JPS63168550A - Air/fuel ratio measuring apparatus - Google Patents
Air/fuel ratio measuring apparatusInfo
- Publication number
- JPS63168550A JPS63168550A JP61315849A JP31584986A JPS63168550A JP S63168550 A JPS63168550 A JP S63168550A JP 61315849 A JP61315849 A JP 61315849A JP 31584986 A JP31584986 A JP 31584986A JP S63168550 A JPS63168550 A JP S63168550A
- Authority
- JP
- Japan
- Prior art keywords
- air
- exhaust gas
- mixed gas
- oxygen concentration
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims description 37
- 239000007789 gas Substances 0.000 claims abstract description 80
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000001301 oxygen Substances 0.000 claims abstract description 50
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 50
- 238000011084 recovery Methods 0.000 claims abstract description 23
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 abstract description 7
- 239000002918 waste heat Substances 0.000 abstract description 4
- 238000005192 partition Methods 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract 1
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は酸素濃度センサを用いて内燃機関の排気ガス用
の残留酸素濃度を検出することにより、燃焼用混合気の
空燃比を測定する装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is an apparatus for measuring the air-fuel ratio of a combustion air-fuel mixture by detecting the residual oxygen concentration in the exhaust gas of an internal combustion engine using an oxygen concentration sensor. It is related to.
内燃機関の性能試験や診断においては、シリンダ内に供
給される燃焼用混合気の空燃比を測定することが必要で
ある。従来、空燃比の測定は排気系に配置された酸素濃
度センサを用いて排気ガス中の残留酸素濃度を検出する
ことにより行うことが知られている6例えば特開昭59
−211840号公報に開示された空燃比測定装置にお
いては、エンジンの排気系から採取した排気ガスに外界
から取入れた新鮮な空気を所定割合で混合することによ
り既知層の酸素を添加し、この混合ガスを酸化触媒装置
に送って排気ガス中の未燃焼成分を完全燃焼させた後混
合ガス中の残留酸素濃度を検出し、この検出された残留
酸素濃度を所定の計算式に代入して計算し燃焼用混合気
の空燃比を求めるようにしている。In performance testing and diagnosis of internal combustion engines, it is necessary to measure the air-fuel ratio of the combustion air-fuel mixture supplied into the cylinder. Conventionally, it is known that the air-fuel ratio is measured by detecting the residual oxygen concentration in the exhaust gas using an oxygen concentration sensor placed in the exhaust system6.
In the air-fuel ratio measuring device disclosed in Publication No. 211840, a known layer of oxygen is added to the exhaust gas collected from the engine exhaust system by mixing fresh air taken in from the outside world at a predetermined ratio. After the gas is sent to the oxidation catalyst device to completely burn the unburned components in the exhaust gas, the residual oxygen concentration in the mixed gas is detected, and the detected residual oxygen concentration is substituted into a predetermined formula for calculation. The air-fuel ratio of the combustion mixture is determined.
上記のような、酸素濃度センサを用いる空燃比測定装置
において、その測定精度を上げるには、酸素濃度センサ
の温度を一定に保つ必要があるが、このセンサの周りを
囲む壁面の温度の変化によりセンサ温度が影響を受け、
測定精度が低下するという問題がある。In order to improve the measurement accuracy of the air-fuel ratio measuring device using an oxygen concentration sensor as described above, it is necessary to keep the temperature of the oxygen concentration sensor constant, but due to changes in the temperature of the wall surrounding the sensor, The sensor temperature is affected,
There is a problem that measurement accuracy is reduced.
また酸素濃度センサの出力安定化のためにはセンサ温度
を約700℃の高温に維持する必要があるが、従来の装
置ではその放熱損失を低減するために大きな厚さの断熱
材を要し、そのため空燃比測定装置が大型化しこれが車
輌搭載上の障害となるという問題がある。Furthermore, in order to stabilize the output of the oxygen concentration sensor, it is necessary to maintain the sensor temperature at a high temperature of approximately 700°C, but conventional devices require a large thickness of insulation material to reduce heat dissipation loss. Therefore, there is a problem in that the air-fuel ratio measuring device becomes large in size, which becomes an obstacle in mounting it on a vehicle.
