JPH0744428B2 - Switched capacitor circuit - Google Patents

Switched capacitor circuit

Info

Publication number
JPH0744428B2
JPH0744428B2 JP62053690A JP5369087A JPH0744428B2 JP H0744428 B2 JPH0744428 B2 JP H0744428B2 JP 62053690 A JP62053690 A JP 62053690A JP 5369087 A JP5369087 A JP 5369087A JP H0744428 B2 JPH0744428 B2 JP H0744428B2
Authority
JP
Japan
Prior art keywords
capacitor
circuit
operational amplifier
switch
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62053690A
Other languages
Japanese (ja)
Other versions
JPS63219219A (en
Inventor
寛樹 松本
健蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP62053690A priority Critical patent/JPH0744428B2/en
Publication of JPS63219219A publication Critical patent/JPS63219219A/en
Publication of JPH0744428B2 publication Critical patent/JPH0744428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、演算増幅器,スイッチ,及びキャパシタを用
いてアナログ信号の離散時間処理を行うスイッチドキャ
パシタ回路の構成に関する。
Description: TECHNICAL FIELD The present invention relates to a configuration of a switched capacitor circuit that performs discrete time processing of an analog signal using an operational amplifier, a switch, and a capacitor.

(従来の技術) 第2図に従来よく用いられているスイッチドキャパシタ
回路を示す。各スイッチの横に記したφとは当該スイ
ッチを開閉するクロック信号であり、各スイッチは当該
クロック信号が論理1の時に閉じるものとする。以降の
第4図,第5図でもこの記法を用いるものとする。この
クロック信号は、スイッチ対(31,32),(53,54),
(55,56)が同時にオンとならない様、第3図のタイミ
ング図に示すように、論理レベル1となる時間が互いに
重ならないよう位相制御されている。第2図の回路で
は、φ=1の時にキャパシタ41をスイッチ31を介して入
力信号源2の電圧に充電する。この時帰還回路5のスイ
ッチ53も同時にオンとなるので、キャパシタ41の充電電
荷はキャパシタ51を流れる。キャパシタ51があらかじめ
放電されていたとすると、演算増幅器1の出力電圧V
o(φ)は となる。ここで、C1とC2はそれぞれキャパシタ41と51の
容量,Vi(φ)は当該クロック時における入力信号源2
の電圧である。又、この期間スイッチ55がオンとなって
いるのでキャパシタ52もVo(φ)に充電される。次の
=1の期間ではキャパシタ41と51はスイッチ32と54がオ
ンとなるので放電し、保持していた電荷をキャパシタ52
に転送する。キャパシタ41と51から転送される電荷量は
等しいが極性が反対であるためキャパシタ52の電圧は変
化せず、従って、演算増幅器1の出力電圧Vo()は第
(1)式のVo(φ)のままである。従って、第2図の回
路はφクロック時に増幅作用を、クロック時はホール
ド作用を行う。又、スイッチ54を取除き、キャパシタ51
をクロック時の放電させなければこの回路は積分器と
なる。
(Prior Art) FIG. 2 shows a conventionally used switched capacitor circuit. Φ indicated next to each switch is a clock signal for opening and closing the switch, and each switch is closed when the clock signal is logic one. This notation is also used in FIGS. 4 and 5 below. This clock signal is a pair of switches (31,32), (53,54),
In order to prevent (55, 56) from being turned on at the same time, as shown in the timing chart of FIG. 3, the phases are controlled so that the times when they become logic level 1 do not overlap each other. In the circuit of FIG. 2, when φ = 1, the capacitor 41 is charged to the voltage of the input signal source 2 via the switch 31. At this time, the switch 53 of the feedback circuit 5 is also turned on at the same time, so that the charge charged in the capacitor 41 flows through the capacitor 51. Assuming that the capacitor 51 has been previously discharged, the output voltage V of the operational amplifier 1
o (φ) is Becomes Here, C 1 and C 2 are the capacitances of the capacitors 41 and 51, respectively, and V i (φ) is the input signal source 2 at the time of the clock.
Is the voltage of. Further, the capacitor 52 since this period switch 55 is ON is also charged to V o (φ). In the next period of = 1, the capacitors 41 and 51 are discharged because the switches 32 and 54 are turned on, and the stored charge is discharged to the capacitor 52.
Transfer to. Voltage of the capacitor 52 for the amount of charge transferred from capacitor 41 and 51 are equal but of opposite polarity is not changed, therefore, the operational amplifier 1 of the output voltage V o () the (1) formula V o ( φ) remains. Therefore, the circuit shown in FIG. 2 has an amplifying function at the φ clock and a holding function at the clock. Also, the switch 54 is removed and the capacitor 51
This circuit becomes an integrator if is not discharged at the time of clock.

