JPH074450Y2 - Non-condensable gas discharge device for absorption refrigerator - Google Patents
Non-condensable gas discharge device for absorption refrigeratorInfo
- Publication number
- JPH074450Y2 JPH074450Y2 JP10472288U JP10472288U JPH074450Y2 JP H074450 Y2 JPH074450 Y2 JP H074450Y2 JP 10472288 U JP10472288 U JP 10472288U JP 10472288 U JP10472288 U JP 10472288U JP H074450 Y2 JPH074450 Y2 JP H074450Y2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- condensable gas
- pressure
- storage tank
- absorption refrigerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/04—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
- F25B43/046—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for sorption type systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、吸収冷凍機の不凝縮ガス排出装置に係り、特
に、排出機構を簡素化した吸収冷凍機の不凝縮ガス排出
装置に関する。TECHNICAL FIELD The present invention relates to a non-condensable gas discharge device for an absorption refrigerator, and more particularly to a non-condensed gas discharge device for an absorption refrigerator having a simplified discharge mechanism.
従来、吸収冷凍機の不凝縮ガス排出装置としては、例え
ば、第4図に記載されたものが知られている。図におい
て、冷凍運転中ストレージタンク1に溜められた不凝縮
ガスが、冷凍運転停止後、通常は溶液希釈運転中に電磁
弁2,3が開かれ、水室4から吐出される冷水または冷却
水等で駆動される抽気エゼクター5により、機外に排出
される。冷凍機側に設けられた逆止弁6は、抽気エゼク
ターの駆動水が停止した場合に、大気がストレージタン
ク1に逆流するのを防止していて、電磁弁2と直列に設
けられている。Conventionally, as a non-condensable gas discharge device for an absorption refrigerator, for example, the one shown in Fig. 4 is known. In the figure, the non-condensable gas accumulated in the storage tank 1 during the freezing operation is the cold water or the cooling water discharged from the water chamber 4 after the freezing operation is stopped and the solenoid valves 2 and 3 are normally opened during the solution dilution operation. It is discharged to the outside of the machine by the bleed air ejector 5 which is driven by the like. The check valve 6 provided on the refrigerator side prevents the atmosphere from flowing back to the storage tank 1 when the drive water of the extraction air ejector is stopped, and is provided in series with the solenoid valve 2.
上記従来技術においては、不凝縮ガスの抽気排出は冷凍
運転停止後に行われ、冷凍運転継続中に抽気排出できる
ようになっていないため、ストレージタンクに不凝縮ガ
スが充満して圧力が上昇し、冷凍性能に悪影響を与える
場合があった。また、ストレージタンク1と抽気エゼク
ターの間に、電磁弁2と逆止弁6が直列に配設されてい
て流路抵抗が大きく、ストレージタンク1の到達真空度
を上げるには、抽気エゼクター5を駆動する駆動水の流
速,流量を増加する必要があり、前記流路抵抗のために
駆動水の使用量が増大した。さらに、ストレージタンク
内の不凝縮ガスの有無に拘らず、駆動水を用いて抽気排
出動作を行うので、駆動水が無駄に消費される場合があ
った。In the above-mentioned conventional technology, extraction of the non-condensable gas is performed after the refrigeration operation is stopped, and it is not possible to extract the extracted air while the refrigeration operation is continued, so that the storage tank is filled with the non-condensable gas and the pressure increases, There were cases where the refrigeration performance was adversely affected. Further, since the solenoid valve 2 and the check valve 6 are arranged in series between the storage tank 1 and the extraction ejector, the flow passage resistance is large, and in order to increase the ultimate vacuum of the storage tank 1, the extraction ejector 5 is used. It is necessary to increase the flow velocity and flow rate of the driving water to be driven, and the amount of driving water used is increased due to the flow path resistance. Furthermore, regardless of the presence or absence of non-condensable gas in the storage tank, the bleed air discharge operation is performed using the drive water, so the drive water may be wasted.
本考案の課題は、冷凍運転中の不凝縮ガス排出を可能に
するとともに、抽気エゼクター駆動水量の低減が可能な
不凝縮ガス排出装置を提供するにある。An object of the present invention is to provide a non-condensable gas discharge device that enables non-condensable gas discharge during a refrigerating operation and that can reduce the amount of extraction ejector drive water.
