JPH0745513A - Aligner - Google Patents

Aligner

Info

Publication number
JPH0745513A
JPH0745513A JP20836393A JP20836393A JPH0745513A JP H0745513 A JPH0745513 A JP H0745513A JP 20836393 A JP20836393 A JP 20836393A JP 20836393 A JP20836393 A JP 20836393A JP H0745513 A JPH0745513 A JP H0745513A
Authority
JP
Japan
Prior art keywords
light
wafer
shielding
variable
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20836393A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Yamatsu
康義 山津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20836393A priority Critical patent/JPH0745513A/en
Publication of JPH0745513A publication Critical patent/JPH0745513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain an aligner capable of exposing the peripheral part of a wafer to a light flux of uniform light intensity distribution. CONSTITUTION:When a wafer 1 coated with resist is mounted on a rotary stand 2, and the resist in the peripheral part 12 of the wafer 1 is irradiated with the luminous flux from a light source 4 while the wafer 1 is rotated, a variable shielding means which partially and dynamically shields the luminous flux, a light receiving means which clamps the peripheral part 12 of the wafer 1 and is arranged at a position optically facing the variable shielding means, and a signal obtained by the light receiving means are used, thereby detecting the edge position of the wafer 1 and the shielded part of the luminous flux from the variable shielding means. Further a control means which operates as follows is installed; on the basis of the edge position information of the wafer 1, servo control is applied to the change amount of the light shielding region of the variable shielding means, and the exposure width in the direction of radius of gyration of the peripheral part 12 of the wafer 1 is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は露光装置に関し、特に半
導体集積回路を製造する際に用いるウエハ等円形基板の
周辺部分を選択的に露光するようにした露光装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus, and more particularly to an exposure apparatus adapted to selectively expose a peripheral portion of a circular substrate such as a wafer used for manufacturing a semiconductor integrated circuit.

【0002】[0002]

【従来の技術】半導体集積回路を製造する際にはウエハ
等の基板面に回路パターンを形成する為に感光材料とし
てレジストを均一に塗布している。
2. Description of the Related Art When manufacturing a semiconductor integrated circuit, a resist is uniformly applied as a photosensitive material in order to form a circuit pattern on the surface of a substrate such as a wafer.

【0003】このときのウエハ等の基板に塗布したレジ
ストは各種の処理工程を介すると、ウエハの周辺部分で
剥れやすくなり、この剥れたレジストがゴミとなり、そ
の後の集積回路製造工程において悪影響を及ぼすという
問題点があった。
At this time, the resist applied to the substrate such as a wafer is easily peeled off at the peripheral portion of the wafer through various processing steps, and the peeled resist becomes dust, which has an adverse effect on the subsequent integrated circuit manufacturing process. There was a problem of affecting.

【0004】これに対して特開平2−56924号公報
ではウエハの周辺部分におけるレジスト剥離を防止する
ための露光装置を提案している。同公報では露光光束を
照射する発光部と、ウエハの周辺部を挟んで発光部と対
向する位置に受光部を一体的にウエハと相対移動可能に
備えている。
On the other hand, Japanese Unexamined Patent Publication No. 2-56924 proposes an exposure apparatus for preventing the resist peeling in the peripheral portion of the wafer. In this publication, a light emitting portion that irradiates an exposure light flux and a light receiving portion that is opposed to the light emitting portion with a peripheral portion of the wafer interposed therebetween are integrally movable relative to the wafer.

【0005】そしてウエハの周辺部分を露光する露光光
束のうち、所定の露光幅(ウエハの径方向の長さ)に対
応する光束をウエハによって遮り、その残りの光束をウ
エハの周辺部を挟んで露光光源と対向して配置した受光
部で受光し、この受光部で得られる信号を用いてウエハ
の周辺部の露光幅を一定に保つようにサーボ動作を行っ
て周辺部を露光するようにしている。
Of the exposure light flux for exposing the peripheral portion of the wafer, a light flux corresponding to a predetermined exposure width (the length in the radial direction of the wafer) is blocked by the wafer, and the remaining light flux is sandwiched between the peripheral portions of the wafer. Light is received by a light receiving section arranged facing the exposure light source, and a servo operation is performed to keep the exposure width of the peripheral portion of the wafer constant by using a signal obtained by this light receiving section so that the peripheral portion is exposed. There is.

