JPH0745701A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0745701A
JPH0745701A JP18428293A JP18428293A JPH0745701A JP H0745701 A JPH0745701 A JP H0745701A JP 18428293 A JP18428293 A JP 18428293A JP 18428293 A JP18428293 A JP 18428293A JP H0745701 A JPH0745701 A JP H0745701A
Authority
JP
Japan
Prior art keywords
film
insulating film
wirings
wiring
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18428293A
Other languages
Japanese (ja)
Other versions
JP2555940B2 (en
Inventor
Masanobu Yoshiie
昌伸 善家
Kenji Okamura
健司 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5184282A priority Critical patent/JP2555940B2/en
Publication of JPH0745701A publication Critical patent/JPH0745701A/en
Application granted granted Critical
Publication of JP2555940B2 publication Critical patent/JP2555940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the parasitic capacitance between wirings by providing vacant space between the wirings on the same layer. CONSTITUTION:After wirings 2 have been formed on the same layer, a solid film 3 is formed while it is being cooled by the use of a liquid. The solid film is removed as for as the wiring part is exposed. After a roughly insulating film 5 having a large film shrinkage factor has been formed on the solid film, the solid film is evaporated through the insulating film 5 by heating etc., and a dense insulating film 7 having the film shrinkage factor smaller than that of the insulating film 5 is formed. Space 6 is obtained between wirings.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関し、特に同一層次の配線間に空間を有する半
導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a space between wirings in the same layer and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年半導体装置において、高性能化のた
め多層配線化及び微細化が進んでいる。最小加工寸法
0.3μmレベル以下の半導体装置にとって配線の寄生
容量の増大は高速化にとっては重大な問題である。同一
層次の配線間容量は微細化に伴って増大するという重大
な問題が起きてくる。
2. Description of the Related Art In recent years, in semiconductor devices, multi-layer wiring and miniaturization have been advanced for higher performance. For a semiconductor device having a minimum feature size of 0.3 μm or less, an increase in wiring parasitic capacitance is a serious problem for speeding up. There is a serious problem that the inter-wiring capacitance in the same layer increases with miniaturization.

【0003】そこで、従来は配線相互間の寄生容量を低
減させるために、例えば特開平2−240947号公報
に記載されている様な配線間に空間のある半導体装置が
提案されている。図6を参照して、この従来の配線間に
空間のある半導体装置及びその製造方法について説明す
る。
Therefore, in order to reduce the parasitic capacitance between the wirings, a semiconductor device having a space between the wirings has been proposed, for example, as disclosed in Japanese Patent Laid-Open No. 2-240947. A conventional semiconductor device having a space between wirings and a method for manufacturing the same will be described with reference to FIG.

【0004】まず、図6(a)に示すように、図示しな
いトランジスタ等を形成したシリコン基体の表面にCV
D法等により酸化シリコン膜1を形成した半導体基板を
準備する。通常のフォトリソグラフィ技術を用いて酸化
シリコン膜にコンタクト孔(図示せず)を形成する。次
にスパッタリング法等でAl膜形成し、通常のフォトリ
ソグラフィ技術を用いて、Al膜をパターニングして第
1層目のAl膜配線2を形成する。次に、CVD法で酸
化シリコン膜11を成膜する。
First, as shown in FIG. 6A, CV is formed on the surface of a silicon substrate on which transistors and the like (not shown) are formed.
A semiconductor substrate on which the silicon oxide film 1 is formed by the D method or the like is prepared. A contact hole (not shown) is formed in the silicon oxide film by using a normal photolithography technique. Next, an Al film is formed by a sputtering method or the like, and the Al film is patterned by using a normal photolithography technique to form the Al film wiring 2 of the first layer. Next, the silicon oxide film 11 is formed by the CVD method.

【0005】そして、スピンコート法を用いて、図6
(b)に示すように、SOG膜13を形成する。次にプ
ラズマCVD法等を用いて、酸化シリコン膜14を形成
し、フォトレジスト膜を形成したのちエッチバックを行
い、平坦化する。そして、プラズマCVD法等で酸化シ
リコン膜15を形成する。
Then, using the spin coating method, as shown in FIG.
As shown in (b), the SOG film 13 is formed. Next, a silicon oxide film 14 is formed by using a plasma CVD method or the like, a photoresist film is formed, and then etching back is performed to planarize the film. Then, the silicon oxide film 15 is formed by the plasma CVD method or the like.

【0006】次にフォトリソグラフィ技術を用いて、コ
ンタクト孔16を形成する。そして、スパッタリング法
等でAl膜8Aを形成し、フォトリソグラフィ技術を用
いて、図6(c)に示すように、第2のAl膜配線8を
形成する。そして、第2のAl膜配線8をマスクにプラ
ズマエッチング法により、酸化シリコン膜14,15及
びSOG膜13をエッチングして、第1層及び第2層の
各層の配線間に空間を形成する。
Next, the contact hole 16 is formed by using the photolithography technique. Then, the Al film 8A is formed by the sputtering method or the like, and the second Al film wiring 8 is formed by using the photolithography technique as shown in FIG. 6C. Then, the silicon oxide films 14 and 15 and the SOG film 13 are etched by the plasma etching method using the second Al film wiring 8 as a mask to form a space between the wirings of the first layer and the second layer.

【0007】最後に、図6(d)に示すように、酸化シ
リコン膜17及び窒化シリコン膜18を、プラズマCV
D法で形成する。以上の様にして、最上層の配線間のみ
でなく、下層の配線間の一部にも空間絶縁構造が実現で
きる。
Finally, as shown in FIG. 6D, the silicon oxide film 17 and the silicon nitride film 18 are formed by plasma CV.
It is formed by the D method. As described above, the space insulating structure can be realized not only between the uppermost wirings but also between the lower wirings.