上記の課題は、吸収冷凍機の低圧部に連通された不凝縮
ガスストレージタンクと、吸引流体入口を抽気管路によ
って前記ストレージタンクに接続された抽気手段と、前
記抽気管路に介装された弁と、前記抽気手段に駆動管路
によって接続された前記抽気手段の駆動源と、前記駆動
管路に介装された弁と、を備えた吸収冷凍機の不凝縮ガ
ス排出装置において、前記駆動管路に介装された弁を、
前記不凝縮ガスストレージタンクの圧力を検出する圧力
スイッチの出力信号によって開閉制御される電磁弁と
し、前記抽気管路に介装された弁を、前記不凝縮ガスス
トレージタンクの圧力と前記抽気手段の吸引流体入口の
差圧により開閉される差圧開閉弁とした吸収冷凍機の不
凝縮ガス排出装置によって達成される。The above-mentioned problem is a non-condensable gas storage tank communicated with the low-pressure part of the absorption refrigerator, an extraction means in which the suction fluid inlet is connected to the storage tank by an extraction line, and the extraction line is interposed. In the non-condensed gas discharge device of the absorption refrigerator, which includes a valve, a drive source of the extraction means connected to the extraction means by a drive line, and a valve interposed in the drive line, the drive The valve installed in the pipeline,
An electromagnetic valve that is controlled to be opened and closed by an output signal of a pressure switch that detects the pressure of the non-condensable gas storage tank, and a valve interposed in the bleeding line is provided for the pressure of the non-condensed gas storage tank and the bleeding means. This is achieved by the non-condensable gas discharge device of the absorption refrigerator, which is a differential pressure opening / closing valve that is opened / closed by the differential pressure at the suction fluid inlet.
上記の課題は、また、圧力スイッチに換えて、冷凍機の
運転時間を積算しあらかじめ定められた運転時間経過後
定められた時間間隔で開閉信号を出力する信号出力手段
を設け、前記駆動管路に介装された弁を、前記信号出力
手段が出力する信号により開閉制御するようにした請求
項1に記載の吸収冷凍機の不凝縮ガス排出装置によって
も達成される。The above-mentioned problem is also to provide a signal output means that replaces the pressure switch and outputs an open / close signal at a predetermined time interval after integrating the operating time of the refrigerator and elapse of a predetermined operating time. The non-condensed gas discharge device for an absorption refrigerating machine according to claim 1, wherein the valve inserted in the valve is controlled to open / close by a signal output from the signal output means.
吸収冷凍機が運転されて、不凝縮ガスストレージタンク
に不凝縮ガスがたまると、該ストレージタンクの圧力が
次第に上昇する。不凝縮ガスストレージタンクの圧力が
あらかじめ定められた圧力に達すると、不凝縮ガススト
レージタンクの圧力を検出する圧力スイッチが信号を出
力し、駆動管路に介装された電磁弁はこの信号を受けて
開かれる。電磁弁が開かれると、抽気手段の駆動源から
駆動流体が前記電磁弁を経て抽気手段に流入し、抽気手
段が駆動される。抽気手段が駆動されると、抽気手段の
吸引流体入口側の圧力が低下し、差圧開閉弁の入口側と
出口側の差圧が小さくなる。差圧開閉弁は入口側と出口
側の差圧があらかじめ定められた値になると開くように
設定され、抽気手段が駆動されて前記差圧が前記定めら
れた値になると、差圧開閉弁が開く。差圧開閉弁が開く
と、不凝縮ガスストレージタンク内の不凝縮ガスは、差
圧開閉弁を経て抽気手段に吸引排出される。不凝縮ガス
ストレージタンク内の不凝縮ガスが排出されて、該スト
レージタンク内の圧力が低下すると、前記圧力スイッチ
の出力信号が変化して、前記電磁弁が閉じられ、抽気手
段の駆動が停止される。抽気手段の駆動が停止される
と、抽気手段の吸引流体入口の圧力降下がなくなり、差
圧開閉弁の入口側と出口側の差圧が大きくなって、該差
圧開閉弁が閉じられる。When the absorption refrigerator is operated and the noncondensable gas is accumulated in the noncondensable gas storage tank, the pressure of the storage tank is gradually increased. When the pressure of the non-condensable gas storage tank reaches a predetermined pressure, the pressure switch that detects the pressure of the non-condensable gas storage tank outputs a signal, and the solenoid valve installed in the drive line receives this signal. Opened. When the solenoid valve is opened, the driving fluid from the drive source of the bleeding means flows into the bleeding means via the solenoid valve, and the bleeding means is driven. When the bleeding means is driven, the pressure on the suction fluid inlet side of the bleeding means decreases, and the differential pressure between the inlet side