【0006】[0006]

【発明が解決しようとする課題】先の特開平2−569
24号公報で提案されている露光装置ではウエハの周辺
部の露光幅を一定にするために、ウエハエッジと露光光
束の相対的な位置関係が一定になるようにウエハ位置の
サーボ動作を行っている。このため、次のような問題点
があった。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-569
In the exposure apparatus proposed in Japanese Patent No. 24, the servo operation of the wafer position is performed so that the relative positional relationship between the wafer edge and the exposure light flux becomes constant in order to make the exposure width of the peripheral portion of the wafer constant. . Therefore, there are the following problems.

【0007】(1−1)ステッパー等の半導体素子製造
装置に露光装置を搭載した場合、サーボ動作による振動
が主装置に悪影響を与える。特にステッパーの場合はア
ライメント精度が低下してくる。
(1-1) When an exposure apparatus is mounted on a semiconductor device manufacturing apparatus such as a stepper, vibration due to servo operation adversely affects the main apparatus. Especially in the case of a stepper, the alignment accuracy is lowered.

【0008】(1−2)サーボ動作の振動に付随してゴ
ミが発生し、これがウエハ表面に付着し、微細な回路パ
ターンを形成するための障害となってくる。
(1-2) Dust is generated in association with the vibration of the servo operation and adheres to the wafer surface, which becomes an obstacle for forming a fine circuit pattern.

【0009】(1−3)サーボ動作の追従性能によりウ
エハの露光幅の制御精度が左右される。周辺部分の露光
時間を短縮するには露光光源を強力にし、ウエハの回転
スピードを上げるだけでなく、サーボ動作の追従性を上
げなければ露光幅の精度が低下してくる。
(1-3) The accuracy of controlling the exposure width of the wafer depends on the tracking performance of the servo operation. In order to shorten the exposure time of the peripheral part, not only the exposure light source is strengthened to increase the rotation speed of the wafer, but also the followability of the servo operation is not improved, the accuracy of the exposure width is reduced.

【0010】(1−4)サーボ動作を良好的に実現する
ためには装置全体が複雑化してくる。
(1-4) In order to realize the servo operation favorably, the entire apparatus becomes complicated.

【0011】(1−5)露光精度が露光光源やライトガ
イドによる光強度分布のムラ、そして経時変化等に左右
されてくる。
(1-5) The exposure accuracy depends on the unevenness of the light intensity distribution due to the exposure light source and the light guide, and the change over time.

【0012】本発明はウエハ等の円形基板の周辺部の半
径方向の所定領域を適切なる光強度分布の光束で時間的
及び空間的に効率良く露光することのできる半導体素子
製造に好適な露光装置の提供を目的とする。
The present invention is an exposure apparatus suitable for manufacturing a semiconductor device capable of efficiently exposing a predetermined area in the radial direction of a peripheral portion of a circular substrate such as a wafer with a light flux having an appropriate light intensity distribution in time and space. For the purpose of providing.

【0013】[0013]

【課題を解決するための手段】本発明の露光装置は (2−1)レジストを塗布したウエハを回転台に載置
し、該ウエハを回転させながら該ウエハの周辺部のレジ
ストを光源からの光束で露光する際、該光束を部分的且
つ動的に遮光する可変遮光手段と、該ウエハの周辺部を
挟み該可変遮光手段と光学的に対向した位置に配置した
受光手段と、該受光手段で得られる信号を用いて、該ウ
エハのエッジ位置及び可変遮光手段からの光束の遮光部
分を検出し、該ウエハのエッジ位置情報に基づき、該可
変遮光手段の遮光領域の変化量にサーボ制御をかけ、該
ウエハの周辺部の回転半径方向に関する露光幅を制御す
る制御手段とを設けたことを特徴としている。
An exposure apparatus according to the present invention comprises: (2-1) placing a resist-coated wafer on a turntable, and rotating the wafer to remove the resist on the periphery of the wafer from a light source. When exposing with a light flux, a variable light-shielding means for partially and dynamically shielding the light flux, a light-receiving means arranged at a position optically opposed to the variable light-shielding means with the peripheral portion of the wafer interposed therebetween, and the light-receiving means The edge position of the wafer and the light-shielding portion of the light flux from the variable light-shielding means are detected by using the signal obtained in step 1, and servo control is performed on the variation amount of the light-shielding area of the variable light-shielding means based on the edge position information of the wafer. In addition, a control means for controlling the exposure width in the rotation radius direction of the peripheral portion of the wafer is provided.