【0008】[0008]

【発明が解決しようとする課題】この従来の半導体装置
においては、最上層の配線間のみでなく、下層の配線間
の一部にも空間を形成できるが、最上層と下層との重な
っている部分は空間が形成できない欠点がある。そのた
め、半導体装置の高性能化のために多層配線化が進み、
3層以上の多層配線を有する半導体装置の場合、配線の
各層が重なり合う部分が増加し、空間が形成できる割合
が多層になるに従って減少し、配線間の寄生容量の低減
効果は減少するという問題点がある。この様に、従来法
では、最小加工寸法0.3μm以下の今後の半導体装置
に用いて、高速化の効果は少ないという問題点がある。
In this conventional semiconductor device, a space can be formed not only between the wirings in the uppermost layer but also in a portion between the wirings in the lower layer, but the uppermost layer and the lower layer overlap each other. The part has the drawback that no space can be formed. Therefore, in order to improve the performance of semiconductor devices, multi-layer wiring has been advanced,
In the case of a semiconductor device having a multi-layered wiring of three or more layers, there is an increase in the number of overlapping portions of the wiring layers, and the ratio of spaces that can be formed decreases as the number of layers increases, which reduces the effect of reducing the parasitic capacitance between the wirings. There is. As described above, the conventional method has a problem in that it is used in a future semiconductor device having a minimum processing dimension of 0.3 μm or less, and the speed-up effect is small.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板の所定の第1の絶縁膜の表面を選択的に被覆
して形成された同一層次の複数の配線と、前記配線の表
面を被覆する疎な第2の絶縁膜および前記第2の絶縁膜
の表面を被覆する密な第3の絶縁膜とを有し、前記配線
相互間に空間があるというものである。
The semiconductor device of the present invention comprises:
A plurality of wirings in the same layer formed by selectively covering the surface of a predetermined first insulating film of a semiconductor substrate, a sparse second insulating film covering the surface of the wiring, and the second insulating film It has a dense third insulating film covering the surface of the film and has a space between the wirings.

【0010】又、本発明の半導体装置の製造方法は、半
導体基板の表面を覆う第1の絶縁膜の表面を選択的に被
覆して同一層次の複数の配線を形成する工程と、前記半
導体基板を冷却しつつ所定の液体を供給して固化させる
ことにより前記配線で選択的に被覆された第1の絶縁膜
表面に固体膜を形成する工程と、前記固体膜を薄くして
前記配線の表面を露出させる工程と、疎な第2の絶縁膜
を全面に堆積する工程と、加熱または減圧下で前記固体
膜を蒸発させる工程と、密な第3の絶縁膜を堆積する工
程とにより前記配線相互間に空間を設けるというもので
ある。この場合、配線の表面および側面を覆う保護膜を
形成してから固体膜を形成し、次に前記固体膜を薄くし
て前記配線の表面の前記保護膜を露出させてから疎な第
2の絶縁膜を全面に堆積してもよい。
Also, the method of manufacturing a semiconductor device of the present invention comprises the step of selectively covering the surface of the first insulating film covering the surface of the semiconductor substrate to form a plurality of wirings in the same layer and the semiconductor substrate. Forming a solid film on the surface of the first insulating film selectively covered with the wiring by supplying and solidifying a predetermined liquid while cooling the surface of the wiring, and thinning the solid film. Of the wiring, a step of depositing a sparse second insulating film on the entire surface, a step of evaporating the solid film under heating or reduced pressure, and a step of depositing a dense third insulating film. A space is provided between them. In this case, a solid film is formed after forming a protective film covering the surface and side surfaces of the wiring, and then the solid film is thinned to expose the protective film on the surface of the wiring and then a sparse second film is formed. An insulating film may be deposited on the entire surface.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(e)は本発明の第1の実施例につい
て製造工程に沿って説明するための工程順断面図であ
る。
The present invention will be described below with reference to the drawings. 1A to 1E are cross-sectional views in order of the processes, for illustrating the first embodiment of the present invention along with the manufacturing process.

【0012】まず、図1(a)に示すように、通常の技
法を用いることで、シリコン基体(図示せず)に半導体
装置に構成するのに必要な諸部分例えば、トランジスタ
等を形成後、CVD法等を用いて酸化シリコン膜1(第
1の絶縁膜)を200〜800nm程度形成した半導体
基板を用意する。次に通常のフォトリソグラフィ技術等
を用いて、コンタクト孔(図示せず)を形成する。そし
て、スパッタリング技術を用いて、第1層目のAl膜配
線2を形成する。
First, as shown in FIG. 1A, after forming various parts necessary for forming a semiconductor device on a silicon substrate (not shown), such as a transistor, by using an ordinary technique, A semiconductor substrate on which the silicon oxide film 1 (first insulating film) is formed to have a thickness of about 200 to 800 nm by using the CVD method or the like is prepared. Next, a contact hole (not shown) is formed by using a normal photolithography technique or the like. Then, the Al film wiring 2 of the first layer is formed by using the sputtering technique.