and the outlet side of the differential pressure on-off valve decreases. The differential pressure on-off valve is set to open when the differential pressure between the inlet side and the outlet side reaches a predetermined value, and when the bleeding means is driven and the differential pressure reaches the predetermined value, the differential pressure on-off valve opens. open. When the differential pressure on-off valve is opened, the non-condensable gas in the non-condensable gas storage tank is sucked and discharged to the extraction means via the differential pressure on-off valve. Non-condensable gas When the non-condensable gas in the storage tank is discharged and the pressure in the storage tank drops, the output signal of the pressure switch changes, the solenoid valve is closed, and the drive of the bleeding means is stopped. It When the driving of the bleeding means is stopped, the pressure drop at the suction fluid inlet of the bleeding means disappears, the differential pressure between the inlet side and the outlet side of the differential pressure on-off valve increases, and the differential pressure on-off valve is closed.
請求項2に記載の本考案によれば、圧力スイッチに換え
て吸収冷凍機の運転時間を積算し、所定の運転時間経過
後、定められた時間間隔で駆動管路に設けられた弁に開
閉信号を出力する信号出力手段が設けられるから、あら
かじめ冷凍機運転時間と不凝縮ガスストレージタンクの
圧力上昇量を調べて開閉時間を設定しておくことによ
り、不凝縮ガスストレージタンクの圧力が不凝縮ガスの
排出を行う必要がある程高くなったとき、排出が行われ
る。According to the present invention as set forth in claim 2, the operating time of the absorption chiller is integrated instead of the pressure switch, and after a lapse of a predetermined operating time, the valve provided in the drive line is opened / closed at a predetermined time interval. Since a signal output means for outputting a signal is provided, the pressure in the non-condensable gas storage tank is not condensed by checking the refrigerator operating time and the pressure rise amount of the non-condensable gas storage tank in advance and setting the opening / closing time. Evacuation occurs when the gas becomes so high that it needs to be evacuated.
第1図により、本発明の第1の実施例を説明する。吸収
冷凍機30の低圧部(例えば吸収器)に接続された管路12
の他端に不凝縮ガス分離器11が設けられ、該不凝縮ガス
分離器11の底部は、溶液管路13により吸収冷凍機の例え
ば吸収器底部に連通されている。前記不凝縮ガス分離器
11に不凝縮ガス管路14で連通された不凝縮ガスストレー
ジタンク1が設けられ、該ストレージタンク1には該タ
ンクを外気と連通する手動弁10と、該タンク1の内圧を
計測して圧力信号を出力する圧力スイッチ7と、抽気管
路8と、が設けられている。該抽気管路8には、差圧開
閉弁9が介装され、管路8の他端は抽気手段である抽気
エゼクター5の吸引流体入口に接続されている。前記差
圧開閉弁9は内部に弁体となるボール21を備え、該ボー
ル21の入口側(不凝縮ガスストレージタンク側)B室と
出口側(抽気エゼクター側)A室の差圧により開閉する
弁であって、前記B室側に開閉圧力を調整するスプリン
グ22を備えている。抽気エゼクター5の駆動水入口は電
磁弁3を介装した駆動管路16によって、駆動水源である
水室4に接続され、電磁弁3は前記圧力スイッチ7の信
号により開閉される。A first embodiment of the present invention will be described with reference to FIG. Pipeline 12 connected to the low pressure part of the absorption refrigerator 30 (for example, an absorber)
The non-condensable gas separator 11 is provided at the other end of the non-condensable gas separator 11, and the bottom of the non-condensable gas separator 11 is connected to the absorption refrigerator, for example, the bottom of the absorber by a solution line 13. The non-condensing gas separator