【0014】特に、前記可変遮光手段は、微小面積単位
で無段階に透過率を変更する機構をもち、各微小面積単
位の透過率を無段階に変更することにより、前記ウエハ
に照射される光強度を制御していることや、前記受光手
段は入射光束の光強度分布を測定する機構をもち、該光
束の光強度分布に対応して前記可変遮光手段は各微小面
積単位の透過率を無段階に変更することにより、前記ウ
エハに照射される光強度を時間的、又は/及び空間的に
安定させていることや、前記可変遮光手段を液晶シャッ
ターより構成したこと等を特徴としている。
In particular, the variable light-shielding means has a mechanism for continuously changing the transmittance for each minute area unit, and by continuously changing the transmittance for each minute area unit, the light emitted to the wafer is irradiated. The intensity is controlled, and the light receiving means has a mechanism for measuring the light intensity distribution of the incident light beam, and the variable light shielding means has no transmittance in each minute area unit corresponding to the light intensity distribution of the light beam. It is characterized in that the intensity of light applied to the wafer is stabilized temporally and / or spatially by changing the stage, and the variable light shielding means is constituted by a liquid crystal shutter.

【0015】(2−2)レジストを塗布したウエハを載
置する回転台と該回転台の回転半径方向に矩形状の光束
を照射する照明手段と該回転台方向に入射する光束を回
転半径方向に任意の長さで遮光する光路中に設けた可変
遮光手段と該ウエハの周辺部を挟み、該可変遮光手段と
光学的に対向した位置に配置し、該可変遮光手段を通過
した光束を受光する受光手段そして該受光手段で得られ
た信号に基づいて該可変遮光手段の遮光領域を制御する
制御手段とを用いて該ウエハの回転半径方向の周辺部を
露光するようにしたことを特徴としている。
(2-2) Rotating table on which a wafer coated with a resist is placed, illumination means for irradiating a rectangular light beam in the rotation radius direction of the rotating table, and light flux incident in the rotating table direction in the rotation radius direction. The variable light blocking means provided in the optical path that blocks light at an arbitrary length and the peripheral portion of the wafer are sandwiched, and the light blocking means is placed at a position optically opposed to the variable light blocking means, and the light flux passing through the variable light blocking means is received. And a control means for controlling the light-shielding area of the variable light-shielding means based on the signal obtained by the light-receiving means, so that the peripheral portion of the wafer in the radial direction of rotation is exposed. There is.

【0016】[0016]

【実施例】図1は本発明の実施例1に係わる露光装置の
概略的な構成を示す説明図である。
Embodiment 1 FIG. 1 is an explanatory diagram showing a schematic configuration of an exposure apparatus according to Embodiment 1 of the present invention.

【0017】同図において1は円形基板としてのウエハ
であり、その面上には後述する露光光に感度をもつレジ
ストが塗布されている。2は回転台であり、ウエハ1を
保持している。回転台2はモータ3によって所定の速度
で回転している。ウエハ1はウエハ搬送経路(不図示)
に沿って回転台2上に搬送され、その中心と回転台2の
回転軸の回転中心が略一致する位置で回転台2上に吸着
保持している。4は光源であり、高圧水銀灯等から成
り、露光光を供給している。
In the figure, reference numeral 1 denotes a wafer as a circular substrate, on the surface of which a resist sensitive to exposure light described later is applied. A rotary table 2 holds the wafer 1. The turntable 2 is rotated at a predetermined speed by a motor 3. Wafer 1 is a wafer transfer path (not shown)
Is conveyed to the rotary table 2 along with and is held by suction on the rotary table 2 at a position where the center thereof and the rotation center of the rotation axis of the rotary table 2 substantially coincide with each other. A light source 4 is composed of a high pressure mercury lamp or the like and supplies exposure light.

【0018】5は集光レンズであり、光源4からの露光
光を集光してライトガイド6の入射面6aに導光してい
る。ライトガイド6は光ファイバー束より成っており、
集光レンズ5側の断面(入射面)6aは略円形になるよ
うに束ねてあり、反対側の断面(射出面)6bは長方形
の露光光束が得られるように矩形に形成されている。7
はライトガイド6の射出面6bより射出した光束であ
り、矩形状になっている。
A condenser lens 5 condenses the exposure light from the light source 4 and guides it to the incident surface 6a of the light guide 6. The light guide 6 consists of a bundle of optical fibers,
The cross section (incident surface) 6a on the side of the condenser lens 5 is bundled into a substantially circular shape, and the cross section (emission surface) 6b on the opposite side is formed in a rectangular shape so that a rectangular exposure light beam can be obtained. 7
Is a light beam emitted from the emission surface 6b of the light guide 6, and has a rectangular shape.

