JPH0754775Y2 - Non-condensable gas discharge device for absorption refrigerator - Google Patents

Non-condensable gas discharge device for absorption refrigerator

Info

Publication number
JPH0754775Y2
JPH0754775Y2 JP9464890U JP9464890U JPH0754775Y2 JP H0754775 Y2 JPH0754775 Y2 JP H0754775Y2 JP 9464890 U JP9464890 U JP 9464890U JP 9464890 U JP9464890 U JP 9464890U JP H0754775 Y2 JPH0754775 Y2 JP H0754775Y2
Authority
JP
Japan
Prior art keywords
timer
solenoid valve
storage tank
output signal
discharge device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9464890U
Other languages
Japanese (ja)
Other versions
JPH0453175U (en
Inventor
康裕 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP9464890U priority Critical patent/JPH0754775Y2/en
Publication of JPH0453175U publication Critical patent/JPH0453175U/ja
Application granted granted Critical
Publication of JPH0754775Y2 publication Critical patent/JPH0754775Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/046Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for sorption type systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は吸収式冷凍機の不凝縮ガス排出装置に係り、特
にエゼクタ駆動水の節減に好適な吸収式冷凍機の不凝縮
ガス排出装置に関するものである。
[Detailed Description of the Invention] [Industrial application] The present invention relates to a non-condensable gas discharge device for an absorption refrigerator, and more particularly to a non-condensed gas discharge device for an absorption refrigerator, which is suitable for saving ejector driving water. It is a thing.

〔従来技術〕[Prior art]

吸収式冷凍機は、冷媒と吸収剤からなる溶液を加熱して
冷媒蒸気をつくる再生器と、その冷媒蒸気を凝縮させる
凝縮器と、凝縮した冷媒を蒸発させる蒸発器と、蒸発し
た冷媒を溶液に吸収させる吸収器とから構成されてい
る。そして吸収式冷凍機には、再生器で発生し冷凍能力
低下の原因となる不凝縮ガス(主として水素ガス)を機
外へ排出する不凝縮ガス排出装置が設けられている。以
下不凝縮ガスをガスと略称する。
An absorption refrigerator is a regenerator that heats a solution consisting of a refrigerant and an absorbent to produce refrigerant vapor, a condenser that condenses the refrigerant vapor, an evaporator that evaporates the condensed refrigerant, and a solution that evaporates the refrigerant. It is composed of an absorber that absorbs. The absorption chiller is provided with a non-condensable gas discharge device that discharges the non-condensable gas (mainly hydrogen gas) that is generated in the regenerator and causes a reduction in refrigerating capacity to the outside of the machine. Hereinafter, the non-condensable gas is abbreviated as gas.

従来の不凝縮ガス排出装置は、実願昭63−104722に開示
され第7図に示すように、ガス−ストーレジタンク1内
のガス圧力が上昇し圧力スイッチ7の上限設定圧力に達
すると、圧力スイッチ7から出力された信号によりエゼ
クタ5の駆動水を開閉する電磁弁3が開く。エゼクタ5
の作動により、ストーレジタンク内のガスはボール逆止
弁21を介した排気管路8を通ってエゼクタ5に吸引され
機外へ排出されていた。
A conventional non-condensable gas discharge device is disclosed in Japanese Patent Application No. 63-104722, and as shown in FIG. 7, when the gas pressure in the gas storage tank 1 rises and reaches the upper limit set pressure of the pressure switch 7, The electromagnetic valve 3 that opens and closes the drive water of the ejector 5 is opened by the signal output from the pressure switch 7. Ejector 5
The gas in the storage tank was sucked by the ejector 5 through the exhaust pipe 8 via the ball check valve 21 and discharged to the outside of the machine.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上述のような従来技術においては、エゼクタの駆動水の
流量が低下したり、駆動水の温度が高いような場合、エ
ゼクタ吸気側に所要の真空度が形成できずに、ストーレ
ジタンクの圧力スイッチのオフ設定圧力までなかなか到
達しないことがある。このような時、駆動水が無駄に流
れ続けてしまう。また、従来技術では圧力スイッチの代
りに時限動作で駆動水の弁を開閉することが開示されて
いるが、実際には弁を開ける時点及びエゼクタを駆動す
る時間を正確に設定することは困難で、ストーレジタン
クにガスが充満していなくてもエゼクタの駆動を開始し
たり、ガスの排出が終ってもエゼクタを駆動し続けるな
ど問題があった。
In the prior art as described above, when the flow rate of the driving water for the ejector is low or the temperature of the driving water is high, the required vacuum degree cannot be formed on the ejector intake side, and the pressure switch of the storage tank is not formed. The off set pressure of may not be reached easily. In such a case, the driving water will continue to flow unnecessarily. Further, in the prior art, it is disclosed that the valve of the driving water is opened and closed by a timed operation instead of the pressure switch, but in practice, it is difficult to accurately set the time to open the valve and the time to drive the ejector. However, there are problems such as starting the ejector drive even if the storage tank is not full of gas, or continuing to drive the ejector even after the gas is exhausted.