A non-condensable gas storage tank 1 communicated with a non-condensable gas pipeline 14 is provided at 11, and the storage tank 1 has a manual valve 10 for communicating the tank with the outside air and a pressure measured by measuring the internal pressure of the tank 1. A pressure switch 7 for outputting a signal and an extraction line 8 are provided. A differential pressure opening / closing valve 9 is provided in the extraction line 8, and the other end of the line 8 is connected to the suction fluid inlet of the extraction ejector 5, which is extraction means. The differential pressure on-off valve 9 is provided with a ball 21 as a valve body therein, and is opened and closed by a differential pressure between an inlet side (non-condensed gas storage tank side) B chamber and an outlet side (bleeding ejector side) A chamber of the ball 21. The valve is provided with a spring 22 for adjusting the opening / closing pressure on the B chamber side. The drive water inlet of the extraction air ejector 5 is connected to the water chamber 4 which is the drive water source by the drive pipe 16 having the solenoid valve 3 interposed, and the solenoid valve 3 is opened and closed by the signal of the pressure switch 7.
冷凍運転中、不凝縮ガスは溶液の液滴と共に、管路12を
経て不凝縮ガス分離器11へ流入し、該分離器11内で不凝
縮ガスと液滴とが分離される。分離された溶液は溶液管
路13を経て吸収器へ還流し、一方不凝縮ガスは不凝縮ガ
ス管路14を経て、不凝縮ガスストレージタンク1へ流入
して貯蔵される。冷凍運転の継続に伴って不凝縮ガスが
増加するので、ストレージタンク1内の圧力(不凝縮ガ
スの圧力)は徐々に上昇し、圧力スイッチ7の第1の設
定圧をこえると、圧力スイッチ7から信号が出力されて
電磁弁3が開となる。電磁弁3が開くと、水室4から駆
動水が抽気エゼクター5に流入し、該エゼクター5が動
作しれ吸引流体入口側に連通する差圧開閉弁9の出口側
A室の圧力が低下する。差圧開閉弁9はボールに加わる
スプリング22の力とボール21に加わるA,B室間の差圧と
で弁が開くが、この弁が開くときの前記差圧がスプリン
グ22を調節することによってあらかじめ設定されてお
り、上述のようにA室側の圧力が低下して、AB室間の差
圧が前記設定された差圧よりも小さくなると、弁9が開
く。弁9が開くと、ストレージタンク1内の不凝縮ガス
は抽気エゼクター5に吸引されて排出される。ストレー
ジタンク1の内圧は不凝縮ガスの排出と共に低下し、圧
力スイッチ7の第2の設定圧力以下に低下すると、圧力
信号の発出が停止して電磁弁3が閉じられ、抽気エゼク
ター5への駆動水が流入しなくなるので、該エゼクター
5の吸引力がなくなり、差圧開閉弁9内のA室が大気圧
となり、AB室間の差圧が設定値より大きくなって、該弁
9が閉じて不凝縮ガスの排出が停止されるから、外気の
不凝縮ガスストレージタンクへの逆流が防止される。
尚、圧力スイッチ7の第1,第2の設定圧力は吸収冷凍機
の蒸発器での蒸発温度を考慮して定めておく必要があ
る。また、第1図において、差圧開閉弁9内のスプリン
グ22はB室内に配置してあるが、A室内に配置してボー
ルを弁座側に押しつける方向にスプリングを用いてもよ
い。During the refrigeration operation, the non-condensable gas flows into the non-condensable gas separator 11 together with the droplets of the solution via the conduit 12, and the non-condensable gas and the droplets are separated in the separator 11. The separated solution flows back to the absorber via the solution line 13, while the non-condensable gas flows via the non-condensable gas line 14 into the non-condensable gas storage tank 1 for storage. Since the noncondensable gas increases as the refrigeration operation continues, the pressure in the storage tank 1 (the pressure of the noncondensable gas) gradually rises, and when the pressure exceeds the first set pressure of the pressure switch 7, the pressure switch 7 A signal is output from the solenoid valve 3 and the solenoid valve 3 is opened. When the solenoid valve 3 is opened, the drive water flows from the water chamber 4 into the bleed air ejector 5, and the ejector 5 operates to reduce the pressure in the A chamber on the outlet side of the differential pressure on-off valve 9 communicating with the suction fluid inlet side. The differential pressure on-off valve 9 opens due to the force of the spring 22 applied to the ball and the differential pressure between the A and B chambers applied to the ball 21, and the differential pressure when the valve opens adjusts the spring 22. It is set in advance, and the valve 9 opens when the pressure on the A chamber side decreases as described above and the differential pressure between the AB chambers becomes smaller than the preset differential pressure. When the valve 9 is opened, the non-condensable gas in the storage tank 1 is sucked and discharged by the extraction ejector 5. When the internal pressure of the storage tank 1 drops with the discharge of the non-condensable gas