【0019】8は可変遮光手段としての液晶プリンター
等に使用されている液晶シャッターである。9は液晶シ
ャッターコントローラであり、液晶シャッター8を制御
することにより入射光束7を微小面積(画素)単位で透
光或は遮光している。10は液晶シャッター8を透過し
た光束であり、その一部分の光束11がウエハ1の周辺
部12を露光している。13は液晶シャッター8を通過
した光束10のうちウエハ1の周辺部12を露光した残
りの光束である。
Reference numeral 8 is a liquid crystal shutter used as a variable light-shielding means in a liquid crystal printer or the like. A liquid crystal shutter controller 9 controls the liquid crystal shutter 8 to transmit or block the incident light beam 7 in units of a small area (pixel). Reference numeral 10 denotes a light beam that has passed through the liquid crystal shutter 8, and a part of the light beam 11 exposes the peripheral portion 12 of the wafer 1. Reference numeral 13 denotes a remaining light flux of the light flux 10 which has passed through the liquid crystal shutter 8 and which has exposed the peripheral portion 12 of the wafer 1.

【0020】14はリニア型の受光器であり、ウエハ1
の周辺部を挟み液晶シャッター8に対向する位置に配置
しており、受光光の強度分布を検出している。15は受
光器制御回路であり、受光器14からの光電信号に基づ
いてウエハ1のエッジ又は液晶シャッター8の透光或は
遮光している微小面積の単位(画素)を検出している。
16は制御手段としてのCPUであり、受光器制御回路
15からの出力を取り込み、液晶シャッターコントロー
ラ9を駆動制御している。
Reference numeral 14 denotes a linear type light receiver, which is used for the wafer 1
It is arranged at a position facing the liquid crystal shutter 8 with the peripheral portion of the light receiving portion sandwiched therebetween, and the intensity distribution of the received light is detected. Reference numeral 15 denotes a photodetector control circuit, which detects the edge of the wafer 1 or a unit (pixel) of a minute area which is transparent or shielded by the liquid crystal shutter 8 based on a photoelectric signal from the photodetector 14.
Reference numeral 16 is a CPU as a control means, which takes in the output from the light receiver control circuit 15 and controls the drive of the liquid crystal shutter controller 9.

【0021】本実施例においては、まず上記構成におい
てウエハ1の周辺露光を実行する前にウエハ1を回転台
2に搭載しない状態で以下の校正動作を行う。露光用の
光源4からの露光光を集光レンズ5にて集光し、ライト
ガイド6に導光する。ライトガイド6に導入された露光
光はライトガイド6を通った後、射出面6bより長方形
の断面をもつ露光光束となり、液晶シャッター8上を照
射する。
In the present embodiment, first, in the above-described structure, the following calibration operation is performed before the peripheral exposure of the wafer 1 is performed and the wafer 1 is not mounted on the rotary table 2. The exposure light from the exposure light source 4 is condensed by the condenser lens 5 and guided to the light guide 6. After passing through the light guide 6, the exposure light introduced into the light guide 6 becomes an exposure light flux having a rectangular cross section from the exit surface 6b and irradiates the liquid crystal shutter 8 with it.

【0022】次にCPU16は液晶シャッターコントロ
ーラ9を制御して液晶シャッター8の透光領域を変更
し、同時にリニア型の受光器14の出力を受光器制御回
路15から取り込むことにより液晶シャッター8の透光
から遮光に切り換わる位置と受光器14の出力の関係を
検出する。
Next, the CPU 16 controls the liquid crystal shutter controller 9 to change the light-transmitting area of the liquid crystal shutter 8, and at the same time, takes in the output of the linear type photodetector 14 from the photodetector control circuit 15, thereby transmitting the liquid crystal shutter 8. The relationship between the position where light is switched to light blocking and the output of the light receiver 14 is detected.

【0023】次に前述の校正動作が終了した後で、一旦
CPU16は液晶シャッターコントローラ9を駆動し、
液晶シャッター8の全ての領域を遮光状態とする。この
状態でウエハ1をウエハ搬送経路(不図示)に沿って回
転台2上に搬送し、その中心と回転台2の回転軸の回転
中心が略一致する位置で、回転台2上に吸着保持する。
Next, after the above-mentioned calibration operation is completed, the CPU 16 once drives the liquid crystal shutter controller 9,
The entire area of the liquid crystal shutter 8 is set to the light blocking state. In this state, the wafer 1 is transferred onto the rotary table 2 along a wafer transfer path (not shown), and suction-held on the rotary table 2 at a position where the center of the wafer 1 and the rotation center of the rotation axis of the rotary table 2 are substantially coincident with each other. To do.