本発明は上記の間π点を、酸素濃度センサの周囲に排気
ガスの熱を利用した保温、排熱回収及び熱交換の手段を
施すことにより解決する。すなわち上記問題点を解決す
るための本発明の構成は、排気ガス中に新鮮な空気を混
合しこの混合ガスの完全燃焼後の残留酸素濃度を検出す
る空燃比測定装置において、酸素濃度センサの周りを前
記混合ガスが通過する環状通路からなる2重壁にて取巻
き、この2重壁の外周に前記混合ガスが通過する円筒状
の排熱回収器を配置し、さらにこの排熱回収器の外周に
前記排気ガス通路と前記新鮮空気の通路とを相互に近接
配置した熱交換器を配置したことを特徴とするものであ
る。The present invention solves the above problem by providing means for heat retention, exhaust heat recovery, and heat exchange using the heat of exhaust gas around the oxygen concentration sensor. That is, the configuration of the present invention for solving the above problems is such that, in an air-fuel ratio measuring device that mixes fresh air into exhaust gas and detects the residual oxygen concentration after complete combustion of this mixed gas, is surrounded by a double wall consisting of an annular passage through which the mixed gas passes, a cylindrical waste heat recovery device through which the mixed gas passes is arranged around the outer periphery of this double wall, and the outer periphery of this waste heat recovery device is The present invention is characterized in that a heat exchanger is disposed in which the exhaust gas passage and the fresh air passage are arranged close to each other.
上記構成からなる本発明においては、排気ガスと外界か
ら取入れられた新鮮空気とは熱交換器により熱交換され
て均一温度となって混合され、この混合ガスが触媒を介
して完全燃焼した後酸素濃度センサにより混合ガス中の
残留酸素濃度が検出され、この検出された残留酸素濃度
に基づき燃焼用混合気の空燃比が算出される。酸素濃度
センサを通過した高温の混合ガスはこのセンサ周りの2
重壁内を通過してこれを保温した後、排熱回収器を流れ
ながらその外周の熱交換器中を流れる排気ガスと新鮮空
気とを加熱し、その後外部に排出される。このようにし
て、酸素濃度センサの周りの温度は一定に保たれかつこ
のセンサの温度も高温に維持され、そのためセンサの測
定精度が向上し、その出力が安定化される。In the present invention having the above configuration, exhaust gas and fresh air taken in from the outside world are heat exchanged by a heat exchanger and mixed to a uniform temperature, and after this mixed gas is completely combusted via a catalyst, oxygen The concentration sensor detects the residual oxygen concentration in the mixed gas, and the air-fuel ratio of the combustion air-fuel mixture is calculated based on the detected residual oxygen concentration. The high temperature mixed gas that has passed through the oxygen concentration sensor is
After passing through the heavy wall and keeping it warm, the exhaust gas and fresh air flowing through the exhaust heat recovery device and the heat exchanger on the outer periphery are heated, and are then discharged to the outside. In this way, the temperature around the oxygen concentration sensor is kept constant and the temperature of this sensor is also kept high, which improves the measurement accuracy of the sensor and stabilizes its output.
本発明の実施例について図面を参照して以下に説明する
。Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の第1の実施例を示すもので、空燃比測
定装置は、検出ユニット19、バッテリ16、ヒータコ
ントローラ15、空燃比演算表示装置14、圧力計13
で構成される。検出ユニット19は機関排気系のテール
パイプ17にクランプ18により固定されたハウジング
10を有し、このハウジング10内には断熱材詰物11
を介してステンレス製ブロック1が保持されている。ブ
ロック1内には、相互に近接し、2重らせんをなすよう
交互に配置された排気ガスの通路101および新鮮な空
気の通路102、混合tl!l構105、撹拌機構10
0、二重壁の保温用管103および排熱回収器104が
形成されている。FIG. 1 shows a first embodiment of the present invention, and the air-fuel ratio measuring device includes a detection unit 19, a battery 16, a heater controller 15, an air-fuel ratio calculation display device 14, a pressure gauge 13
Consists of. The detection unit 19 has a housing 10 fixed to a tail pipe 17 of the engine exhaust system by a clamp 18, and a heat insulating material filling 11 is placed inside the housing 10.