and drops below the second set pressure of the pressure switch 7, the output of the pressure signal is stopped and the solenoid valve 3 is closed to drive the bleeder ejector 5. Since water does not flow in, the suction force of the ejector 5 disappears, the A chamber in the differential pressure on-off valve 9 becomes atmospheric pressure, the differential pressure between the AB chambers becomes larger than the set value, and the valve 9 closes. Since the discharge of the noncondensable gas is stopped, the backflow of the outside air to the noncondensable gas storage tank is prevented.
The first and second set pressures of the pressure switch 7 need to be set in consideration of the evaporation temperature in the evaporator of the absorption refrigerator. Further, in FIG. 1, the spring 22 in the differential pressure on-off valve 9 is arranged in the B chamber, but it may be arranged in the A chamber to use the spring in the direction of pressing the ball toward the valve seat.
本実施例によれば、冷凍運転中においても、不凝縮ガス
ストレージタンク内圧を検知して、不凝縮ガスを抽気排
出できるので、不凝縮ガスストレージタンク内圧力が高
くなって冷凍性能に悪影響を与えることがない。また、
不凝縮ガスストレージタンク内圧力が高くなった時のみ
抽気排出を行うので、抽気エゼクター駆動水を無駄に消
費することがない。さらに、抽気管路の弁が1個となっ
たので、流路抵抗が小さくなり、少ない駆動水量で効率
的な抽気が可能となった。According to the present embodiment, even during the refrigerating operation, the non-condensable gas storage tank internal pressure can be detected and the non-condensable gas can be extracted and discharged. Therefore, the non-condensable gas storage tank internal pressure becomes high and the refrigerating performance is adversely affected. Never. Also,
Since the extracted air is discharged only when the pressure inside the non-condensable gas storage tank becomes high, the extracted ejector drive water is not wastefully consumed. Furthermore, since the number of valves in the extraction line is one, the flow path resistance is reduced, and efficient extraction is possible with a small amount of driving water.
第2図に示す第2の実施例は、不凝縮ガスストレージタ
ンク1に設けられていた圧力スイッチ7を省き、電磁弁
3の開閉制御を新たに設けられた信号出力手段である演
算制御機15による限時動作による行う点が、前記第1の
実施例と異なっている。演算制御機15は、吸収冷凍機の
例えば溶液循環ポンプの電源に接続されたタイマー等
の、吸収冷凍機の運転時間を積算する手段と、前記積算
時間が所定の値になったら、定められた時間、駆動管路
に介装された弁を開く信号を出力する手段とを備えてい
る。本実施例においては、あらかじめ吸収冷凍機の運転
時間と、不凝縮ガスストレージタンク圧力上昇量の関係
および抽気エゼクター駆動時間と、不凝縮ガスストレー
ジタンク降下量の関係とを把握して限時動作が設定され
る。本実施例によっても、前記第1の実施例と同様の効
果が得られる。In the second embodiment shown in FIG. 2, the pressure switch 7 provided in the non-condensable gas storage tank 1 is omitted, and the open / close control of the solenoid valve 3 is newly provided with an arithmetic controller 15 which is a signal output means. The difference from the first embodiment is that the time delay operation is performed by. The arithmetic and control unit 15 is a means, such as a timer connected to the power supply of the solution circulation pump of the absorption refrigerator, for accumulating the operating time of the absorption refrigerator, and when the accumulated time reaches a predetermined value, it is determined. And means for outputting a signal to open a valve interposed in the drive line for a period of time. In the present embodiment, the timed operation is set in advance by grasping the relationship between the operating time of the absorption chiller, the non-condensable gas storage tank pressure increase amount and the extraction air ejector drive time, and the non-condensable gas storage tank drop amount. To be done. According to this embodiment, the same effect as that of the first embodiment can be obtained.