【0024】次に液晶シャッター8をウエハ1の外周か
らウエハ1の中心に向かう方向で順次透光状態に切り換
えていく。この時同時に受光器14の出力を受光器制御
回路15から取り込み続け、この出力が液晶シャッター
8の透光領域の変化に追従しなくなった点をウエハ1の
エッジと判断している。
Next, the liquid crystal shutter 8 is sequentially switched to the translucent state in the direction from the outer periphery of the wafer 1 toward the center of the wafer 1. At this time, the output of the light receiver 14 is continuously taken in from the light receiver control circuit 15, and the point at which this output does not follow the change of the light transmitting area of the liquid crystal shutter 8 is determined to be the edge of the wafer 1.

【0025】次にウエハ1の周辺部12を露光する光束
11の幅(半径方向の幅)が、所定の幅となるように液
晶シャッター8の透光領域を広げ、更にウエハ1のエッ
ジから液晶シャッター8の透光から遮光に切り換わる位
置が一定になるようにサーボをかける。この状態でモー
タ3を駆動し、回転台2上のウエハ1を回転させ、これ
によりウエハ1の外周部分の全てを露光している。
Next, the light-transmitting region of the liquid crystal shutter 8 is widened so that the width (radial width) of the light flux 11 that exposes the peripheral portion 12 of the wafer 1 becomes a predetermined width, and the liquid crystal is further moved from the edge of the wafer 1. Servo is applied so that the position of the shutter 8 where light is switched to light is constant. In this state, the motor 3 is driven to rotate the wafer 1 on the turntable 2 so that the entire outer peripheral portion of the wafer 1 is exposed.

【0026】図2は図1のライトガイド6の射出面6b
より射出される光束7の断面の光強度分布の説明図であ
る。図3は図2の光強度分布に対応した露光量制御機能
及び照度ムラ補正機能を実行するために液晶シャッター
8をスイッチング動作させる場合の透光時間の割合を示
す説明図である。
FIG. 2 shows the exit surface 6b of the light guide 6 of FIG.
It is explanatory drawing of the light intensity distribution of the cross section of the light beam 7 further emitted. FIG. 3 is an explanatory diagram showing the ratio of light transmission time when the liquid crystal shutter 8 is switched to execute the exposure amount control function and the illuminance unevenness correction function corresponding to the light intensity distribution of FIG.

【0027】次に図1〜図3を用いて露光量制御機能及
び照度ムラ補正機能を実行する方法について説明する。
Next, a method of executing the exposure amount control function and the illuminance unevenness correction function will be described with reference to FIGS.

【0028】まずウエハ1を回転台2に搭載しない状態
で液晶シャッター8をその全ての領域が透光状態となる
ようにする。このとき受光器14からは一般的に図2の
ようなムラをもつ強度分布が得られる。
First, with the wafer 1 not mounted on the turntable 2, the liquid crystal shutter 8 is set so that the entire area thereof is in a light transmitting state. At this time, generally, an intensity distribution having unevenness as shown in FIG. 2 is obtained from the light receiver 14.

【0029】又、この時の強度分布は一般に経時変化
し、例えば図中の矢印方向へ変動する。CPU16は受
光器制御回路15を通してこの受光器14で得られた強
度分布を取り込み、液晶シャッター8の各画素が図3に
示すような強度分布に反比例した時間だけ透光状態にな
るように受光器制御回路15を駆動し、液晶シャッター
8をスイッチング駆動する。
In addition, the intensity distribution at this time generally changes with time, for example, in the direction of the arrow in the figure. The CPU 16 takes in the intensity distribution obtained by the photoreceiver 14 through the photoreceiver control circuit 15 so that each pixel of the liquid crystal shutter 8 is in a translucent state for a time inversely proportional to the intensity distribution as shown in FIG. The control circuit 15 is driven to drive the liquid crystal shutter 8 for switching.