A stainless steel block 1 is held through the holder. In the block 1 there are exhaust gas passages 101 and fresh air passages 102 arranged close to each other and alternating in a double helix, mixing tl! l structure 105, stirring mechanism 10
0, a double-walled heat-retaining pipe 103 and an exhaust heat recovery device 104 are formed.
排気ガス通路101および空気通路102は、夫々排気
ガス採取管8および空気取入管9に接続されている。排
気ガス採取管8の上流端83はテールパイプ17中に挿
入しており、上流端83には動圧用ボート81と静圧用
ボート82が設けである。Exhaust gas passage 101 and air passage 102 are connected to exhaust gas sampling pipe 8 and air intake pipe 9, respectively. An upstream end 83 of the exhaust gas sampling pipe 8 is inserted into the tail pipe 17, and a dynamic pressure boat 81 and a static pressure boat 82 are provided at the upstream end 83.
空気取入管9の上流管93には大気に開口した空気取入
ボート92が設けである。空気取入管9の中間部91は
U字形に弯曲させてあり、テールパイプ17内に延長し
ている。An upstream pipe 93 of the air intake pipe 9 is provided with an air intake boat 92 that is open to the atmosphere. The middle part 91 of the air intake pipe 9 is curved in a U-shape and extends into the tail pipe 17.
排気ガス通路101と空気通路102とは2重らせんを
なし、熱交換器を形成している。The exhaust gas passage 101 and the air passage 102 form a double helix and form a heat exchanger.
混合機構105は排気ガス計量オリフィス4と空気計量
オリフィス5を有する。The mixing mechanism 105 has an exhaust gas metering orifice 4 and an air metering orifice 5.
混合ガス通路107内には、電熱ヒータ3、触媒コンバ
ータ6、熱電対7、および酸素濃度センサ2が配置され
ている。Inside the mixed gas passage 107, an electric heater 3, a catalytic converter 6, a thermocouple 7, and an oxygen concentration sensor 2 are arranged.
混合ガス通路107には撹拌機tR100が設けである
。A stirrer tR100 is provided in the mixed gas passage 107.
この撹拌機構100は、混合ガス流路の向きを180°
、複数回変化させ、かつその向きの変化時に流路の急縮
小、急拡大をなすm造を有している。This stirring mechanism 100 rotates the direction of the mixed gas flow path by 180°.
, and has a structure in which the flow path suddenly contracts or expands when the direction changes.
2重壁管103及び排熱回収器104は、混合ガス通路
107を順次囲む位置に配置されている。排熱回収器1
04は、2重円筒状通路の軸方向に複数枚のフィンが形
成され、排熱回収器104を囲む2重らせん流路101
、102との間で、対向流形式の熱交換器を形成する
。The double-walled pipe 103 and the exhaust heat recovery device 104 are arranged at positions surrounding the mixed gas passage 107 one after another. Exhaust heat recovery device 1
04 is a double spiral passage 101 in which a plurality of fins are formed in the axial direction of a double cylindrical passage and surrounds an exhaust heat recovery device 104.
, 102 to form a counterflow type heat exchanger.
排熱回収器104下流端は、排出管20に接続する。排
出管20は真空ポンプ12に接続する。The downstream end of the exhaust heat recovery device 104 is connected to the exhaust pipe 20 . The exhaust pipe 20 is connected to the vacuum pump 12.