第3図に示す第3の実施例においては、抽気エゼクター
の駆動に用いた水を、冷温水系あるいは冷却水系のタン
ク23に導き、ポンプ24によって水室4に回収して再利用
を図ったものであって、水の無駄がなくなる。In the third embodiment shown in FIG. 3, the water used for driving the extraction ejector is introduced to a cold / hot water system or cooling water system tank 23, and is collected in a water chamber 4 by a pump 24 for reuse. However, there is no waste of water.
本考案によれば、不凝縮ガスストレージタンクの圧力を
検出する圧力スイッチを設け、この圧力スイッチの信号
により、駆動管路に設けられた弁を開閉するようにした
ので、冷凍機運転中であっても不凝縮ガスの抽気が可能
になり、冷凍性能の低下を防止する効果があるととも
に、抽気管路の弁を差圧により開閉される弁1個のみと
したので、抽気管路の流路抵抗が低下し、抽気手段を駆
動する駆動源の使用量を低減する効果がある。According to the present invention, the pressure switch for detecting the pressure of the non-condensable gas storage tank is provided, and the valve provided in the drive line is opened / closed by the signal of the pressure switch. Even if non-condensed gas can be extracted, it has the effect of preventing deterioration of refrigeration performance, and since only one valve that is opened / closed by the differential pressure is used for the extraction line, the flow path of the extraction line The resistance is reduced, and there is an effect of reducing the usage amount of the drive source for driving the extraction means.
請求項2に記載の本考案によっても、前項と同様の効果
が得られる。According to the present invention as set forth in claim 2, the same effect as in the preceding paragraph can be obtained.
第1図は本考案の第1の実施例を示す系統図、第2図は
第2の実施例を示す系統図、第3図は第3の実施例を示
す系統図であり、第4図は従来技術の例を示す系統図で
ある。 1…不凝縮ガスストレージタンク、3…駆動管路に介装
された弁(電磁弁)、4…抽気手段の駆動源(水室)、
5…抽気手段(抽気エゼクター)、7…圧力スイッチ、
8…抽気管路、9…差圧開閉弁、15……信号出力手段
(演算制御機)。FIG. 1 is a system diagram showing a first embodiment of the present invention, FIG. 2 is a system diagram showing a second embodiment, FIG. 3 is a system diagram showing a third embodiment, and FIG. [Fig. 3] is a system diagram showing an example of a conventional technique. DESCRIPTION OF SYMBOLS 1 ... Non-condensable gas storage tank, 3 ... Valve (solenoid valve) interposed in a drive pipe line, 4 ... Drive source (water chamber) of extraction means,
5 ... bleeding means (bleeding ejector), 7 ... pressure switch,
8 ... bleeding line, 9 ... differential pressure on-off valve, 15 ... signal output means (arithmetic controller).
