JPH0746061A - Differential amplifier simiconductor integrated circuit - Google Patents

Differential amplifier simiconductor integrated circuit

Info

Publication number
JPH0746061A
JPH0746061A JP5188589A JP18858993A JPH0746061A JP H0746061 A JPH0746061 A JP H0746061A JP 5188589 A JP5188589 A JP 5188589A JP 18858993 A JP18858993 A JP 18858993A JP H0746061 A JPH0746061 A JP H0746061A
Authority
JP
Japan
Prior art keywords
fet
rss
output
differential amplifier
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5188589A
Other languages
Japanese (ja)
Other versions
JP3043546B2 (en
Inventor
Yasuhiro Akiba
康弘 秋葉
Osamu Izumi
修 和泉
Toshiyuki Nagai
敏幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP5188589A priority Critical patent/JP3043546B2/en
Priority to KR1019940018901A priority patent/KR950004280A/en
Publication of JPH0746061A publication Critical patent/JPH0746061A/en
Application granted granted Critical
Publication of JP3043546B2 publication Critical patent/JP3043546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45202Indexing scheme relating to differential amplifiers the differential amplifier contains only resistors in the load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To equalize in-phase output and anti-phase levels when one side of the input terminal of the differential amplifier semiconductor integrated circuit in a microwave band is used by grounding one side for high-frequency. CONSTITUTION:The source electrode of a first electric filed-effect transistor (hereinafter referred to as FET) F1 and the source electrode of a second FET F2 are connected and constant current source ISS is connected at the connection point. In a differential amplifier circuit where microwave signals are inputted in the gate electrode of the FET F1 and the gate electrode of the FET F2 is grounded for high-frequency, two resistors of RA and RC are series connected as the drain load of the FET F1 and the output is taken out from the center point. Thus, the output level can be equalized in a microwave band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】FETを用いて構成された差動増
幅回路に関し、特にマイクロ波帯で使用する差動増幅回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential amplifier circuit formed by using FETs, and particularly to a differential amplifier circuit used in a microwave band.

【0002】[0002]

【従来の技術】従来の差動増幅回路は、第8,9図に示
すように第1のFET(F1)と第2のFET(F2)
のソース電極を接続し、その電極に定電流源を接続しド
レインバイアス(+VDD)供給側にはそれぞれにRD
1=RD2=RDの負荷抵抗を有している。この回路
は、アンバランス−バランス変換回路としてよく用いら
れる。F1のゲートに高周波信号が入力されるとF2の
ゲートが高周波的に接地されているために、負荷抵抗R
D2には、RD1と逆向きの高周波電流が流れることに
なり位相回転の無視でき得る領域ではバランス出力Vo
1,アンバランス出力Vo2は逆相(180°差)とな
る。
2. Description of the Related Art A conventional differential amplifier circuit includes a first FET (F1) and a second FET (F2) as shown in FIGS.
Source electrode is connected, a constant current source is connected to that electrode, and RD is connected to the drain bias (+ VDD) supply side.
It has a load resistance of 1 = RD2 = RD. This circuit is often used as an unbalance-balance conversion circuit. When a high-frequency signal is input to the gate of F1, the gate of F2 is grounded at a high frequency.
In the area where the phase rotation can be ignored, a balanced output Vo
1, the unbalanced output Vo2 has a reverse phase (180 ° difference).

【0003】しかし、FET差動増幅回路をアンバラン
ス入力で使用するとFETの相互コンダクタンス(g
m)が小さいために低周波数領域でも振幅レベル差が大
きくなると言う欠点があり、さらに、扱う周波数が高く
なるにつれてFETのgm及び通過位相の高周波特性に
より、180°から位相がずれてきて差動増幅としての
周波数特性が劣化し数百MHzまでの動作が限界であっ
た。この従来の場合について第8図、第9図、及び第1
0−a〜10−c図を参照しながら数式で動作を説明す
る。
However, when the FET differential amplifier circuit is used with unbalanced inputs, the transconductance (g
Since m) is small, the amplitude level difference becomes large even in the low frequency region. Furthermore, as the frequency to be handled becomes higher, the phase shifts from 180 ° due to the high frequency characteristics of the FET's gm and pass phase, and the differential The frequency characteristics as amplification deteriorated and the operation up to several hundred MHz was the limit. This conventional case is shown in FIGS.
The operation will be described with mathematical expressions with reference to FIGS. 0-a to 10-c.