【0013】次に、例えば回転塗布装置を用いて、半導
体基板を0℃以下に冷却しながら、例えば水を滴下し
て、図1(b)に示すように、半導体基板表面に氷膜3
を0.5〜2μm程度形成する。次に、化学的機械研磨
(CMP)装置を用い、例えばアルコールを流しながら
数十〜数百rpmで回転しながら数十〜2000g/c
2 の圧力を半導体基板に加えることによって、Al配
線2が露出するまで研磨する。
Next, while cooling the semiconductor substrate to 0 ° C. or lower, for example, by using a spin coater, for example, water is dropped to form an ice film 3 on the surface of the semiconductor substrate as shown in FIG. 1B.
Is formed to have a thickness of about 0.5 to 2 μm. Next, using a chemical mechanical polishing (CMP) device, for example, while flowing alcohol and rotating at several tens to several hundred rpm, several tens to 2000 g / c.
Polishing is performed until the Al wiring 2 is exposed by applying a pressure of m 2 to the semiconductor substrate.

【0014】本実施例では、CMP法を用いたが、プラ
ズマエッチング法等によるエッチバックで行っても良い
し、0〜−10℃で数Torrにして水分をとばしても
良い。
Although the CMP method is used in this embodiment, it may be carried out by an etch-back method such as a plasma etching method, or the moisture may be removed at a temperature of 0 to -10.degree.

【0015】引き続いて、0℃以下の低温で膜収縮率の
大きな疎な酸化シリコン膜(第2の絶縁膜)5を200
〜500nm成膜する。形成方法として例えば水素希釈
SiH4 +O2 系冷却プラズマCVD法を用いて、水素
希釈シラン100sccm酸素10sccm混合ガスの
グロー放電分解で、反応圧力0.2Torr、放電パワ
ー50W,シリコン基板温度−110℃で成膜を行う。
この冷却プラズマCVD法は、第38回応用物理学関係
連合講演会講演予稿集No.2、第633頁、29p−
V−11に記載されている。
Subsequently, a sparse silicon oxide film (second insulating film) 5 having a large film shrinkage ratio at a low temperature of 0 ° C. or less is formed on the surface of the thin film 200.
A film is formed up to 500 nm. As a forming method, for example, hydrogen-diluted SiH 4 + O 2 -based cooling plasma CVD method is used, and glow discharge decomposition of hydrogen-diluted silane 100 sccm oxygen 10 sccm mixed gas is performed at a reaction pressure of 0.2 Torr, a discharge power of 50 W, and a silicon substrate temperature of −110 ° C. A film is formed.
This cooled plasma CVD method is based on the proceedings No. 38 of the 38th Joint Lecture on Applied Physics. 2, p. 633, 29p-
V-11.

【0016】また、トリエトキシフルオロシランと水を
用いて、0℃付近で酸化シリコン系絶縁膜を形成しても
よい。この場合、水は氷膜3上から水蒸気として供給さ
れるので、常圧でトリエトキシフルオロシランのみを流
しても良い、またTEOSと水を用いたプラズマCVD
法でも良い。
A silicon oxide type insulating film may be formed at around 0 ° C. by using triethoxyfluorosilane and water. In this case, since water is supplied as water vapor from above the ice film 3, only triethoxyfluorosilane may be allowed to flow at atmospheric pressure, or plasma CVD using TEOS and water.
Law is okay.

【0017】このようなCVD法については、1991
インタナショナル・エレクトロン・デバイス・ミーディ
ング・テクニカルダイジェスト誌(1991 Inte
rnational Electron Device
s Meeting TECHNICAL DIGES
T)、第289頁〜第292頁に記載の論文に紹介され
ている。
Regarding such a CVD method, 1991
International Electron Device Meading Technical Digest Magazine (1991 Inte
national Electron Device
s Meeting TECHNICAL DIGES
T), pages 289-292.

【0018】この様な方法で形成される酸化シリコン系
絶縁膜は、900℃の窒素雰囲気中の処理で少なくとも
3%の体積収縮を示す疎な膜である。
The silicon oxide type insulating film formed by such a method is a sparse film which exhibits a volume shrinkage of at least 3% when treated in a nitrogen atmosphere at 900 ° C.

【0019】この後、100〜300℃に加熱したり、
あるいは数Torrの減圧下にしたりして、図1(d)
に示すように、配線間の氷膜3を水蒸気4にして、疎な
酸化シリコン系絶縁膜5を通して、蒸発させる。
After that, heat to 100 to 300 ° C.,
Alternatively, the pressure may be reduced to several Torr, as shown in FIG.
As shown in FIG. 3, the ice film 3 between the wirings is converted to water vapor 4 and evaporated through the sparse silicon oxide insulating film 5.

【0020】そして、酸化シリコン絶縁膜5より熱処理
による体積収縮の少ない、例えば、収縮率3%以下の密
な酸化シリコン系絶縁膜7(第3の絶縁膜)を図1
(e)に示すように、200〜1000nm成膜する。
成膜方法として、シランと亜酸化窒素又はテトラエトキ
シシランと酸素を用いたプラズマCVD法がある。次
に、スパッタリング法を用いてAl膜を0.3〜1μm
成膜し、通常のフォトリソグラフィ技術及びプラズマエ
ッチング技術を用いて、第2層のAl膜配線8を形成す
る。
A dense silicon oxide insulating film 7 (third insulating film) having a volume shrinkage less than that of the silicon oxide insulating film 5 due to heat treatment, for example, a shrinkage ratio of 3% or less is shown in FIG.
As shown in (e), a film having a thickness of 200 to 1000 nm is formed.
As a film forming method, there is a plasma CVD method using silane and nitrous oxide or tetraethoxysilane and oxygen. Next, an Al film is formed in a thickness of 0.3 to 1 μm using a sputtering method.
The film is formed, and the Al film wiring 8 of the second layer is formed by using the ordinary photolithography technique and the plasma etching technique.