検出ユニット19は、排気系から排気ガスを採取し、採
取した排気ガスに所定割合で新鮮な空気を混合して酸素
と添加し、この混合ガスを酸化させて未燃焼成分を完全
燃焼させ、混合ガス中の残留酸素濃度を検出することに
より、燃焼用混合気の空燃比に応じたアナログ信号を空
燃比演算表示装置14に出力する。The detection unit 19 collects exhaust gas from the exhaust system, mixes fresh air in a predetermined ratio with the collected exhaust gas, adds oxygen, oxidizes this mixed gas, completely burns unburned components, and completes the mixture. By detecting the residual oxygen concentration in the gas, an analog signal corresponding to the air-fuel ratio of the combustion air-fuel mixture is output to the air-fuel ratio calculation/display device 14.
テールパイプ17内を流れる排気ガスの一部は、排気ガ
ス採取管8の上流端83より採取される。A portion of the exhaust gas flowing through the tail pipe 17 is sampled from the upstream end 83 of the exhaust gas sampling pipe 8 .
このとき、テールパイプ17内を流れる排気ガスの動圧
と静圧を相殺し、はぼ大気圧の排気ガスを採取管8内に
導入するため、採取管上流端83には動圧用ボート81
と静圧用ボート82が設けである。At this time, in order to offset the dynamic pressure and static pressure of the exhaust gas flowing inside the tail pipe 17 and introduce the exhaust gas at almost atmospheric pressure into the collection pipe 8, a dynamic pressure boat 81 is installed at the upstream end 83 of the collection pipe.
A hydrostatic boat 82 is provided.
空気取入管9の上流管93より取入れられた空気は、空
気取入管中間部91にて、テールパイプ17内を流れる
排気ガスの熱により予熱される。The air taken in from the upstream pipe 93 of the air intake pipe 9 is preheated at the middle portion 91 of the air intake pipe by the heat of the exhaust gas flowing through the tail pipe 17 .
2重らせんをなす排気ガス通路101と空気通路102
を流れる採取排気ガスと新鮮空気は、2重らせんを形成
する隔壁を通じて互いに熱交換し、両者の温度は均一化
されると同時に、排熱回収器104との間で熱交換し、
予熱される。Exhaust gas passage 101 and air passage 102 forming a double helix
The sampled exhaust gas and fresh air flowing through exchange heat with each other through the partition wall forming a double helix, and the temperature of both is equalized, and at the same time, heat is exchanged with the exhaust heat recovery device 104,
Preheated.
真空ポンプ12の様な吸引手段により混合室106に負
圧を作用させると、採取排気ガスおよび空気はそれぞれ
採取管8および空気取入管9内に吸い込まれ、通路10
1 、102を経てほぼ大気圧でオリフィス4.5に到
達し、オリフィスで計量されながら所定の流量で混合室
106に流入し混合される。When a negative pressure is applied to the mixing chamber 106 by a suction means such as a vacuum pump 12, the sample exhaust gas and air are drawn into the sample tube 8 and air intake tube 9, respectively, and into the passage 10.
1 and 102, it reaches the orifice 4.5 at approximately atmospheric pressure, and flows into the mixing chamber 106 at a predetermined flow rate while being metered by the orifice, where it is mixed.
混合ガス通路107内に設けられた熱電対7の出力はヒ
ータコントローラ15に入力される。このヒータコント
ローラ15は熱電対7で検出した混合ガスの温度を酸素
濃度センサ2の活性化温度範囲に側御する。触媒コンバ
ータ6は多孔質セラミックからなる担体に白金等の酸化
触媒を担持させた公知のもので、混合ガス中の未燃焼成
分を完全燃焼させるものである。酸素濃度センサ2はジ
ルコニア素子から成る公知の型式のもので、混合ガス中
の残留酸素濃度に比例したアナログ信号を空燃比演算表
示装置14に出力する0周知の様に酸素濃度センサ2は
電熱ヒータ(図示せず)を内蔵しており、ヒータコント
ローラ15により一定出力に制御される。The output of the thermocouple 7 provided in the mixed gas passage 107 is input to the heater controller 15. This heater controller 15 controls the temperature of the mixed gas detected by the thermocouple 7 within the activation temperature range of the oxygen concentration sensor 2. The catalytic converter 6 is a known type in which an oxidation catalyst such as platinum is supported on a carrier made of porous ceramic, and is used to completely burn unburned components in the mixed gas. The oxygen concentration sensor 2 is of a known type made of a zirconia element, and outputs an analog signal proportional to the residual oxygen concentration in the mixed gas to the air-fuel ratio calculation display device 14.As is well-known, the oxygen concentration sensor 2 is an electric heater. (not shown), and is controlled to a constant output by a heater controller 15.