【0004】第8図はFETを用いた差動増幅器をアン
バランス入力で用いる場合の従来の実施例の回路図であ
り、最初に低周波領域の動作について考える。第9図は
第8図において静電容量が無視できる程度の低周波領域
における等価回路図である。
FIG. 8 is a circuit diagram of a conventional embodiment when a differential amplifier using FETs is used with an unbalanced input. First, the operation in the low frequency region will be considered. FIG. 9 is an equivalent circuit diagram in the low frequency region where the capacitance is negligible in FIG.

【0005】今、第1のFET(F1)と第2のFET
(F2)のそれぞれの出力Vo1,Vo2を求め、その
レベルを比較する。
Now, the first FET (F1) and the second FET
The respective outputs Vo1 and Vo2 of (F2) are obtained and their levels are compared.

【0006】これらのFETのそれぞれのゲート・ソー
ス間電圧、Vgs1,Vgs2の関係は、1.2式のよ
うになる。
The relationship between the gate-source voltage of each of these FETs and Vgs1 and Vgs2 is given by the equation 1.2.

【0007】 Vgs1=Vi1−RSS(gm*Vgs1+gm*Vgs2) Vgs2=−RSS(gm*Vgs1+gm*Vgs2) ここで(2式)よりVgs1について考えると gm*RSS*Vgs1=−Vgs2−gm*RSS*Vgs2 よってVgs1は、3式のように表される。Vgs1 = Vi1-RSS (gm * Vgs1 + gm * Vgs2) Vgs2 = -RSS (gm * Vgs1 + gm * Vgs2) Here, considering Vgs1 from (Equation 2), gm * RSS * Vgs1 = -Vgs2-gm * RSS * Vgs2 Therefore, Vgs1 is expressed as in Equation 3.

【0008】 Vgs1=−(Vgs2+gm*RSS*Vgs2)/(gm*RSS) =−(1+gm*RSS)Vgs2/(gm*RSS) ここで、Vi1は、1式より Vi1=Vgs1+gm*RSS*Vgs1+gm*RSS*Vgs2 =(1+gm*RSS)Vgs1+gm*RSS*Vgs2 (4式)へ(3式)を代入すると Vi1=−(1+gm*RSS)((1+gm*RSS)*Vgs2/(gm *RSS))+gm*RSS*Vgs2 さらに Vi1/Vgs2=−(1+2gm*RSS)/(gm*RSS) よって第2のFETの信号出力(Vo2)は、 Vo2=−(gm*RSS/(1+2gm*RSS))*RD*gm*Vi1 一方第1のFETの信号出力(Vo1)は、 Vgs1=−(1+gm*RSS)*Vgs2/(gm*RSS) =−((1+gm*RSS)*((−gm*RSS/(1+2gm* RSS)*Vi1))/(gm*RSS) =((1+gm*RSS)/(1+2gm*RSS))*Vi1 より、 Vo1=((1+gm*RSS)/(1+2gm*RSS))*gm*Vi1 *RD となる。これよりVo1とVo2の比は、(5式)と
(6式)より Vo1/Vo2=−((1+gm*RSS)/gm*RSS) =−(1+1/gm*RSS) となってFET F1の出力のほうが大きく同じレベル
とはならない。また符号は位相が180°異なることを
示している。これは、定性的にいえばFET F2がゲ
ート接地となっており信号がソース電極から入力され完
全なバランス状態では無いためでいるといえる。
Vgs1 = − (Vgs2 + gm * RSS * Vgs2) / (gm * RSS) = − (1 + gm * RSS) Vgs2 / (gm * RSS) Here, Vi1 is calculated from one equation: Vi1 = Vgs1 + gm * RSS * Vgs1 + gm *. RSS * Vgs2 = (1 + gm * RSS) Vgs1 + gm * RSS * Vgs2 Substituting (Equation 3) into (Equation 4) Vi1 =-(1 + gm * RSS) ((1 + gm * RSS) * Vgs2 / (gm * RSS)) + gm * RSS * Vgs2 Furthermore, Vi1 / Vgs2 =-(1 + 2gm * RSS) / (gm * RSS) Therefore, the signal output (Vo2) of the second FET is Vo2 =-(gm * RSS / (1 + 2gm * RSS)) * RD. * Gm * Vi1 On the other hand, the signal output (Vo1) of the first FET is: Vgs1 =-(1 + gm * RSS * Vgs2 / (gm * RSS) =-((1 + gm * RSS) * ((-gm * RSS / (1 + 2gm * RSS) * Vi1)) / (gm * RSS) = ((1 + gm * RSS) / (1 + 2gm *) From RSS)) * Vi1, Vo1 = ((1 + gm * RSS) / (1 + 2gm * RSS)) * gm * Vi1 * RD From this, the ratio of Vo1 and Vo2 is calculated from (5) and (6). Vo1 / Vo2 =-((1 + gm * RSS) / gm * RSS) =-(1 + 1 / gm * RSS), and the output of the FET F1 does not have the same level, and the phases differ by 180 °. This is qualitatively because the FET F2 is grounded at the gate and a signal is input from the source electrode and is not in a perfectly balanced state.