本考案は上記問題を解決するためになされたもので、そ
の目的は、簡素な構成でエゼクタ駆動水の無駄使いを防
止でき機能の信頼性が高い吸収式冷凍機の不凝縮ガス排
出装置を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a non-condensable gas discharge device for an absorption refrigerating machine which has a simple structure and can prevent waste of ejector driving water and has a highly reliable function. To do.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は、上記目的を達成するために、吸収式冷凍機の
再生器で発生した不凝縮ガスのストレージタンク内圧力
を検出する圧力スイッチの出力信号に基づいて電磁弁を
開閉し、該電磁弁を通って流れる駆動水によってエゼク
タを駆動して該ストレージタンク内の不凝縮ガスを排出
する吸引式冷凍機の不凝縮ガス排出装置において、前記
圧力スイッチの出力信号に応じて計時を開始してその計
時開始から所定時間経過後に信号を出力するタイマと、
該タイマの出力信号に応じて前記電磁弁を閉じる制御を
する手段とを有することを特徴としている。
In order to achieve the above object, the present invention opens and closes a solenoid valve based on an output signal of a pressure switch that detects the pressure in a storage tank of noncondensable gas generated in a regenerator of an absorption refrigerator, and the solenoid valve is opened and closed. In a non-condensable gas discharge device of a suction type refrigerator for driving an ejector by driving water flowing through the storage tank to discharge the non-condensable gas in the storage tank, start timing in response to an output signal of the pressure switch, A timer that outputs a signal after a predetermined time has elapsed from the start of timing,
Means for controlling the closing of the solenoid valve according to the output signal of the timer.

さらに、上述のような吸収式冷凍機の不凝縮ガス排出装
置において、前記タイマと、駆動水の温度センサ及び流
速センサと、駆動水の温度及び流速を読み込みエゼクタ
駆動時間を演算しタイマの時間設定処理を行うCPUとを
備えたことを特徴としている。
Further, in the non-condensable gas discharge device of the absorption refrigerator as described above, the timer, the driving water temperature sensor and the flow velocity sensor, the driving water temperature and the flow velocity are read to calculate the ejector driving time, and the timer time is set. It is characterized by having a CPU for processing.

〔作用〕[Action]