撹拌機構100は混合ガスを十分撹拌し、混合ガスの混
合むらをなくし酸素濃度センサ2の出力精度を向上させ
ると同時に、混合ガスの温度むらをなくし熱電対7の出
力精度を向上させる。The stirring mechanism 100 sufficiently stirs the mixed gas, eliminates uneven mixing of the mixed gas, improves the output accuracy of the oxygen concentration sensor 2, and at the same time eliminates temperature unevenness of the mixed gas and improves the output accuracy of the thermocouple 7.
2重壁管103は、その内壁内を混合ガスが通過後、さ
らにその外側を流れるよう環状の通路を有する構造であ
り、混合ガスの保温効果により2重壁管103の温度変
化を減少させ、周囲壁面温度の影響を大きく受ける酸素
濃度センサ2の出力精度を向上させている。The double-walled tube 103 has a structure having an annular passage so that the mixed gas passes through the inner wall and then flows on the outside thereof, and the temperature change in the double-walled tube 103 is reduced due to the heat retention effect of the mixed gas. The output accuracy of the oxygen concentration sensor 2, which is greatly affected by the surrounding wall temperature, is improved.
排熱回収器104は、2重壁管103の外側に位置し、
2重壁管103を通過した混合ガスは排熱回収器104
に流入し、排熱回収器104の外側に位置する2重らせ
ん流路101 、102を流れる採取排気ガスおよび空
気を予熱する。ここで、温度の最も高い酸素濃度センサ
2を中心に、外側へ向って順次温度の低い2重壁管10
3、排熱回収器104.2重らせん流路101 、10
2を配置することにより、放熱損失を低減している。The exhaust heat recovery device 104 is located outside the double wall pipe 103,
The mixed gas that has passed through the double wall pipe 103 is sent to the exhaust heat recovery device 104
The sampled exhaust gas and air flowing through the double helix channels 101 and 102 located outside the waste heat recovery device 104 are preheated. Here, starting from the oxygen concentration sensor 2 with the highest temperature, the double-walled tubes 10 with lower temperatures are sequentially moved outward.
3. Exhaust heat recovery device 104.2 double spiral flow path 101, 10
2 reduces heat radiation loss.
排出管20内の絶対圧力は圧力計13により計測され、
その出力は空燃比演算表示装置14に入力される。空燃
比演算表示装置14はマイクロコンピュータを含んで成
り、酸素濃度センサ2からのアナログ信号と圧力計13
からのアナログ信号を2進数データに変換し、これらの
データに基いて所定の計算式により空燃比を演算し表示
する様にプログラムされている。The absolute pressure inside the discharge pipe 20 is measured by the pressure gauge 13,
The output is input to the air-fuel ratio calculation and display device 14. The air-fuel ratio calculation and display device 14 includes a microcomputer, and receives an analog signal from the oxygen concentration sensor 2 and a pressure gauge 13.
It is programmed to convert the analog signal from the controller into binary data, calculate and display the air-fuel ratio using a predetermined calculation formula based on these data.
この検出ユニット19および空燃比測定装置の作動は次
のとおりである。真空ポンプ12を作動させると、排気
ガスの一部は採取管8により採取され、新鮮な空気は空
気取入管9から取入られる。The operation of this detection unit 19 and air-fuel ratio measuring device is as follows. When the vacuum pump 12 is activated, a portion of the exhaust gas is sampled via the sampling tube 8 and fresh air is taken in via the air intake tube 9.