【0009】次に、Vo1,Vodの高周波特性につい
て考える。差動増幅器をアンバランス入力で使用する場
合、図8のF1はソース接地、F2はゲート接地として
動作していると考えられている。F1の高周波の動作は
近似的に第10−a図に示すようなソース接地等価回路
に置き換えられる。
Next, the high frequency characteristics of Vo1 and Vod will be considered. When the differential amplifier is used with unbalanced inputs, it is considered that F1 in FIG. 8 operates as a source ground and F2 operates as a gate ground. The high frequency operation of F1 is approximately replaced by a source grounded equivalent circuit as shown in FIG. 10-a.

【0010】ここでRGDは、RDSよりも非常に大きいの
で省略でき、CCDはGGSの1/10程度で無視出来るの
で、高周波特性は、第10−c図の等価回路のようにな
り、 1/Rsh=1/RDS+1/RD =(RD+RDS)/RDS*RD Csh=Cgs+CDS とすると出力電力Vo1は、 Vo1=−gm*Vgs/(1/Rsh+jω*Csh) =−gm*Rsh*Vgs/(1+jω*Rsh*Csh) となり電圧利得は、 Vo1/Vgs=Avh=−gm*Rsh/(1+jω*Rsh*Csh) となる。
Since R GD is much larger than R DS, it can be omitted, and C CD can be neglected at about 1/10 of G GS , so that the high frequency characteristic is as shown in the equivalent circuit of FIG. 10-c. becomes, 1 / Rsh = 1 / R DS + 1 / RD = (RD + R DS) / R DS * RD Csh = Cgs + C DS and an output power Vo1 is, Vo1 = -gm * Vgs / ( 1 / Rsh + jω * Csh) = - gm * Rsh * Vgs / (1 + jω * Rsh * Csh), and the voltage gain is Vo1 / Vgs = Avh = −gm * Rsh / (1 + jω * Rsh * Csh).