Claims (2)
スストレージタンクと、吸引流体入口を抽気管路によっ
て前記ストレージタンクに接続された抽気手段と、前記
抽気管路に介装された弁と、前記抽気手段に駆動管路に
よって接続された前記抽気手段の駆動源と、前記駆動管
路に介装された弁と、を備えた吸収冷凍機の不凝縮ガス
排出装置において、前記駆動管路に介装された弁は、前
記不凝縮ガスストレージタンクの圧力を検出する圧力ス
イッチの出力信号によって開閉制御される電磁弁である
ことと、前記抽気管路に介装された弁は、前記不凝縮ガ
スストレージタンクの圧力と前記抽気手段の吸引流体入
口の差圧により開閉される差圧開閉弁であることと、を
特徴とする吸収冷凍機の不凝縮ガス排出装置。1. A non-condensable gas storage tank communicated with a low pressure part of an absorption refrigerator, a bleeding means having a suction fluid inlet connected to the storage tank by a bleeding line, and a bleeding line interposed in the bleeding line. In the non-condensed gas discharge device of the absorption refrigerator, which includes a valve, a drive source of the extraction means connected to the extraction means by a drive line, and a valve interposed in the drive line, the drive The valve installed in the pipeline is an electromagnetic valve whose opening and closing is controlled by the output signal of the pressure switch that detects the pressure of the non-condensable gas storage tank, and the valve installed in the extraction pipeline is A non-condensable gas discharge device for an absorption refrigerator, wherein the non-condensable gas storage tank is a differential pressure opening / closing valve that is opened / closed by a differential pressure at a suction fluid inlet of the extraction means.
を積算しあらかじめ定められた運転時間経過後定められ
た時間間隔で開閉信号を出力する信号出力手段が設けら
れ、前記駆動管路に介装された弁は、前記信号出力手段
が出力する信号により開閉制御されることを特徴とする
請求項1に記載の吸収冷凍機の不凝縮ガス排出装置。2. The pressure switch is replaced with a signal output means for accumulating the operating time of the refrigerator and outputting an opening / closing signal at a predetermined time interval after the elapse of a predetermined operating time. The non-condensable gas discharge device for an absorption refrigerator according to claim 1, wherein the interposed valve is controlled to be opened / closed by a signal output by the signal output means.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10472288U JPH074450Y2 (en) | 1988-08-08 | 1988-08-08 | Non-condensable gas discharge device for absorption refrigerator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10472288U JPH074450Y2 (en) | 1988-08-08 | 1988-08-08 | Non-condensable gas discharge device for absorption refrigerator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0228055U JPH0228055U (en) | 1990-02-23 |
| JPH074450Y2 true JPH074450Y2 (en) | 1995-02-01 |
Family
ID=31336692
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10472288U Expired - Lifetime JPH074450Y2 (en) | 1988-08-08 | 1988-08-08 | Non-condensable gas discharge device for absorption refrigerator |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH074450Y2 (en) |
-
1988
- 1988-08-08 JP JP10472288U patent/JPH074450Y2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0228055U (en) | 1990-02-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6564564B2 (en) | Purge | |
| CA2607584A1 (en) | Device and method for controlling cooling systems | |
| JP6986081B2 (en) | Automatic extraction and exhaust system | |
| JP4082435B2 (en) | Refrigeration equipment | |
| JPH074450Y2 (en) | Non-condensable gas discharge device for absorption refrigerator | |
| US11933527B2 (en) | Cooling system with oil return to accumulator | |
| JP2007147274A (en) | Refrigeration equipment | |
| JP7562823B2 (en) | Air extraction device | |
| CN111059801A (en) | Condenser assembly, control method thereof, oil return assembly and air conditioner | |
| CN112066458B (en) | Air conditioning unit adopting throttle valve and control method thereof | |
| JP2757589B2 (en) | Oil absorption type bleeding device for refrigerator | |
| JP2001505296A (en) | Refrigeration circuit device for refrigeration system | |
| JP2008032391A (en) | Refrigeration equipment | |
| JP4111241B2 (en) | Refrigeration equipment | |
| JP2511959B2 (en) | Air conditioner | |
| CN217056533U (en) | Condensation pressure regulating valve for water hammer prevention | |
| JPH0754775Y2 (en) | Non-condensable gas discharge device for absorption refrigerator | |
| KR100347157B1 (en) | Noncondensing gas discharger of turbo refrigeration | |
| JPH07280396A (en) | Bleeding device | |
| KR200153226Y1 (en) | Non-Condensing Gas Extraction Device for Absorption Air Conditioning | |
| JP2563514B2 (en) | Air conditioner | |
| JPS6139584B2 (en) | ||
| JPH04359771A (en) | Bleeder | |
| JPS6463765A (en) | Refrigerator | |
| KR200162930Y1 (en) | Uncompressed gas exhaust equipment in cooling and heating machine |