この空気は予熱部91により予熱される。空気と採取排
気ガスは2重らせん構造の通路101 、102内を流
れながら隔壁を介して熱交換して温度が均一化されると
共に、排熱回収器104の混合ガスにより加熱され、オ
リフィス4.5を通過して混合される。混合ガスは触媒
コンバータ6により完全酸化処理され、ヒータ3により
約650℃に加熱され、撹拌機構100により十分に撹
拌され、酸素濃度センサ2に接触する。酸素濃度センサ
2は混合ガス中の残留酸素濃度に応じたアナログ信号を
空燃比演算表示装置14に出力する。空燃比演算表示装
置14は酸素濃度センサ2および圧力計13からの信号
に基いて所与の計算式に従い燃焼用混合気の空燃比を演
算し表示する。This air is preheated by the preheating section 91. The air and the sampled exhaust gas flow through the double-helix structure passages 101 and 102 and exchange heat through the partition walls to equalize the temperature, and are heated by the mixed gas in the exhaust heat recovery device 104, and then pass through the orifice 4. 5 and mixed. The mixed gas is completely oxidized by the catalytic converter 6, heated to about 650° C. by the heater 3, sufficiently stirred by the stirring mechanism 100, and brought into contact with the oxygen concentration sensor 2. The oxygen concentration sensor 2 outputs an analog signal corresponding to the residual oxygen concentration in the mixed gas to the air-fuel ratio calculation and display device 14. The air-fuel ratio calculation and display device 14 calculates and displays the air-fuel ratio of the combustion air-fuel mixture according to a given calculation formula based on the signals from the oxygen concentration sensor 2 and the pressure gauge 13.
空燃比計算式を以下に示す。The air-fuel ratio calculation formula is shown below.
A/F= 人、X(A/Fb
・・・式(Iン但し、A/F・・・空燃比(質量比
定義)(A/F)t・・・理論空燃比
^8・・・排ガスの酸素過剰率
^、・・・混合ガスの酸素過剰率
X ・・・空気用オリフィスと排ガス用オリフィスとの
質量流量比(同一条件
の同一気体に対して)
ρ0・・・排気ガスの密度(λ8に対応)ρ。・・・空
気の密度
C,I・・・混合ガス中の酸素濃度
CA・・・空気中の酸素濃度
η ・・・燃料の成分について炭素原子1個あたりの水
素原子の個数
PO2・・・酸素濃度センサ部での混合ガス中の酸素分
圧
Pcl・・・酸素濃度センサ部での混合ガスの絶対圧力
第2図は本発明の第2の実施例における検出ユニットの
ブロックを示す。A/F= person, X(A/Fb
...Formula (I) However, A/F...Air-fuel ratio (mass ratio definition) (A/F)t...Theoretical air-fuel ratio^8...Oxygen excess rate of exhaust gas^,...Mixture Oxygen excess ratio of gas Density C, I...Oxygen concentration in mixed gas CA...Oxygen concentration in air η...Number of hydrogen atoms per carbon atom for fuel components PO2...At oxygen concentration sensor section Oxygen partial pressure Pcl in the mixed gas: Absolute pressure of the mixed gas at the oxygen concentration sensor section FIG. 2 shows a block of the detection unit in the second embodiment of the present invention.
第2の実施例では、排熱回収器104.2重らせんをな
す排気ガス通路および空気通路101 、102の軸方
向の長さを伸ばし、ヒータ3および撹拌機構100の外
側をも囲む構造とすることにより、放熱損失を一層減少
させる効果を得るようにしている。In the second embodiment, the exhaust heat recovery device 104.2 has a structure in which the axial length of the double spiral exhaust gas passage and air passages 101 and 102 is extended to also surround the outside of the heater 3 and the stirring mechanism 100. By doing so, it is possible to obtain the effect of further reducing heat radiation loss.