【0011】ここで静電容量の影響が無視出来る中域周
波数での利得Avmは、等価回路が第10−b図のよう
に書けることから、Avm=−gm*Rshと表せ、こ
れと高周波領域の電圧利得Avhの比は、 Avh/Avm=1/(1+jω*Rsh*Cch) のようになり周波数が高くなると出力電圧Vo1の大き
さは、減少し、位相は遅れる。図5に以上述べた実施例
について、出力振幅の周波数特性について計算例を示
す。低域周波数からレベルが揃っていないことが解る。
また、図6にF1,F2の出力の位相についての周波数
特性の計算例を示す。+印を結んだ実線がF1の出力の
位相、□印を結んだ実線がF2の出力位相であり、ゲー
ト接地として動作しているF2の位相回転の方がソース
接地として動作しているF1出力の位相回転より小さ
く、高周波数になるほど180度からずれてくることが
解る。
Here, the gain Avm at the middle frequency where the influence of the electrostatic capacitance can be neglected can be expressed as Avm = -gm * Rsh since the equivalent circuit can be written as shown in FIG. 10-b. The ratio of the voltage gain Avh is as follows: Avh / Avm = 1 / (1 + jω * Rsh * Cch), and as the frequency increases, the magnitude of the output voltage Vo1 decreases and the phase lags. FIG. 5 shows a calculation example of the frequency characteristic of the output amplitude in the embodiment described above. It can be seen that the levels are not uniform from the low frequency range.
Further, FIG. 6 shows a calculation example of frequency characteristics for the phases of the outputs of F1 and F2. The solid line connecting the + signs is the output phase of F1, the solid line connecting the □ is the output phase of F2, and the phase rotation of F2 operating as the gate ground is the F1 output operating as the source ground. It can be seen that the phase rotation is smaller than the phase rotation, and the higher the frequency, the more it deviates from 180 degrees.

【0012】このように、FET差動増幅回路をアンバ
ランス入力で使用すると今日我々が用いるFETの相互
コンダクタンス(gm)が小さいために振幅レベルの差
が大きくなると言う欠点があり、扱う周波数が高くなる
につれてFETの高周波特性により、180°から位相
がずれる事の影響との2面から差動増幅としての周波数
特性が劣り数百MHzまでの動作が限界であった。
As described above, when the FET differential amplifier circuit is used with an unbalanced input, there is a disadvantage that the difference in amplitude level becomes large because the mutual conductance (gm) of the FETs we use today is small, and the frequency to be handled is high. However, due to the high frequency characteristics of the FET, the frequency characteristics as differential amplification are inferior because of the influence of the phase shift from 180 °, and the operation up to several hundred MHz is limited.

【0013】[0013]

【発明が解決しようとする課題】従来のFET差動増幅
回路では、直流での動作点を等しくする為にドレイン負
荷抵抗RD1とRD2を等しい抵抗値に選んでいる。こ
の為入力FETのgmが少ないため信号に対して、2つ
の出力のレベルを等しく出来ないという問題点があり、
gmを増加させるために使用するFETのゲート幅を増
大すると低周波域での出力レベルアンバランスは改善す
るが、これに伴うFETゲート・ソース間の入力容量の
増大によりgmの周波数特性が大きくなって、マイクロ
波帯等の高周波領域ではgmがかえって減少し、2出力
の位相差が480°からずれて来る事との両方の原因が
重なってレベルが等しく位相が180°反転した2つの
信号を取り出す事が出来ないという問題点があった。
In the conventional FET differential amplifier circuit, the drain load resistors RD1 and RD2 are selected to have the same resistance value in order to make the operating points at DC equal. For this reason, there is a problem that the two output levels cannot be made equal to the signal because the gm of the input FET is small.
When the gate width of the FET used to increase gm is increased, the output level unbalance in the low frequency region is improved, but the accompanying increase in the input capacitance between the FET gate and the source increases the frequency characteristic of gm. In the high frequency region such as the microwave band, gm is rather reduced, and the phase difference between the two outputs deviates from 480 °. There was a problem that I could not take it out.