ガスストーレジタンク内にガスがたまり圧力が上昇する
と圧力スイッチが信号を出力し、その信号によりタイマ
が計時を開始し、エゼクタ駆動水の電磁弁の開閉時間を
管制する。したがって、駆動水の流量低下や駆動水の温
度上昇などの原因により、エゼクタの作動圧差ができず
にガス排出能力が低く、圧力スイッチのオフ設定圧力ま
で到達しないために駆動水が流れ続ける場合でも、時間
を設定したタイマの出力信号により電磁弁を閉じ駆動水
を確実に止めることができる。こうしてエゼクタ駆動水
の無駄な流出を防止できる。
When gas accumulates in the gas storage tank and the pressure rises, the pressure switch outputs a signal, and the signal starts a timer to control the opening and closing time of the electromagnetic valve of the ejector driving water. Therefore, even if the drive water continues to flow because the ejector operating pressure difference cannot be made and the gas discharge capacity is low due to causes such as a decrease in the flow rate of the drive water and a rise in the temperature of the drive water, and the pressure switch OFF set pressure is not reached. By the output signal of the timer that sets the time, the solenoid valve can be closed to stop the driving water reliably. In this way, useless outflow of the ejector driving water can be prevented.

〔実施例〕〔Example〕

以下本考案を実施例について図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本考案による第1実施例の吸収式冷凍機の不凝
縮ガス排出装置の構成図である。吸収冷凍機本体30から
出たガスは管路12を降下し、不凝縮ガス分離器11でガス
と溶液とに分離され、溶液は管路13を経て冷凍機30に戻
り、ガスは管路14を上昇してガスストーレジタンク1に
捕集される。ストーレジタンク1にガスが充満し圧力ス
イッチ7のオン設定圧力に達するとその出力信号はタイ
マ17を始動させ電磁弁3を開いて、水室4から管路16を
経てエゼクタ5の駆動水を導入する。こうしてエゼクタ
5が作動すると、エゼクタ5の吸気側に負圧が生じこれ
に接続された差圧開閉弁9のボール弁21が浮き上り、ス
トーレジタンク1内のガスが管路8を通って吸い出され
エゼクタ5から外部へ排出される。ストーレジタンク1
内のガスが減って内圧が圧力スイッチ7のオフ設定圧力
以下になると信号を出力し電磁弁3を閉じ駆動水を止め
る。もしストーレジタンク1の内圧が圧力スイッチ7の
オフ設定圧力まで降下しないうちにタイマ17の設定時間
が経過した場合には、タイマ17からの出力信号によって
電磁弁3を閉じる。なお、10は手動弁、22はスプリング
である。
FIG. 1 is a block diagram of a non-condensable gas discharge device of an absorption refrigerator according to a first embodiment of the present invention. The gas discharged from the absorption refrigerator main body 30 descends through the pipe 12, is separated into the gas and the solution by the non-condensable gas separator 11, the solution returns to the refrigerator 30 through the pipe 13, and the gas is supplied through the pipe 14. Is collected and collected in the gas storage tank 1. When the storage tank 1 is filled with gas and reaches the ON set pressure of the pressure switch 7, the output signal thereof starts the timer 17 to open the solenoid valve 3 to drive the ejector 5 from the water chamber 4 through the pipe line 16 to drive water. Introduce. When the ejector 5 operates in this way, a negative pressure is generated on the intake side of the ejector 5, and the ball valve 21 of the differential pressure on-off valve 9 connected thereto floats up, so that the gas in the storage tank 1 is sucked through the pipe line 8. It is discharged and discharged from the ejector 5 to the outside. Storage tank 1
When the gas inside is reduced and the internal pressure becomes equal to or lower than the OFF set pressure of the pressure switch 7, a signal is output and the solenoid valve 3 is closed to stop the driving water. If the set time of the timer 17 elapses before the internal pressure of the storage tank 1 drops to the off set pressure of the pressure switch 7, the solenoid valve 3 is closed by the output signal from the timer 17. In addition, 10 is a manual valve and 22 is a spring.