【0021】以上説明した様に、本発明は、氷膜3を水
分として疎な酸化シリコン系絶縁膜5を通して蒸発させ
ることで、配線間に空間6を形成できる。空間には固体
がないので、比誘電率は約1であり、酸化シリコン膜の
約4に比較して、約1/4に低減される。そのため、従
来例では一層目と二層目の配線が重なっている部分は、
空間でなく酸化シリコン膜が存在していたが、本発明を
用いることにより、2層目以上の配線でも各々の層の配
線間に空間が形成でき、従来に比較して同一層次の配線
間の寄生容量を低減できる。また層間絶縁膜に疎な第2
の絶縁膜を含んでいるので層次を異にする配線間の寄生
容量も小さくできる。従って、半導体装置の高速動作に
効果がある。
As described above, according to the present invention, the space 6 can be formed between the wirings by evaporating the ice film 3 as water through the sparse silicon oxide insulating film 5. Since there is no solid in the space, the relative dielectric constant is about 1, which is reduced to about 1/4 as compared with about 4 of the silicon oxide film. Therefore, in the conventional example, the portion where the wiring of the first layer and the wiring of the second layer overlap is
Although a silicon oxide film was present instead of a space, by using the present invention, a space can be formed between the wirings of each layer even in the wiring of the second or higher layer, and the wiring between the wirings of the same layer can be compared with the conventional one. The parasitic capacitance can be reduced. In addition, the second
Since the insulating film is included, the parasitic capacitance between wirings of different layers can be reduced. Therefore, it is effective for high-speed operation of the semiconductor device.

【0022】この様に、本発明は多層配線化を行っても
配線間寄生容量の低減が可能であり、従来より、より微
細配線及び多層配線に対応できる。
As described above, according to the present invention, it is possible to reduce the parasitic capacitance between wirings even if the wiring is multilayered, and it is possible to cope with finer wiring and multilayer wiring than ever before.

【0023】次に、第2の実施例について説明する。図
2は、本発明の第2の実施例を示す半導体チップの断面
図である。本実施例は、Al膜配線2及び8の周囲をそ
れぞれ窒化アルミニウム膜10a,10bで囲んだ構造
である。窒化アルミニウム膜(保護膜)でAl膜配線を
囲むことで、大電流をAl膜配線に流す場合のエレクト
ロマイグレーション等の耐性を上げ、配線の信頼性を第
1の実施例より一層向上させたものである。
Next, a second embodiment will be described. FIG. 2 is a sectional view of a semiconductor chip showing a second embodiment of the present invention. In this embodiment, the Al film wirings 2 and 8 are surrounded by aluminum nitride films 10a and 10b, respectively. By enclosing the Al film wiring with an aluminum nitride film (protective film), the resistance against electromigration etc. when a large current is applied to the Al film wiring is increased, and the reliability of the wiring is further improved as compared with the first embodiment. Is.

【0024】本実施例で、第1層目および第2層目のA
l膜配線2,8を形成後に、ランプアニーラー等を用い
て、窒素又はアンモニア雰囲気中で、300〜450℃
に加熱することで、Al膜配線2,8の表面を窒化し、
窒化アルミニウム膜10a,10bを1〜50nm形成
するほかは、第1の実施例と同様である。また、保護膜
としては、前述の窒化アルミニウム膜の代わりに、酸素
雰囲気中で加熱することで、酸化アルミニウム膜を形成
してもよい。
In the present embodiment, A of the first layer and the second layer
After forming the film wirings 2 and 8, using a lamp annealer or the like, in a nitrogen or ammonia atmosphere, 300 to 450 ° C.
The surface of the Al film wirings 2 and 8 is nitrided by heating to
This is the same as the first embodiment except that the aluminum nitride films 10a and 10b are formed to have a thickness of 1 to 50 nm. As the protective film, an aluminum oxide film may be formed by heating in an oxygen atmosphere instead of the above-mentioned aluminum nitride film.

【0025】次に、第3の実施例について説明する。図
3は、本発明の第3の実施例を示す半導体チップの断面
図である。本実施例は、Al膜配線2及び8の周囲をそ
れぞれ酸化シリコン系絶縁膜11a及び11b(保護
膜)で囲んだ構造である。シランと亜酸化窒素あるいは
テトラエトキシシランと酸素を用いてプラズマCVD法
で、酸化シリコン系絶縁膜11a,11bをそれぞれ5
0〜200nm形成することにより、Al膜配線2及び
8の信頼性を向上できる。第2及び第3の実施例の構造
とも、Al膜配線の信頼性向上に効果があるが、Al膜
配線間の間隔が小さくなると、第3の実施例では配線間
の空間6が酸化シリコン系絶縁膜で埋まるので、配線間
の寄生容量低下の効果は減少してくる。半導体装置によ
って、第2又は第3の実施例を用いるかを自由に決めれ
ばよい。
Next, a third embodiment will be described. FIG. 3 is a sectional view of a semiconductor chip showing a third embodiment of the present invention. In this embodiment, the Al film wirings 2 and 8 are surrounded by silicon oxide insulating films 11a and 11b (protective films), respectively. 5 silicon oxide insulating films 11a and 11b are formed by plasma CVD using silane and nitrous oxide or tetraethoxysilane and oxygen.
By forming a thickness of 0 to 200 nm, the reliability of the Al film wirings 2 and 8 can be improved. Both the structures of the second and third embodiments are effective in improving the reliability of the Al film wiring. However, when the distance between the Al film wirings becomes small, the space 6 between the wirings in the third embodiment becomes silicon oxide based. Since it is filled with the insulating film, the effect of reducing the parasitic capacitance between the wirings decreases. Whether to use the second or third embodiment may be freely determined depending on the semiconductor device.