【0030】これにより液晶シャッター8を透過した後
の光束の強度分布の平均が一定になるようにしている。
そして、この均一化した強度分布の光束を用いてウエハ
1の周辺部分の露光を行っている。尚本実施例で用いた
受光器14をウエハ位置決め用と兼用するようにしても
良い。
As a result, the average of the intensity distribution of the light flux after passing through the liquid crystal shutter 8 is made constant.
Then, the peripheral portion of the wafer 1 is exposed using the light flux having the uniformed intensity distribution. The light receiver 14 used in this embodiment may also be used for wafer positioning.

【0031】図4は本発明の実施例2の要部概略図であ
る。
FIG. 4 is a schematic view of the essential portions of Embodiment 2 of the present invention.

【0032】本実施例では図1の実施例1に比べてライ
トガイド6の入射面6aの形状を射出面6bと同様に矩
形状としている。そして液晶シャッター8を集光レンズ
5とライトガイド6の入射面6aとの間に配置したこと
が異なっており、その他の構成は同じである。
In this embodiment, the shape of the incident surface 6a of the light guide 6 is rectangular as in the case of the exit surface 6b as compared with the first embodiment shown in FIG. The difference is that the liquid crystal shutter 8 is arranged between the condenser lens 5 and the incident surface 6a of the light guide 6, and the other configurations are the same.

【0033】本実施例では液晶シャッター8の透過領域
を液晶シャッターコントローラ9により制御して、ライ
トガイド6の入射面6aに入射する光束10の形状を制
御している。これにより射出面6bから射出する光束状
態を制御して実施例1と同様の光学作用を得ている。
In this embodiment, the transmission area of the liquid crystal shutter 8 is controlled by the liquid crystal shutter controller 9 to control the shape of the light beam 10 incident on the incident surface 6a of the light guide 6. Thereby, the state of the light flux emitted from the exit surface 6b is controlled, and the same optical effect as that of the first embodiment is obtained.

【0034】[0034]

【発明の効果】本発明によれば以上のように各要素を設
定することにより、ウエハ等の円形基板の周辺部の半径
方向の所定領域を適切なる光強度分布の光束で時間的及
び空間的に効率良く露光することのできる半導体素子製
造に好適な露光装置を達成することができる。
According to the present invention, by setting each element as described above, a predetermined area in the radial direction of the peripheral portion of a circular substrate such as a wafer can be temporally and spatially divided by a light flux having an appropriate light intensity distribution. It is possible to achieve an exposure apparatus suitable for manufacturing a semiconductor element, which can perform efficient exposure.

【0035】特に、本発明によれば液晶シャッターを用
いて周辺露光を行う領域を可変させることにより、又液
晶シャッターを光強度分布に対応してスイッチング動作
させ、ウエハに照射される光強度を時間的、空間的に安
定させることにより、 (3−1)露光光源やライトガイドによる光強度分布の
ムラ及び経時変化に左右されない安定した露光を得るこ
とができる。
In particular, according to the present invention, the liquid crystal shutter is used to change the area for peripheral exposure, and the liquid crystal shutter is switched according to the light intensity distribution, so that the light intensity irradiated on the wafer can be changed over time. By physically and spatially stabilizing, (3-1) stable exposure can be obtained which is not affected by unevenness of the light intensity distribution due to the exposure light source or the light guide and temporal change.

【0036】(3−2)ウエハエッジと露光光源の相対
位置を一定に保つためのサーボ駆動を行わないので、振
動及びゴミの発生が防ぐことができる。
(3-2) Since the servo drive for keeping the relative position of the wafer edge and the exposure light source constant is not performed, it is possible to prevent the generation of vibration and dust.

【0037】又、液晶シャッターの追従性はウエハエッ
ジと露光光源の相対位置を一定に保つためのサーボ駆動
よりも高速である為露光幅の制御精度が向上する。露光
幅の制御精度を従来と同等にした場合は、更に強力な光
源を用いることにより露光時間の短縮化が図れる。
Further, since the followability of the liquid crystal shutter is faster than the servo drive for keeping the relative position of the wafer edge and the exposure light source constant, the exposure width control accuracy is improved. When the control accuracy of the exposure width is made equal to the conventional one, the exposure time can be shortened by using a stronger light source.

【0038】(3−3)ウエハエッジの露光光源の相対
位置を一定に保つための駆動機構が不要になる。又機構
が単純であるためにウエハの回転機能をもつ装置に容易
に組み込むことができる。等といった効果を有した露光
装置を達成することができる。
(3-3) The drive mechanism for keeping the relative position of the exposure light source at the wafer edge constant is not required. Further, since the mechanism is simple, it can be easily incorporated in an apparatus having a wafer rotating function. It is possible to achieve an exposure apparatus having effects such as the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の光束断面の光強度分布の説明図FIG. 2 is an explanatory diagram of a light intensity distribution of a light beam cross section of FIG.