本発明は、酸素濃度センサの周りに配置された2重壁、
排熱回収器及び熱交換器により、酸素濃度センサの温度
は一定に保たれその測定精度を上げることができる。ま
た上記の酸素濃度センサ周りの配置構造により酸素濃度
センサの温度は高温に維持されそのため出力の安定化を
図ることができるとともに、この高温維持に大きな厚さ
の断熱材を要しないため空燃比測定装置の大型化を回避
することができ車輌搭載上有利なものとなる。The present invention provides a double wall arranged around an oxygen concentration sensor,
The exhaust heat recovery device and the heat exchanger keep the temperature of the oxygen concentration sensor constant and improve its measurement accuracy. In addition, due to the arrangement structure around the oxygen concentration sensor mentioned above, the temperature of the oxygen concentration sensor is maintained at a high temperature, which makes it possible to stabilize the output, and because it does not require a large thickness of insulation material to maintain this high temperature, it is possible to measure the air-fuel ratio. It is possible to avoid increasing the size of the device, which is advantageous for mounting on a vehicle.
第1図は本発明の第1実施例の全体構成図、第2図は本
発明の第2実施例の要部の縦断面図である。
1・・・検出ユニットブロック、
2・・・酸素濃度センサ、6・・・触媒コンバータ、8
・・・排気ガス採取管、9・・・空気取入管、12・・
・真空ポンプ、 13・・・圧力計、14・・・空燃比
演算表示装置、
15・・・ヒーターコントローラ、
16・・・バッテリ、 19・・・検出ユニット、
20・・・排気管、 101・・・排気ガス通路、
102・・・空気通路、 103・・・2重壁管、
104・・・排熱回収器、 105・・・混合機構、
106・・・混合室、 107・・・混合ガス通
路。FIG. 1 is an overall configuration diagram of a first embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view of a main part of a second embodiment of the present invention. 1...Detection unit block, 2...Oxygen concentration sensor, 6...Catalytic converter, 8
...Exhaust gas sampling pipe, 9...Air intake pipe, 12...
・Vacuum pump, 13... Pressure gauge, 14... Air-fuel ratio calculation display device, 15... Heater controller, 16... Battery, 19... Detection unit,
20...Exhaust pipe, 101...Exhaust gas passage,
102...Air passage, 103...Double wall pipe,
104...Exhaust heat recovery device, 105...Mixing mechanism,
106... Mixing chamber, 107... Mixed gas passage.
Claims (1)
を混合することにより該排気ガス中に酸素を添加し、こ
の混合ガス中の未燃焼成分を完全燃焼させた後、酸素濃
度センサにより前記混合ガス中の残留酸素濃度を検出す
る空燃比測定装置において、前記酸素濃度センサの周り
を、前記混合ガスが通過する環状通路を有する2重壁に
て取巻き、該2重壁の外周に、前記混合ガスが通過する
円筒状の排熱回収器を設け、該排熱回収器の外周に、前
記排気ガスの通路と前記新鮮空気の通路とを近接配置し
て構成した熱交換器を設けたことを特徴とする空燃比測
定装置。 2、前記排熱回収器が、軸方向に複数枚のフィンを有す
る円筒体からなる特許請求の範囲第1項記載の空燃比測
定装置。 3、前記熱交換器が、排気ガス通路と新鮮空気通路とを
交互に近接配置した2重らせん構造の熱交換器である特
許請求の範囲第1項記載の空燃比測定装置。[Claims] 1. After adding fresh air to the exhaust gas collected from the exhaust system of an internal combustion engine and adding oxygen to the exhaust gas, and completely burning the unburned components in this mixed gas. , an air-fuel ratio measuring device for detecting the residual oxygen concentration in the mixed gas using an oxygen concentration sensor, the oxygen concentration sensor being surrounded by a double wall having an annular passage through which the mixed gas passes; A cylindrical exhaust heat recovery device through which the mixed gas passes is provided on the outer periphery of the wall, and the exhaust gas passage and the fresh air passage are arranged close to each other on the outer periphery of the exhaust heat recovery device. An air-fuel ratio measuring device characterized by being equipped with an exchanger. 2. The air-fuel ratio measuring device according to claim 1, wherein the exhaust heat recovery device is formed of a cylindrical body having a plurality of fins in the axial direction. 3. The air-fuel ratio measuring device according to claim 1, wherein the heat exchanger has a double helical structure in which exhaust gas passages and fresh air passages are arranged close to each other alternately.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61315849A JPH0746083B2 (en) | 1986-12-29 | 1986-12-29 | Air-fuel ratio measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61315849A JPH0746083B2 (en) | 1986-12-29 | 1986-12-29 | Air-fuel ratio measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63168550A true JPS63168550A (en) | 1988-07-12 |
JPH0746083B2 JPH0746083B2 (en) | 1995-05-17 |
Family
ID=18070319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61315849A Expired - Lifetime JPH0746083B2 (en) | 1986-12-29 | 1986-12-29 | Air-fuel ratio measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0746083B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304813B1 (en) * | 1999-03-29 | 2001-10-16 | Toyota Jidosha Kabushiki Kaisha | Oxygen concentration detector and method of using same |
-
1986
- 1986-12-29 JP JP61315849A patent/JPH0746083B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304813B1 (en) * | 1999-03-29 | 2001-10-16 | Toyota Jidosha Kabushiki Kaisha | Oxygen concentration detector and method of using same |
Also Published As
Publication number | Publication date |
---|---|
JPH0746083B2 (en) | 1995-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3597345A (en) | Oxygen detection apparatus | |
RU2082888C1 (en) | Method of and device for checking operation of catalytic converter of internal combustion engine and design of catalytic converter | |
US4283256A (en) | Method and apparatus for measuring the strength of the air/fuel mixture supplied e.g. to an I.C. engine | |
US5950422A (en) | Method and device for converting a pollutant in an exhaust gas in a catalytic converter | |
US5626014A (en) | Catalyst monitor based on a thermal power model | |
US4032285A (en) | Method and apparatus for the automatic control of the air ratio of a combustion process | |
JP2005522663A (en) | Method and apparatus for controlling a gas release process and related devices | |
US6764591B1 (en) | Potentiometric sensors comprising yttria-stabilized zirconia and measurement method of total NOx sensing without CO interference | |
EP0715167B1 (en) | Apparatus for analyzing air/fuel ratio sensor characteristics | |
JP2001520110A (en) | Waste gas purification method and gas burner | |
Fleming et al. | Sensor for on-vehicle detection of engine exhaust gas composition | |
US4334510A (en) | Electrochemical sensor for measuring relative concentrations of reactive species in a fluid mixture and a system comprising said sensor, especially for regulation | |
US3674436A (en) | Exhaust gas analyzer for internal combustion engines | |
Moos et al. | Sensor for directly determining the exhaust gas recirculation rate—EGR sensor | |
CN102998354B (en) | Solid electrolyte gas sensor performance testing device | |
JPS63168550A (en) | Air/fuel ratio measuring apparatus | |
GB1290406A (en) | ||
JPS61500806A (en) | Constant temperature calorific value measuring device | |
Kunimoto et al. | New total-NOx sensor based on mixed potential for automobiles | |
Peyton Jones et al. | Potential and pitfalls in the use of dual exhaust gas oxygen sensors for three-way catalyst monitoring and control | |
Wormald et al. | Excess enthalpies for (water+ methanol) atT= 423 K toT= 523 and pressures up to 20 MPa. A new flow mixing calorimeter | |
US4657737A (en) | Apparatus for determining the fuel-air ratio of Otto engines | |
US6103098A (en) | Method of sensing exhaust oxygen | |
JPS62142263A (en) | Detecting unit of air-fuel ratio measuring instrument | |
Di Bartolomeo et al. | Testing planar gas sensors based on yttria-stabilized zirconia with oxide electrodes in the exhaust gases of a spark ignition engine |