【0026】なお、Al膜配線の周辺を囲む保護膜の種
類を、第1層目は窒化アルミニウム膜,第2層目は酸化
シリコン系絶縁膜と,各層ごとに変化させてもよい。
The type of the protective film surrounding the Al film wiring may be changed for each layer, that is, the first layer is an aluminum nitride film and the second layer is a silicon oxide insulating film.

【0027】次に第4の実施例を図面を参照して説明す
る。図4は本発明の第4の実施例を示す半導体チップの
断面図である。本実施例では、Al膜配線間の間隔が大
きい、例えば5μm以上の場合、疎な第2の絶縁膜
(5)及び密な第3の絶縁膜(7)等を支えるものとし
て、Al膜配線間にダミー配線12を用いた構造であ
る。ダミー配線として、例えばAl膜を用いて、第1層
のAl膜配線2を形成する際に、ダミー配線12を形成
すれば、容易に本実施例の構造が実現できる。本実施例
の様にダミー配線を所定層次の配線間に用いることで、
空間があっても強度的に充分な半導体装置が製造でき
る。なお、ダミー配線は任意の位置に形成できるのは言
うまでもないことである。
Next, a fourth embodiment will be described with reference to the drawings. FIG. 4 is a sectional view of a semiconductor chip showing a fourth embodiment of the present invention. In the present embodiment, when the distance between the Al film wirings is large, for example, 5 μm or more, the Al film wiring is used to support the sparse second insulating film (5) and the dense third insulating film (7). This is a structure using a dummy wiring 12 between them. If, for example, an Al film is used as the dummy wiring and the dummy wiring 12 is formed when the first-layer Al film wiring 2 is formed, the structure of this embodiment can be easily realized. By using the dummy wiring between the wirings of the predetermined layer as in this embodiment,
Even if there is a space, a semiconductor device having sufficient strength can be manufactured. It goes without saying that the dummy wiring can be formed at any position.

【0028】次に第5の実施例を図面を参照して説明す
る。図5は、本発明の製造に用いる半導体製造装置の模
式図である。この半導体製造装置は例えば、第1の実施
例において、Al膜配線2上に氷膜3を形成する工程か
ら、密な絶縁膜を形成する工程までを同一装置内で行え
るようにしたものである。
Next, a fifth embodiment will be described with reference to the drawings. FIG. 5 is a schematic diagram of a semiconductor manufacturing apparatus used for manufacturing of the present invention. In this semiconductor manufacturing apparatus, for example, the steps from the step of forming the ice film 3 on the Al film wiring 2 to the step of forming a dense insulating film in the first embodiment can be performed in the same apparatus. .

【0029】本装置は、ウェハーの出し入れ用のインタ
ーロック室20,氷膜形成室22,氷膜を蒸発させるた
めのパージ室24,疎な絶縁膜形成用及び密な膜形成用
のCVD室23及びウェハー移載のための搬送ロボット
のある移載室21とバルブ19−1〜19−5から構成
され、また、移載室21,CVD室23,パージ室24
等は、0℃以下に低温になるようになっている。
This apparatus comprises an interlock chamber 20 for loading / unloading wafers, an ice film forming chamber 22, a purge chamber 24 for evaporating an ice film, a CVD chamber 23 for forming a sparse insulating film and a dense film. And a transfer chamber 21 having a transfer robot for transferring wafers and valves 19-1 to 19-5, and the transfer chamber 21, the CVD chamber 23, and the purge chamber 24.
Etc. are designed to have a low temperature of 0 ° C. or lower.

【0030】本装置を用いて本発明を実施する方法を以
下説明する。まず、第1層のAl膜配線2を形成後、ウ
ェハーをインターロック室20に入れ、移載室21を経
由して、氷膜形成室22に入れる。第1の実施例で説明
した用に、水を滴下しながら、ウェハーを0℃以下の低
温で回転することで、ウェハー表面に氷膜を形成する。
このウェハーを例えば−10〜−20℃に冷却しなが
ら、移載室21を経由し、パージ室24に入れる。温度
を0〜−10℃にして、数Torrの減圧下にすること
で、氷膜表面から水蒸気として、水分をとばし、第1層
のAl膜配線の表面が露出するまで、氷膜を除去する。
A method for carrying out the present invention using this apparatus will be described below. First, after forming the Al film wiring 2 of the first layer, the wafer is put into the interlock chamber 20 and then put into the ice film forming chamber 22 via the transfer chamber 21. As described in the first embodiment, the wafer is rotated at a low temperature of 0 ° C. or lower while dripping water to form an ice film on the surface of the wafer.
The wafer is put into the purge chamber 24 via the transfer chamber 21 while being cooled to, for example, −10 to −20 ° C. By adjusting the temperature to 0 to -10 ° C. and reducing the pressure to several Torr, water vapor is removed from the ice film surface as water vapor, and the ice film is removed until the surface of the Al film wiring of the first layer is exposed. .

【0031】次に、ウェハーを−10〜−20℃に冷却
し、移載室21を経由しCVD室23に搬送する。熱処
理により3%以上の体積収縮をする疎な酸化シリコン系
絶縁膜を形成する。次に、ウェハーを冷却しながら、移
載室21を経由してパージ室24に入れる。温度を20
〜200℃まで上げ、又は、減圧にすることを併用し
て、氷膜を水蒸気として蒸発させ、Al膜配線間の空間
を形成する。そして、ウェハーを移載室21を経由し
て、CVD室23に搬送する。そこで密な酸化シリコン
系絶縁膜を形成する。
Next, the wafer is cooled to −10 to −20 ° C. and transferred to the CVD chamber 23 via the transfer chamber 21. By heat treatment, a sparse silicon oxide insulating film having a volume contraction of 3% or more is formed. Next, while cooling the wafer, it is put into the purge chamber 24 via the transfer chamber 21. Temperature 20
By raising the temperature to 200 ° C. or reducing the pressure, the ice film is evaporated as water vapor to form a space between the Al film wirings. Then, the wafer is transferred to the CVD chamber 23 via the transfer chamber 21. Therefore, a dense silicon oxide insulating film is formed.