【図3】 図1の液晶シャッターをスイッチング動作さ
せる場合の透光時間の割合を示す説明図
FIG. 3 is an explanatory diagram showing a ratio of light transmission time when the liquid crystal shutter of FIG. 1 is switched.

【図4】 本発明の実施例2の要部概略図FIG. 4 is a schematic view of the essential portions of Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 ウエハ 2 回転台 3 モータ 4 光源 5 集光レンズ 6 ライトガイド 7 矩形の光束 8 液晶シャッター 9 液晶シャッターコントローラ 10 液晶シャッターを透光した光束 11 実際にウエハを露光させる光束 12 ウエハの周辺部 13 残りの光束 14 リニア型の受光器 15 受光器制御回路 16 CPU 1 Wafer 2 Rotating Table 3 Motor 4 Light Source 5 Condenser Lens 6 Light Guide 7 Rectangular Luminous Flux 8 Liquid Crystal Shutter 9 Liquid Crystal Shutter Controller 10 Luminous Flux Transmitted by Liquid Crystal Shutter 11 Actual Flux of Wafer Exposed 12 Wafer Periphery 13 Remaining Luminous flux 14 Linear type photodetector 15 Photodetector control circuit 16 CPU

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レジストを塗布したウエハを回転台に載
置し、該ウエハを回転させながら該ウエハの周辺部のレ
ジストを光源からの光束で露光する際、該光束を部分的
且つ動的に遮光する可変遮光手段と、該ウエハの周辺部
を挟み該可変遮光手段と光学的に対向した位置に配置し
た受光手段と、該受光手段で得られる信号を用いて、該
ウエハのエッジ位置及び可変遮光手段からの光束の遮光
部分を検出し、該ウエハのエッジ位置情報に基づき、該
可変遮光手段の遮光領域の変化量にサーボ制御をかけ、
該ウエハの周辺部の回転半径方向に関する露光幅を制御
する制御手段とを設けたことを特徴とする露光装置。
1. A wafer coated with a resist is placed on a turntable, and while exposing the resist in the peripheral portion of the wafer with a light flux from a light source while rotating the wafer, the light flux is partially and dynamically changed. A variable light-shielding means for shielding light, a light-receiving means arranged at a position which optically opposes the variable light-shielding means with a peripheral portion of the wafer sandwiched, and a signal obtained by the light-receiving means are used to change the edge position and the variable of the wafer. The light-shielding portion of the light flux from the light-shielding means is detected, and servo control is performed on the variation amount of the light-shielding area of the variable light-shielding means based on the edge position information of the wafer,
An exposure apparatus comprising: a control unit that controls an exposure width in a rotation radius direction of a peripheral portion of the wafer.
【請求項2】 前記可変遮光手段は、微小面積単位で無
段階に透過率を変更する機構をもち、各微小面積単位の
透過率を無段階に変更することにより、前記ウエハに照
射される光強度を制御していることを特徴とする請求項
1の周辺露光装置。
2. The variable light-shielding means has a mechanism for continuously changing the transmittance for each minute area unit, and the light irradiated to the wafer by continuously changing the transmittance for each minute area unit. The edge exposure apparatus according to claim 1, wherein the intensity is controlled.
【請求項3】 前記受光手段は入射光束の光強度分布を
測定する機構をもち、該光束の光強度分布に対応して前
記可変遮光手段は各微小面積単位の透過率を無段階に変
更することにより、前記ウエハに照射される光強度を時
間的、又は/及び空間的に安定させていることを特徴と
する請求項2の露光装置。
3. The light receiving means has a mechanism for measuring a light intensity distribution of an incident light flux, and the variable light shielding means continuously changes the transmittance of each minute area unit in accordance with the light intensity distribution of the light flux. The exposure apparatus according to claim 2, characterized in that the intensity of light applied to the wafer is stabilized temporally and / or spatially.
【請求項4】 前記可変遮光手段を液晶シャッターより
構成したことを特徴とする請求項3の露光装置。
4. The exposure apparatus according to claim 3, wherein the variable light blocking means is composed of a liquid crystal shutter.
【請求項5】 レジストを塗布したウエハを載置する回
転台と該回転台の回転半径方向に矩形状の光束を照射す
る照明手段と該回転台方向に入射する光束を回転半径方
向に任意の長さで遮光する光路中に設けた可変遮光手段
と該ウエハの周辺部を挟み、該可変遮光手段と光学的に
対向した位置に配置し、該可変遮光手段を通過した光束
を受光する受光手段そして該受光手段で得られた信号に
基づいて該可変遮光手段の遮光領域を制御する制御手段
とを用いて該ウエハの回転半径方向の周辺部を露光する
ようにしたことを特徴とする露光装置。
5. A rotating table on which a resist-coated wafer is placed, an illuminating means for irradiating a rectangular light beam in the rotation radius direction of the rotating table, and a light beam incident in the rotation table direction in an arbitrary rotation radius direction. A light receiving means which is arranged at a position optically opposed to the variable light blocking means, sandwiching the variable light blocking means provided in the optical path for blocking the length and the peripheral portion of the wafer, and which receives the light flux passing through the variable light blocking means. An exposure apparatus is characterized in that the peripheral portion of the wafer in the radial direction of rotation is exposed by using control means for controlling the light-shielding area of the variable light-shielding means based on the signal obtained by the light-receiving means. .
JP20836393A 1993-07-30 1993-07-30 Aligner Pending JPH0745513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20836393A JPH0745513A (en) 1993-07-30 1993-07-30 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20836393A JPH0745513A (en) 1993-07-30 1993-07-30 Aligner