【0014】[0014]

【課題を解決するための手段】本発明の差動増幅半導体
集積回路は、第1のFETのソース電極と第2のFET
のソース電極を接続し、これに定電流源(カレントソー
ス)を接続し、第1のFETのゲートにマイクロ波信号
が入力され、第2のFETのゲートが高周波滴に接地さ
れた差動増幅回路で、第1FETのドレイン負荷として
抵抗を2個直列に接続し、その中間点より出力を取り出
すことによりこの課題を解決することができる。
A differential amplifier semiconductor integrated circuit according to the present invention comprises a source electrode of a first FET and a second FET.
Differential amplification in which the microwave signal is input to the gate of the first FET and the gate of the second FET is grounded to the high frequency droplet. In the circuit, this problem can be solved by connecting two resistors in series as the drain load of the first FET and extracting the output from the midpoint thereof.

【0015】[0015]

【実施例】図1,2は、本発明の等価回路図でありこの
図について本発明についてその良好な動作をについて説
明する。
1 and 2 are equivalent circuit diagrams of the present invention. The preferred operation of the present invention will be described with reference to these figures.

【0016】FET F1とF2のソース電極を接続
し、その接続点に定電流源を接続する。F2には、ドレ
イン負荷RBが接続され、F1には、ドレイン負荷とし
てRAとRCを直列に接続する。F1の出力をRAとR
Cの接続点(A)より取り出しF2の出力はF2のドレ
インとRBの接続点より取り出す。
The source electrodes of the FETs F1 and F2 are connected, and a constant current source is connected to the connection point. A drain load RB is connected to F2, and RA and RC are connected in series as drain loads to F1. The output of F1 is RA and R
Extracted from the connection point (A) of C, the output of F2 is extracted from the connection point of the drain of F2 and RB.

【0017】この場合、第1のFET(F1)と第2の
FET(F2)の信号出力Vo1,Vo2は、(5),
(6)式の関係より Vo2=−(gm*RSS/(1+2gm*RSS))*RB*gm*Vi1 Vo1=((1+gm*RSS)/(1+2gm*RSS))*gm*Vi1 *RA となる。これよりVo1とVo2の比は、 Vo1/Vo2=−((1+gm*RSS)/gm*RSS)*RA/RB となる。ここでVo1とVo2が同レベル、すなわちV
o1/Vo2=−1とするためには、 (1+gm*RSS)/gm*RSS=RB/RA となるようにRAを選べば良く、 RA=RB*gm*RSS/(1+gm*RSS) となる。確認のため13式に、16式を代入すると Vo1=((1+gm*RSS)/(1+2gm*RSS)) *gm*Vi1*(RB*gm*RSS/(1+gm*RSS) =(gm*rss/(1+2gm*RSS))*RB*gm*Vi1 =−Vo2 の結果が得られる。こうすることによって出力レベル
(Vo1,Vo2)を同じに出来る。またRB=RA+
RCとすることによりFETのドレイン側のDCバイア
スポイント(動作点)は、F1とF2で同じにすること
ができる。
In this case, the signal outputs Vo1 and Vo2 of the first FET (F1) and the second FET (F2) are (5),
From the relationship of the equation (6), Vo2 =-(gm * RSS / (1 + 2gm * RSS)) * RB * gm * Vi1 Vo1 = ((1 + gm * RSS) / (1 + 2gm * RSS)) * gm * Vi1 * RA. . From this, the ratio of Vo1 and Vo2 is Vo1 / Vo2 =-((1 + gm * RSS) / gm * RSS) * RA / RB. Here, Vo1 and Vo2 are at the same level, that is, V
In order to set o1 / Vo2 = -1, RA may be selected so that (1 + gm * RSS) / gm * RSS = RB / RA, and RA = RB * gm * RSS / (1 + gm * RSS). . Substituting the 16th equation into the 13th equation for confirmation, Vo1 = ((1 + gm * RSS) / (1 + 2gm * RSS)) * gm * Vi1 * (RB * gm * RSS / (1 + gm * RSS) = (gm * rss / (1 + 2gm * RSS)) * RB * gm * Vi1 = -Vo2 is obtained, which makes it possible to make the output levels (Vo1, Vo2) the same and RB = RA +
By setting RC, the DC bias point (operating point) on the drain side of the FET can be made the same for F1 and F2.