【0032】以上の様に、同一製造装置内で一連の工程
を行うことで、工程の途中で氷膜が溶けたりすることが
なくなり、再現性良く、信頼性のいい半導体装置が実現
できる。
As described above, by performing a series of steps in the same manufacturing apparatus, the ice film is not melted during the steps, and a semiconductor device having good reproducibility and high reliability can be realized.

【0033】なお、本実施例では、疎な絶縁膜及び密な
絶縁膜を形成するCVD室を同一チャンバーで説明した
が、別々のチャンバーにしても良い。また同様にパージ
室で、氷膜をAl膜配線が露出するまで除去する工程と
水蒸気として除去する工程を行う様にしたが、別々のチ
ャンバーで行っても良い。
In this embodiment, the CVD chamber for forming the sparse insulating film and the dense insulating film is described as the same chamber, but they may be provided in different chambers. Similarly, although the step of removing the ice film until the Al film wiring is exposed and the step of removing it as water vapor are performed in the purge chamber, they may be performed in separate chambers.

【0034】以上の様に、本発明の実施例を説明した
が、配線材料として、Al以外に、Al−Cu−Siは
いうまでもないが、W,Mo,Cu等の金属又は、シリ
サイド等の材料を用いても、本発明の効果は変わらな
い。
Although the embodiments of the present invention have been described above, it goes without saying that Al-Cu-Si is used as the wiring material in addition to Al, but metals such as W, Mo, Cu, etc., or silicides, etc. The effect of the present invention does not change even if the above material is used.

【0035】また、実施例では、液体として水,固体膜
として氷膜を用いて説明したが、アルコール等の他の液
体を用いても良い。また、疎な絶縁膜及び密な絶縁膜と
して酸化シリコン系絶縁膜で説明したが、他の絶縁膜を
用いても良い。
In the embodiment, water is used as the liquid and an ice film is used as the solid film, but other liquids such as alcohol may be used. Further, the sparse insulating film and the dense insulating film are described as the silicon oxide insulating film, but other insulating films may be used.

【0036】なお、本発明の実施例では、2層配線構造
で説明したが、一層構造,2層以上の構造に本発明を用
いても良い。
Although the embodiment of the present invention has been described with a two-layer wiring structure, the present invention may be applied to a one-layer structure or a structure having two or more layers.

【0037】[0037]

【発明の効果】以上説明したように本発明は、同一層次
の配線間に空間を形成することにより、多層配線にして
も従来みられた様な配線の各層が重なり合う部分に空間
ができないという問題点も解決でき、配線間の寄生容量
を一層低減でき、半導体装置の一層の高速化が可能にな
るという効果がある。
As described above, according to the present invention, by forming a space between the wirings in the same layer, there is no space in the portion where the layers of the wirings overlap each other as in the case of the multilayer wiring. This also solves the problem, further reduces the parasitic capacitance between the wirings, and has the effect of further increasing the speed of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するため(a)〜
(e)に分図して示す工程断面図である。
FIG. 1A is a view for explaining a first embodiment of the present invention.
It is a process sectional view divided and shown in (e).

【図2】本発明の第2の実施例を説明するための半導体
チップの断面図である。
FIG. 2 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention.

【図3】本発明の第3の実施例を説明するための半導体
チップの断面図である。
FIG. 3 is a cross-sectional view of a semiconductor chip for explaining a third embodiment of the present invention.

【図4】本発明の第4の実施例を説明するための半導体
チップの断面図である。
FIG. 4 is a sectional view of a semiconductor chip for explaining a fourth embodiment of the present invention.

【図5】本発明の第5の実施例を説明するための半導体
製造装置の模式図である。
FIG. 5 is a schematic diagram of a semiconductor manufacturing apparatus for explaining a fifth embodiment of the present invention.

【図6】従来技術を説明するための半導体チップの断面
図である。
FIG. 6 is a sectional view of a semiconductor chip for explaining a conventional technique.