このような運転は、第2図のコントローラブロック図に
示すように、運転スイッチ、圧力スイッチ、タイマの各
出力信号をインタフェイスを介してCPU(マイクロプロ
セッサ)が演算処理し、インタフェイスを介して電磁弁
を作動させている。第3図は上述のような第1実施例の
フローチャートを示している。ここに、PGはストーレジ
タンク内圧、P1は圧力スイッチオン設定圧力、P2は圧力
スイッチオフ設定圧力を示す。第4図は第1実施例の部
分回路図で、圧力スイッチ7(PS)、タイマ17(T)、
エゼクタ駆動水電磁弁3(SV)の回路構成を示してい
る。
In such operation, as shown in the controller block diagram of FIG. 2, the CPU (microprocessor) processes the output signals of the operation switch, the pressure switch, and the timer through the interface, and the operation signal is output through the interface. The solenoid valve is operating. FIG. 3 shows a flow chart of the first embodiment as described above. Here, P G is the pressure inside the storage tank, P 1 is the pressure switch-on set pressure, and P 2 is the pressure switch-off set pressure. FIG. 4 is a partial circuit diagram of the first embodiment, in which a pressure switch 7 (PS), a timer 17 (T),
The circuit structure of the ejector drive water solenoid valve 3 (SV) is shown.

次に、本考案の第2実施例を第5図のコントローラブロ
ック図及び第6図のフローチャートに示す。第2実施例
では、ガス排出の都度、タイマ17の設定時間を、駆動水
の温度及びその流速を検出し、それらの値をCPUが読み
込んで演算し、最適に設定している。図示しないが温度
センサは水室4に、流量センサは駆動水管路16に設け
た。
Next, a second embodiment of the present invention is shown in the controller block diagram of FIG. 5 and the flowchart of FIG. In the second embodiment, the temperature of the driving water and the flow velocity of the driving water are detected every time the gas is discharged, and the CPU reads and calculates these values for optimum setting. Although not shown, the temperature sensor was provided in the water chamber 4, and the flow rate sensor was provided in the driving water pipe line 16.

エゼクタの単位時間当りの排気量QVは、駆動水の温度TE
及び駆動水の流速VEと式(1)の関係にある。
Exhaust volume per unit time of the ejector Q V is the drive water temperature T E
And the flow velocity V E of the driving water have the relationship of equation (1).

タイマの最適設定時間tは、ストレージタンクのガス貯
蔵量Qに対し式(2)で求められる。
The optimum set time t of the timer is obtained from the equation (2) for the gas storage amount Q of the storage tank.

このように、エゼクタ駆動の際の水の温度及び水流速度
を検出しCPUに入力することにより最適な設定時間が演
算され、その値がタイマに入力される。
Thus, by detecting the temperature and the water flow velocity of the water when the ejector is driven and inputting it to the CPU, the optimum set time is calculated, and the value is input to the timer.

第6図のフローチャートに示すように、ストーレジタン
ク1の内圧が圧力スイッチ7のオン設定圧力を超えると
電磁弁3が開き、CPUは直ちに駆動水の温度及び流速を
読み込み最適設定時間を演算し、タイマ17をセットし計
時を開始し、ストーレジタンク1の内圧が圧力スイッチ
7のオフ設定圧より低下するか、あるいは、タイマ17の
設定時間が経過すると、電磁弁3を閉じエゼクタ5の作
動を停止させ、タイマ17をリセットする。
As shown in the flow chart of FIG. 6, when the internal pressure of the storage tank 1 exceeds the ON set pressure of the pressure switch 7, the solenoid valve 3 opens, and the CPU immediately reads the temperature and flow velocity of the driving water and calculates the optimum set time. , The timer 17 is set to start timing, and when the internal pressure of the storage tank 1 becomes lower than the OFF set pressure of the pressure switch 7 or when the set time of the timer 17 elapses, the solenoid valve 3 is closed and the ejector 5 is operated. Is stopped and the timer 17 is reset.