【0018】また、高周波領域での特性は、ドレイン負
荷としてRAを選ぶ事により従来の負荷抵抗RD=RB
の場合に比べRA=RB−RCの関係にあり8式のRs
hの値は小さくなり低周波領域と高周波領域の電圧利得
の関係式(11式)において Avh/Avm=1/(1+jω*Rsh*Csh) Rshが小さくなると高周波領域でのVo1の減少量
は、小さくなり位相の遅れも同様に改善される。その結
果、高周波領域での位相差180°からのずれも改善さ
れる。
Further, the characteristic in the high frequency region is that by selecting RA as the drain load, the conventional load resistance RD = RB.
R = RB-RC, and Rs of 8
In the relational expression (Equation 11) of the voltage gain in the low frequency region and the high frequency region, the value of h becomes small. Avh / Avm = 1 / (1 + jω * Rsh * Csh) When Rsh becomes small, the decrease amount of Vo1 in the high frequency region becomes It becomes smaller and the phase delay is improved as well. As a result, the deviation from the phase difference of 180 ° in the high frequency region is also improved.

【0019】第3図に本発明を実施した場合の6GHz
における振幅・位相差対抵抗値変動特性を示す。Vo1
とVo2は、RAとRCの抵抗値を選択することにより
出力レベルを等しく出来る。このとき、180度からの
位相差も小さくすることが出来ることが解る。
FIG. 3 shows 6 GHz when the present invention is implemented.
The amplitude / phase difference vs. resistance value variation characteristics at are shown. Vo1
The output levels of Vo and Vo2 can be made equal by selecting the resistance values of RA and RC. At this time, it is understood that the phase difference from 180 degrees can also be reduced.

【0020】本発明では信号に対する利得のみをF1と
F2で変え、直流の動作点に関しては等しく設定し、V
DS(ドレイン−ソース間電圧)が一致しているため温度
特性等の電流変化に対して安定する。
In the present invention, only the gain for the signal is changed between F1 and F2, the DC operating point is set equal, and V
Since the DS (drain-source voltage) is the same, it is stable against changes in current such as temperature characteristics.

【0021】図4に本発明を実施した場合の出力振幅の
周波数特性例を示す。低周波領域から出力レベルが揃っ
ていることが解る。また、図5に位相特性の周波数特性
について、従来実施例との差を示す。○印を結んだ実線
が本実施例におけるF1の出力位相であり、+印を結ん
だ実線が示す従来例の場合に比べ、FDの出力位相を示
す□印を結んだ実線との位相差が高域で改善されている
ことが解る。
FIG. 4 shows an example of frequency characteristics of output amplitude when the present invention is carried out. It can be seen that the output levels are aligned from the low frequency range. Further, FIG. 5 shows the difference between the frequency characteristics of the phase characteristics and the conventional example. The solid line connecting the ◯ marks is the output phase of F1 in this embodiment, and the phase difference from the solid line connecting the □ marks showing the output phase of the FD is greater than that of the conventional example shown by the solid line connecting the + marks. You can see that it is improved in the high range.

【0022】以上の発明は、入力形式が2入力の場合に
も適用できる。
The above invention can be applied to the case where the input format is two inputs.

【0023】図6に第2の実施例の回路図を示す。出力
は、ドレイン負荷のRAとRC及びRBとRDのおのお
の直列接続した接続点(A,B)より取り出すように
し、更に、RC+RC=RB+RDの関係を保ちながら
ドレイン負荷RA,RBを変化させると出力レベルの微
調整も容易に出来る利点がある。
FIG. 6 shows a circuit diagram of the second embodiment. The output is taken out from the connection points (A, B) of the drain loads RA and RC and RB and RD, which are connected in series, and when the drain loads RA and RB are changed while maintaining the relationship of RC + RC = RB + RD. There is an advantage that the level can be easily adjusted.