【符号の説明】 1 酸化シリコン膜 2 第1層のAl膜配線 3 氷膜 4 水蒸気 5 疎な酸化シリコン系絶縁膜 6 空間 7,7a,7b 密な酸化シリコン系絶縁膜 8 第2層のAl膜配線 9 カバー膜 10,10a,10b 窒化アルミニウム膜 11,11a,11b 酸化シリコン系絶縁膜 12 ダミー配線 13 SOG膜 14,15 酸化シリコン膜 16 コンタクト 17 酸化シリコン膜 18 窒化シリコン膜 19−1〜19−5 バルブ 20 インターロック室 21 移載室 22 氷膜形成室 23 CVD室 24 パージ室[Explanation of symbols] 1 silicon oxide film 2 first layer Al film wiring 3 ice film 4 water vapor 5 sparse silicon oxide insulating film 6 space 7, 7a, 7b dense silicon oxide insulating film 8 second layer Al Film wiring 9 Cover film 10, 10a, 10b Aluminum nitride film 11, 11a, 11b Silicon oxide type insulating film 12 Dummy wiring 13 SOG film 14, 15 Silicon oxide film 16 Contact 17 Silicon oxide film 18 Silicon nitride film 19-1 to 19 -5 valve 20 interlock chamber 21 transfer chamber 22 ice film forming chamber 23 CVD chamber 24 purge chamber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の所定の第1の絶縁膜の表面
を選択的に被覆して形成された同一層次の複数の配線
と、前記配線の表面を被覆する疎な第2の絶縁膜および
前記第2の絶縁膜の表面を被覆する密な第3の絶縁膜と
を有し、前記配線相互間に空間があることを特徴とする
半導体装置。
1. A plurality of wirings in the same layer formed by selectively covering the surface of a predetermined first insulating film of a semiconductor substrate, and a sparse second insulating film covering the surface of the wiring. A dense third insulating film covering the surface of the second insulating film, and a space between the wirings.
【請求項2】 前記配線の表面および側面が保護膜で覆
われている請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a surface and a side surface of the wiring are covered with a protective film.
【請求項3】 前記配線と同一層次のダミー配線が設け
られている請求項1または2記載の半導体装置。
3. The semiconductor device according to claim 1, wherein a dummy wiring on the same layer as the wiring is provided.
【請求項4】 半導体基板の表面を覆う第1の絶縁膜の
表面を選択的に被覆して同一層次の複数の配線を形成す
る工程と、前記半導体基板を冷却しつつ所定の液体を供
給して固化させることにより前記配線で選択的に被覆さ
れた第1の絶縁膜表面に固体膜を形成する工程と、前記
固体膜を薄くして前記配線の表面を露出させる工程と、
疎な第2の絶縁膜を全面に堆積する工程と、加熱または
減圧下で前記固体膜を蒸発させる工程と、密な第3の絶
縁膜を堆積する工程とにより前記配線相互間に空間を設
けることを特徴とする半導体装置の製造方法。
4. A step of selectively covering the surface of a first insulating film which covers the surface of a semiconductor substrate to form a plurality of wirings in the same layer, and a predetermined liquid is supplied while cooling the semiconductor substrate. Forming a solid film on the surface of the first insulating film selectively covered with the wiring by solidifying the solid film, and thinning the solid film to expose the surface of the wiring.
A space is provided between the wirings by a step of depositing a sparse second insulating film on the entire surface, a step of evaporating the solid film under heating or reduced pressure, and a step of depositing a dense third insulating film. A method of manufacturing a semiconductor device, comprising:
【請求項5】 半導体基板の表面を覆う第1の絶縁膜の
表面を選択的に被覆して同一層次の複数の配線を形成す
る工程と、前記配線の表面および側面を少なくとも覆う
保護膜を形成する工程と、前記半導体基板を冷却しつつ
所定の液体を供給して固化させることにより前記保護膜
で少なくとも選択的に被覆された第1の絶縁膜表面に固
体膜を形成する工程と、前記固体膜を薄くして前記配線
の表面の前記保護膜の表面を露出させる工程と、疎な第
2の絶縁膜を全面に堆積する工程と、加熱または減圧下
で前記固体膜を蒸発させる工程と、密な第3の絶縁膜を
堆積する工程とにより前記配線相互間に空間を設けるこ
とを特徴とする半導体装置の製造方法。
5. A step of selectively covering the surface of a first insulating film that covers the surface of a semiconductor substrate to form a plurality of wirings in the same layer, and a protective film that covers at least the surface and side surfaces of the wirings. And a step of forming a solid film on the surface of the first insulating film at least selectively covered with the protective film by supplying and solidifying a predetermined liquid while cooling the semiconductor substrate, Thinning the film to expose the surface of the protective film on the surface of the wiring, depositing a sparse second insulating film over the entire surface, and evaporating the solid film under heating or reduced pressure, A method of manufacturing a semiconductor device, characterized in that a space is provided between the wirings by a step of depositing a dense third insulating film.
【請求項6】 前記固体膜を形成させる工程から前記第
3の絶縁膜を堆積する工程までを同一の製造装置内で行
なう請求項4または5記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 4, wherein the step of forming the solid film to the step of depositing the third insulating film are performed in the same manufacturing apparatus.
JP5184282A 1993-07-27 1993-07-27 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2555940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5184282A JP2555940B2 (en) 1993-07-27 1993-07-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5184282A JP2555940B2 (en) 1993-07-27 1993-07-27 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0745701A true JPH0745701A (en) 1995-02-14
JP2555940B2 JP2555940B2 (en) 1996-11-20