〔考案の効果〕[Effect of device]

本考案によれば、吸収式冷凍機の不凝縮ガスストーレジ
タンクのガス排出用エゼクタの駆動水電磁弁回路にタイ
マを設け、さらに駆動水温度及び駆動水流速を読み込み
タイマの最適設定時間を演算処理するCPUを設けてタイ
マを作動させたので、駆動水の流量・温度条件によりエ
ゼクタの能力が低下し作動圧差ができずに駆動水の流出
が止まらないような場合でも、タイマ設定時間で駆動水
電磁弁を確実に閉じることができる。
According to the present invention, a timer is provided in the drive water solenoid valve circuit of the gas discharge ejector of the non-condensing gas storage tank of the absorption refrigerator, and the drive water temperature and the drive water flow rate are read to calculate the optimum set time of the timer. Since the CPU for processing is installed and the timer is activated, even if the ejector's capacity declines due to the flow rate and temperature conditions of the driving water and a difference in operating pressure does not occur and the outflow of driving water does not stop, the timer is driven at the set time. The water solenoid valve can be closed reliably.

さらに、エゼクタ駆動時間は、圧力スイッチのオフ設定
圧力に依存することなく、タイマの設定時間を変えるこ
とによって容易に設定することができる。このようにし
て、エゼクタ駆動水の浪費を防止することができる。
Further, the ejector drive time can be easily set by changing the set time of the timer without depending on the off set pressure of the pressure switch. In this way, waste of the ejector driving water can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による実施例の吸収式冷凍機の不凝縮ガ
ス排出装置の構成図、第2図は本考案による第1実施例
のコントローラブロック図、第3図は第1実施例のフロ
ーチャート、第4図は第1実施例の部分回路図、第5図
は本考案による第2実施例のコントローラブロック図、
第6図は第2実施例のフローチャート、第7図は従来技
術によるガス排出装置の構成図である。 1…ストーレジタンク、3…電磁弁、5…エゼクタ、7
…圧力スイッチ、9…差圧開閉弁、17…タイマ、30…吸
収式冷凍機。
FIG. 1 is a block diagram of a non-condensable gas discharge device for an absorption refrigerator according to an embodiment of the present invention, FIG. 2 is a controller block diagram of the first embodiment according to the present invention, and FIG. 3 is a flow chart of the first embodiment. FIG. 4 is a partial circuit diagram of the first embodiment, FIG. 5 is a controller block diagram of the second embodiment according to the present invention,
FIG. 6 is a flow chart of the second embodiment, and FIG. 7 is a block diagram of a conventional gas exhaust system. 1 ... Storage tank, 3 ... Solenoid valve, 5 ... Ejector, 7
... Pressure switch, 9 ... Differential pressure open / close valve, 17 ... Timer, 30 ... Absorption refrigerator.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】吸収式冷凍機の再生器で発生した不凝縮ガ
スのストレージタンク内圧力を検出する圧力スイッチの
出力信号に基づいて電磁弁を開閉し、該電磁弁を通って
流れる駆動水によってエゼクタを駆動して該ストレージ
タンク内の不凝縮ガスを排出する吸引式冷凍機の不凝縮
ガス排出装置において、前記圧力スイッチの出力信号に
応じて計時を開始してその計時開始から所定時間経過後
に信号を出力するタイマと、該タイマの出力信号に応じ
て前記電磁弁を閉じる制御をする手段とを有することを
特徴とする吸引式冷凍機の不凝縮ガス排出装置。
1. A solenoid valve is opened and closed based on an output signal of a pressure switch for detecting the pressure in a storage tank of non-condensable gas generated in a regenerator of an absorption chiller, and drive water flowing through the solenoid valve is used. In a non-condensable gas discharge device of a suction type refrigerator that drives an ejector to discharge the non-condensed gas in the storage tank, a time measurement is started according to an output signal of the pressure switch, and a predetermined time has elapsed from the start of the time measurement. A non-condensable gas discharge device for a suction type refrigerator, comprising: a timer for outputting a signal; and means for controlling the electromagnetic valve to be closed according to the output signal of the timer.
【請求項2】吸収式冷凍機の再生器で発生した不凝縮ガ
スのストレージタンク内圧力を検出する圧力スイッチの
出力信号に基づいて電磁弁を開閉し、該電磁弁を通って
流れる駆動水によってエゼクタを駆動して該ストレージ
タンク内の不凝縮ガスを排出する吸引式冷凍機の不凝縮
ガス排出装置において、前記圧力スイッチの出力信号に
応じて計時を開始してその計時開始から設定時間の経過
後に信号を出力するタイマと、前記駆動水の温度を検出
する温度センサと、前記駆動水の流速を検出する流速セ
ンサと、該温度センサ及び該流速センサの検出信号に基
づいて前記タイマの設定時間を演算するとともに、該演
算した設定時間で前記タイマの動作を管制するCPUとを
有し、該CPUは、前記タイマの出力信号に応じて前記電
磁弁を閉じる制御をすることを特徴とする吸引式冷凍機
の不凝縮ガス排出装置。
2. A solenoid valve is opened / closed based on an output signal of a pressure switch for detecting the pressure in the storage tank of the non-condensed gas generated in the regenerator of the absorption refrigerator, and the driving water flowing through the solenoid valve is used. In a non-condensable gas discharge device of a suction type refrigerator that drives an ejector to discharge the non-condensed gas in the storage tank, a time measurement is started according to an output signal of the pressure switch, and a set time elapses from the start of the time measurement. A timer that outputs a signal later, a temperature sensor that detects the temperature of the driving water, a flow velocity sensor that detects the flow velocity of the driving water, and a set time of the timer based on detection signals of the temperature sensor and the flow velocity sensor. And a CPU that controls the operation of the timer at the calculated set time, and the CPU controls to close the solenoid valve according to the output signal of the timer. Noncondensable gas discharge device for suction-type refrigerator, characterized in that.
JP9464890U 1990-09-07 1990-09-07 Non-condensable gas discharge device for absorption refrigerator Expired - Lifetime JPH0754775Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9464890U JPH0754775Y2 (en) 1990-09-07 1990-09-07 Non-condensable gas discharge device for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9464890U JPH0754775Y2 (en) 1990-09-07 1990-09-07 Non-condensable gas discharge device for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0453175U JPH0453175U (en) 1992-05-07
JPH0754775Y2 true JPH0754775Y2 (en) 1995-12-18