【0024】[0024]

【発明の効果】以上説明したように本発明は、差動増幅
半導体集積回路の出力側負荷に直列抵抗2個を接続しそ
の中間点より出力を取り出すことにより出力レベルを等
しくする事ができ実用的価値は非常に高い。
As described above, according to the present invention, it is possible to equalize the output levels by connecting two series resistors to the output side load of the differential amplification semiconductor integrated circuit and taking out the output from the midpoint thereof. Value is very high.

【図面の簡単な説明】[Brief description of drawings]

【図1】差動増幅半導体集積回路の実施例の等価回路
図。
FIG. 1 is an equivalent circuit diagram of an embodiment of a differential amplification semiconductor integrated circuit.

【図2】差動増幅半導体集積回路の実施例の等価回路
図。
FIG. 2 is an equivalent circuit diagram of an embodiment of a differential amplification semiconductor integrated circuit.

【図3】実施例の振幅・位相差対抵抗値変動特性。FIG. 3 shows amplitude / phase difference vs. resistance variation characteristics of the embodiment.

【図4】実施例の振幅対周波数特性。FIG. 4 shows amplitude-frequency characteristics of the embodiment.

【図5】従来の回路の振幅対周波数特性。FIG. 5 shows amplitude-frequency characteristics of a conventional circuit.

【図6】従来の実施例と本発明の実施例の位相対周波数
特性の比較。
FIG. 6 is a comparison of the phase-versus-frequency characteristics of the conventional example and the example of the present invention.

【図7】実施例の場合(F1・F2バランス入力)等価
回路。
FIG. 7 is an equivalent circuit in the case of the embodiment (F1 and F2 balanced input).

【図8】従来の差動増幅半導体集積回路の等価回路。FIG. 8 is an equivalent circuit of a conventional differential amplification semiconductor integrated circuit.

【図9】差動増幅半導体集積回路の等価回路。FIG. 9 is an equivalent circuit of a differential amplification semiconductor integrated circuit.

【図10】従来のFET半導体集積回路の等価回路。FIG. 10 is an equivalent circuit of a conventional FET semiconductor integrated circuit.

【符号の説明】[Explanation of symbols]

F1,F2 FET RA,RB,RC.RD,RSS 負荷抵抗 Vi1 入力信号 Vo1,Vo2 出力信号 Iss 定電流源 VDD,VSS 直流電源 A,B 中間点 gm 相互コンダクタンス Vgs1,Vgs2 ゲート−ソース間電圧 G1 ゲート D1,D2 ドレイン S1,S2 ソース Rg ゲート抵抗 RGD ゲート−ドレイン間抵抗 RDS ゲート−ソース間抵抗 Cgs ゲート−ソース間容量 CGD ゲート−ドレンイン間容量 GDS ドレイン−ソース間容量F1, F2 FET RA, RB, RC. RD, RSS Load resistance Vi1 Input signal Vo1, Vo2 Output signal Iss Constant current source V DD , V SS DC power supply A, B Intermediate point gm Transconductance Vgs1, Vgs2 Gate-source voltage G1 Gate D1, D2 Drain S1, S2 source Rg Gate resistance R GD Gate-drain resistance R DS Gate-source resistance Cgs Gate-source capacitance C GD Gate-drain-in capacitance G DS Drain-source capacitance