Publications (1)

Publication Number Publication Date
JPH0745513A true JPH0745513A (en) 1995-02-14

Family

ID=16555057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20836393A Pending JPH0745513A (en) 1993-07-30 1993-07-30 Aligner

Country Status (1)

Country Link
JP (1) JPH0745513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100273252B1 (en) * 1997-12-19 2000-12-15 김영환 Wafer Peripheral Exposure Equipment
KR100330481B1 (en) * 1999-12-30 2002-04-01 황인길 Semiconductor exposure system
WO2016095282A1 (en) * 2014-12-19 2016-06-23 北京北方微电子基地设备工艺研究中心有限责任公司 Wafer positioning device and method
KR102096851B1 (en) * 2019-10-17 2020-04-03 주식회사 옵티플렉스 Optical system for semiconductior and exposure apparatus including for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100273252B1 (en) * 1997-12-19 2000-12-15 김영환 Wafer Peripheral Exposure Equipment
KR100330481B1 (en) * 1999-12-30 2002-04-01 황인길 Semiconductor exposure system
WO2016095282A1 (en) * 2014-12-19 2016-06-23 北京北方微电子基地设备工艺研究中心有限责任公司 Wafer positioning device and method
KR102096851B1 (en) * 2019-10-17 2020-04-03 주식회사 옵티플렉스 Optical system for semiconductior and exposure apparatus including for the same

Similar Documents

Publication Publication Date Title
KR100374901B1 (en) Scanning exposure apparatus
JPH0774092A (en) Aligner and manufacture of device using the same
JPH03211813A (en) Exposure aligner
KR19990045608A (en) Wafer Peripheral Exposure Equipment
JPH0745513A (en) Aligner
JP3376688B2 (en) Exposure apparatus and exposure method using the same
JPH0797549B2 (en) Exposure method and apparatus thereof
KR20020061478A (en) Apparatus for Exposing Periphery of Wafer and Method for Exposing Periphery of Wafer
JP3209294B2 (en) Exposure equipment
US20110123934A1 (en) Scanning exposure apparatus
JP3175059B2 (en) Peripheral exposure apparatus and method
JPH09283396A (en) Periphery aligner and periphery exposure method
JPH10284371A (en) Exposure method and equipment
JP3102077B2 (en) Semiconductor device manufacturing method and projection exposure apparatus
JP2815762B2 (en) Method of aligning film and reticle in film exposure apparatus
JPH09186066A (en) Peripheral exposure method and equipment
JP5501201B2 (en) Peripheral exposure apparatus and method
JP3326863B2 (en) Peripheral exposure apparatus and method
JPH01175730A (en) Aligner
CN112327579B (en) Exposure apparatus and method for manufacturing article
JP3219925B2 (en) Peripheral exposure apparatus and peripheral exposure method
JPH01295421A (en) Peripheral exposure apparatus
KR20030085896A (en) Mask for estimating aberration in projection lens system of exposure apparatus
JPH09293675A (en) Peripheral exposure device
JPH07183207A (en) Substrate periphery exposure device