Family

ID=31832765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9464890U Expired - Lifetime JPH0754775Y2 (en) 1990-09-07 1990-09-07 Non-condensable gas discharge device for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0754775Y2 (en)

Also Published As

Publication number Publication date
JPH0453175U (en) 1992-05-07

Similar Documents

Publication Publication Date Title
US4984431A (en) High efficiency purge system
JPH0754775Y2 (en) Non-condensable gas discharge device for absorption refrigerator
JPH0222614Y2 (en)
JP2757589B2 (en) Oil absorption type bleeding device for refrigerator
JP2000292033A (en) Purging unit for refrigerator
JP2005172252A (en) Extraction apparatus
JPH0362987B2 (en)
KR100457145B1 (en) Bleeding device of absorption refrigerator
JP2003097444A (en) Condensed water discharge device and oil injection type compressor provided with the same
JPS6245108Y2 (en)
JPH059638B2 (en)
JPH074450Y2 (en) Non-condensable gas discharge device for absorption refrigerator
CN114413530B (en) Liquid impact prevention flash evaporator device, air conditioner comprising same and liquid impact prevention control method
CN114234301B (en) Dehumidifier and accumulated liquid prevention control method thereof
JPH0933091A (en) Drain pump control device for air conditioner
JPS60226681A (en) Discharger for noncondensable gas of absorption refrigerator
KR200162930Y1 (en) Uncompressed gas exhaust equipment in cooling and heating machine
JP2524820Y2 (en) Refrigerant recovery device
JPH09144664A (en) Air compression equipment
JPS60226682A (en) Discharger for noncondensable gas of absorption refrigerator
JPS6347672Y2 (en)
JPH0557101A (en) Evaporative concentration apparatus of aqueous solution
JPH0218447Y2 (en)
JP2563514B2 (en) Air conditioner
JPH0735929B2 (en) Air conditioner