Family

ID=16150597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5184282A Expired - Fee Related JP2555940B2 (en) 1993-07-27 1993-07-27 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2555940B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064118A (en) * 1997-04-18 2000-05-16 Nec Corporation Multilevel interconnection structure having an air gap between interconnects
JP2001514798A (en) * 1997-01-21 2001-09-11 ザ ビー.エフ.グッドリッチ カンパニー Manufacturing of semiconductor device with air gap for ultra-low capacitance wiring
US6300667B1 (en) 1997-11-14 2001-10-09 Nippon Steel Corporation Semiconductor structure with air gaps formed between metal leads
US6306753B1 (en) 1995-12-28 2001-10-23 Kabushiki Kaisha Toshiba Feasible, gas-dielectric interconnect process
EP1209739A2 (en) * 2000-11-27 2002-05-29 Chartered Semiconductor Manufacturing, Inc. Method for fabricating intermetal dielectric structures including air-gaps between metal leads
JP2004172620A (en) * 2002-11-15 2004-06-17 United Microelectronics Corp Integrated circuit with air gaps and its manufacturing method
US6790761B2 (en) 2002-03-07 2004-09-14 Oki Electric Industry Co., Ltd. Method of fabricating a semiconductor device
JP2005268791A (en) * 2004-03-17 2005-09-29 Interuniv Micro Electronica Centrum Vzw Semiconductor device having damascene structure provided with air-gap and method for manufacturing the same
JP2005534168A (en) * 2002-06-20 2005-11-10 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Layer arrangement and method for producing layer arrangement
JP2009021556A (en) * 2007-05-15 2009-01-29 Commissariat A L'energie Atomique Method for producing air gap using nanotube
JP4787412B2 (en) * 1999-03-30 2011-10-05 シチズンホールディングス株式会社 Method for forming thin film substrate and thin film substrate formed by the method
EP3163606A1 (en) * 2015-10-28 2017-05-03 Semiconductor Manufacturing International Corporation (Shanghai) Flash memory and fabricating method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306753B1 (en) 1995-12-28 2001-10-23 Kabushiki Kaisha Toshiba Feasible, gas-dielectric interconnect process
US6307265B1 (en) 1995-12-28 2001-10-23 Kabushiki Kaisha Toshiba Feasible, gas-dielectric interconnect process
JP2009275228A (en) * 1997-01-21 2009-11-26 Bf Goodrich Co Fabrication of semiconductor device with air gaps for ultra-low capacitance interconnections
JP2001514798A (en) * 1997-01-21 2001-09-11 ザ ビー.エフ.グッドリッチ カンパニー Manufacturing of semiconductor device with air gap for ultra-low capacitance wiring
JP2010147495A (en) * 1997-01-21 2010-07-01 Bf Goodrich Co Fabrication of semiconductor device with air gap for ultra-low electrostatic capacitance interconnection
US6368939B1 (en) * 1997-04-18 2002-04-09 Nec Corporation Multilevel interconnection structure having an air gap between interconnects
US6064118A (en) * 1997-04-18 2000-05-16 Nec Corporation Multilevel interconnection structure having an air gap between interconnects
US6479366B2 (en) 1997-11-14 2002-11-12 Nippon Steel Corporation Method of manufacturing a semiconductor device with air gaps formed between metal leads
US6300667B1 (en) 1997-11-14 2001-10-09 Nippon Steel Corporation Semiconductor structure with air gaps formed between metal leads
JP4787412B2 (en) * 1999-03-30 2011-10-05 シチズンホールディングス株式会社 Method for forming thin film substrate and thin film substrate formed by the method
EP1209739A3 (en) * 2000-11-27 2004-02-11 Chartered Semiconductor Manufacturing, Inc. Method for fabricating intermetal dielectric structures including air-gaps between metal leads
EP1209739A2 (en) * 2000-11-27 2002-05-29 Chartered Semiconductor Manufacturing, Inc. Method for fabricating intermetal dielectric structures including air-gaps between metal leads
US6790761B2 (en) 2002-03-07 2004-09-14 Oki Electric Industry Co., Ltd. Method of fabricating a semiconductor device
JP2005534168A (en) * 2002-06-20 2005-11-10 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Layer arrangement and method for producing layer arrangement
JP2004172620A (en) * 2002-11-15 2004-06-17 United Microelectronics Corp Integrated circuit with air gaps and its manufacturing method
JP2005268791A (en) * 2004-03-17 2005-09-29 Interuniv Micro Electronica Centrum Vzw Semiconductor device having damascene structure provided with air-gap and method for manufacturing the same
JP2009021556A (en) * 2007-05-15 2009-01-29 Commissariat A L'energie Atomique Method for producing air gap using nanotube
EP3163606A1 (en) * 2015-10-28 2017-05-03 Semiconductor Manufacturing International Corporation (Shanghai) Flash memory and fabricating method thereof
US10418370B2 (en) 2015-10-28 2019-09-17 Semiconductor Manufacturing International (Shanghai) Corporation Flash memory having water vapor induced air gaps and fabricating method thereof
US11456307B2 (en) 2015-10-28 2022-09-27 Semiconductor Manufacturing International (Shanghai) Corporation Flash memory containing air gaps

Also Published As

Publication number Publication date
JP2555940B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US7304386B2 (en) Semiconductor device having a multilayer wiring structure
US7795733B2 (en) Semiconductor device having aerial wiring and manufacturing method thereof
US20010014526A1 (en) Semi-sacrificial diamond for air dielectric formation
JPH08264530A (en) Method and system for fabricating semiconductor device
JP2555940B2 (en) Semiconductor device and manufacturing method thereof
US7709960B2 (en) Dual liner capping layer interconnect structure
US6268274B1 (en) Low temperature process for forming inter-metal gap-filling insulating layers in silicon wafer integrated circuitry
US6287956B2 (en) Multilevel interconnecting structure in semiconductor device and method of forming the same
JP2763023B2 (en) Method for manufacturing semiconductor device
US6271119B1 (en) Method for making semiconductor device
JPH11176814A (en) Manufacture of semiconductor device
JP2705513B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2001118928A (en) Method for manufacturing integrated circuit
US7015589B2 (en) Semiconductor device having low-k dielectric film in pad region
JP2005085929A (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH06291202A (en) Manufacture of semiconductor device
US5773367A (en) High throughput planarization etch process for interlayer oxide films between metals and pre-metals
US20070166998A1 (en) Interconnecting process and method for fabricating complex dielectric barrier alyer
JP2002184858A (en) Method for fabricating semiconductor element
KR970005683B1 (en) Metal wiring method in semiconductor device
JP2001085517A (en) Semiconductor device and manufacture thereof
JPH0817923A (en) Semiconductor integrated circuit device and its manufacture
JPH09246379A (en) Semiconductor integrated circuit device and manufacture thereof
JP2004288763A (en) Semiconductor device and its manufacturing method
JPH10150102A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees