kabushiki Kaisha | Oxygen concentration detector and method of using same |
-
1986
- 1986-12-29 JP JP61315849A patent/JPH0746083B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63168550A (en) | 1988-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4283256A (en) | Method and apparatus for measuring the strength of the air/fuel mixture supplied e.g. to an I.C. engine | |
US5626014A (en) | Catalyst monitor based on a thermal power model | |
US7772855B2 (en) | Instrument for measuring concentration of particulates in fluid, measuring method, and measuring program | |
US5950422A (en) | Method and device for converting a pollutant in an exhaust gas in a catalytic converter | |
EP1329715B1 (en) | Method and system for identifying gas type | |
US20100170794A1 (en) | Direct connect oxygen sensor | |
US7964072B2 (en) | Sensor material and gas sensor element and gas sensor derived therefrom | |
JPH06235709A (en) | Method and device for measuring conversion efficiency of hydrocarbon of catalytic converter | |
CN101878422A (en) | Air-fuel ratio sensor and internal combustion engine control device | |
JPH0746083B2 (en) | Air-fuel ratio measuring device | |
JPH11501395A (en) | Device and method for measuring gaseous components in a gas mixture | |
EP1178188A2 (en) | Method and system for dircetly monitoring the efficiency of a conditioning catalyst | |
GB1391514A (en) | Quantitative detection system adapted to detect a component of a motor exhaust gas | |
GB2354332A (en) | Heated gas sensor with means for correcting for measuring electrode temperature | |
US4333332A (en) | Differential scanning microcalorimeter | |
JP2002541477A (en) | Cased semiconductor gas sensor and gas concentration measurement method | |
JPS62222159A (en) | Oxygen sensor | |
US4657737A (en) | Apparatus for determining the fuel-air ratio of Otto engines | |
JP4032115B2 (en) | Exhaust gas flow rate measurement method | |
US6103098A (en) | Method of sensing exhaust oxygen | |
JPS62142263A (en) | Detecting unit of air-fuel ratio measuring instrument | |
CN201173868Y (en) | Vehicular air oil heater test device | |
EP0034013B1 (en) | Gas analysis | |
CN220015357U (en) | Exhaust gas circulation system of engine, engine and vehicle | |
CN213459811U (en) | Air inflow control system of methanol reforming fuel cell |