フロントページの続き (72)発明者 永井 敏幸 東京都港区西新橋三丁目20番4号 日本電 気エンジニアリング株式会社内Front Page Continuation (72) Inventor Toshiyuki Nagai 3-20-4 Nishishimbashi, Minato-ku, Tokyo Nidec Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の電界効果トランジスタ(以下FE
T)のソース電極と第2のFETのソース電極を接続
し、これに定電流源(カレントソース)を接続し、第1
のFETのゲートに高周波信号が入力され、第2のFE
Tのゲートが高周波的に接地された差動増幅回路を構成
する半導体集積回路において、 第1FETのドレイン負荷として抵抗を2個直列に接続
し、その2つの抵抗値の和は、第2のFETのドレイン
に接続した抵抗値に等しく、その接続点及び第2のFE
Tのドレイン電極より出力を取り出すことを特徴とする
差動増幅半導体集積回路。
1. A first field effect transistor (hereinafter FE)
The source electrode of T) is connected to the source electrode of the second FET, and a constant current source (current source) is connected to the source electrode of
High-frequency signal is input to the gate of the FET of the
In a semiconductor integrated circuit that constitutes a differential amplifier circuit in which the gate of T is grounded at high frequency, two resistors are connected in series as the drain load of the first FET, and the sum of the resistance values of the two FETs is the second FET. Equal to the resistance value connected to the drain of, and its connection point and the second FE
A differential amplification semiconductor integrated circuit, wherein an output is taken out from a drain electrode of T.
JP5188589A 1993-07-30 1993-07-30 Differential amplification semiconductor integrated circuit Expired - Fee Related JP3043546B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5188589A JP3043546B2 (en) 1993-07-30 1993-07-30 Differential amplification semiconductor integrated circuit
KR1019940018901A KR950004280A (en) 1993-07-30 1994-07-30 Semiconductor Integrated Circuits Comprising Differential Amplifiers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5188589A JP3043546B2 (en) 1993-07-30 1993-07-30 Differential amplification semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH0746061A true JPH0746061A (en) 1995-02-14
JP3043546B2 JP3043546B2 (en) 2000-05-22

Family

ID=16226316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5188589A Expired - Fee Related JP3043546B2 (en) 1993-07-30 1993-07-30 Differential amplification semiconductor integrated circuit

Country Status (2)

Country Link
JP (1) JP3043546B2 (en)
KR (1) KR950004280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042703A1 (en) * 1999-01-14 2000-07-20 Qualcomm Incorporated Active differential to single-ended converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042703A1 (en) * 1999-01-14 2000-07-20 Qualcomm Incorporated Active differential to single-ended converter
AU759831B2 (en) * 1999-01-14 2003-05-01 Qualcomm Incorporated Active differential to single-ended converter
KR100704526B1 (en) * 1999-01-14 2007-04-09 퀄컴 인코포레이티드 Active differential to single-ended converter

Also Published As

Publication number Publication date
KR950004280A (en) 1995-02-17
JP3043546B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
JP4206589B2 (en) Distributed amplifier
US8203388B2 (en) Low noise amplifier
US7633337B2 (en) Feedback-type variable gain amplifier and method of controlling the same
US7420423B2 (en) Active balun device
US7151409B2 (en) Programmable low noise amplifier and method
JPH10173482A (en) Filter circuit
US7075361B1 (en) Frequency boosting circuit for high swing cascode biasing circuits
US6069522A (en) Circuitry and method for providing boost and asymmetry in a continuous-time filter
US6346804B2 (en) Impedance conversion circuit
US7233204B2 (en) Method of acquiring low distortion and high linear characteristic in triode-typed transconductor
EP0655831B1 (en) High performance transconductance operational amplifier, of the CMOS integrated type
JPH0746061A (en) Differential amplifier simiconductor integrated circuit
JP3105489B2 (en) amplifier
US5650752A (en) Amplifier circuit with parallel connected amplifiers
JPH01173908A (en) Oscillation device and oscillation circuit used therein
US5268650A (en) Amplifier circuit with bipolar and field-effect transistors
JPH07122950A (en) Variable gain amplifier
JPH11205055A (en) Variable gain differential amplifier circuit
JPH0878977A (en) High frequency amplifier circuit
JPH09162657A (en) Microwave power amplifier circuit
JPH01269304A (en) Output impedance control circuit
JP2876701B2 (en) Operational amplifier circuit
JPS59132214A (en) Gain variable circuit
JP2718378B2 (en) Semiconductor amplifier circuit
JPH06350358A (en) Balanced conversion circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

LAPS Cancellation because of no payment of annual fees