(発明が解決しようとする問題点) 上記φクロック時の増幅或いは積分動作は、回路の各接
点と接地間の浮遊容量や演算増幅器のオフセット電圧に
は影響されない。このため第2図の回路はアナログ信号
の離散時間処理を行うための基本構成回路として多用さ
れている。しかし乍ら、第3図に示す期間τ1とτ2、即
ちφとクロック信号が共に論理レベル0の期間では第
2図の帰還回路5のスイッチ53と56が共にオフとなるの
で帰還回路は開放状態となる。この状態では演算増幅器
1のオフセット電圧がその開放利得倍されて出力に現れ
る。演算増幅器の開放利得は通常80〜100dBと非常に大
きいので僅かなオフセット電圧でも演算増幅器出力は飽
和しスパイク波形となる。このスパイク電圧は配線間の
結合容量を介してキャパシタ41或いは51に流入し、信号
の劣化を惹き起こす。従来、このスパイク電圧の発生を
防止する有効な手段は見い出されていなかった。
(Problems to be Solved by the Invention) The amplification or integration operation during the φ clock is not affected by the stray capacitance between each contact of the circuit and the ground or the offset voltage of the operational amplifier. Therefore, the circuit shown in FIG. 2 is often used as a basic constituent circuit for performing discrete time processing of analog signals. However, since the switches 53 and 56 of the feedback circuit 5 of FIG. 2 are both turned off during the periods τ 1 and τ 2 shown in FIG. 3, that is, when φ and the clock signal are both at the logic level 0, the feedback circuit is It will be open. In this state, the offset voltage of the operational amplifier 1 is multiplied by its open gain and appears at the output. Since the open gain of the operational amplifier is usually as large as 80 to 100 dB, the output of the operational amplifier is saturated and becomes a spike waveform even with a slight offset voltage. This spike voltage flows into the capacitor 41 or 51 via the coupling capacitance between the wirings, causing signal deterioration. Heretofore, an effective means for preventing the generation of this spike voltage has not been found.

本発明はかゝる問題点を解決し、高精度のアナログ信号
処理を行うスイッチドキャパシタ回路を提供するために
なされたものである。
The present invention has been made to solve such problems and to provide a switched capacitor circuit that performs highly accurate analog signal processing.

(問題点を解決するための手段) 第1図はスパイク電圧の発生を防止するためになされた
本発明を示すブロック図であって、1は演算増幅器、2
は入力信号源,31と32はスイッチ,41と42はキャパシタ,5
はスイッチとキャパシタを含む、例えば第2図に示す様
な帰還回路であって、キャパシタ42は演算増幅器1の出
力端子12とキャパシタ41とスイッチ31の接点との間に接
続され、キャパシタ41の他端は常に演算増幅器1の反転
入力端子11に接続されている。各スイッチは、第3図に
示すように、論理1となる期間が互いに重ならないよう
にクロック信号でその開閉が制御されている。
(Means for Solving Problems) FIG. 1 is a block diagram showing the present invention made to prevent the generation of spike voltage.
Is an input signal source, 31 and 32 are switches, 41 and 42 are capacitors, 5
Is a feedback circuit including a switch and a capacitor, for example, as shown in FIG. 2, in which the capacitor 42 is connected between the output terminal 12 of the operational amplifier 1, the capacitor 41 and the contact of the switch 31, The end is always connected to the inverting input terminal 11 of the operational amplifier 1. As shown in FIG. 3, each switch has its opening / closing controlled by a clock signal so that the periods of logic 1 do not overlap with each other.

(作用) 第1図のキャパシタ41とスイッチ31,32,及び帰還回路5
はφ=1と=1のクロック時に増幅或いは積分等の所
要の動作を行うように設計されているとしよう。従来の
回路はφとクロックが共に論理レベル0、即ち回路に
含まれる全てのスイッチがオフとなり、帰還回路5が開
放となることによってスパイク電圧を生じる。本発明の
第1図のブロック図では全てのスイッチがオフの時に
は、キャパシタ42と41が直列接続されて演算増幅器1の
帰還路となる。このため、第3図のタイミング図のτ1
とτ2期間では第1図の回路は利得1の増幅器或いはホ
ールド回路となるのでスパイク電圧は発生しない。
(Operation) Capacitor 41, switches 31, 32, and feedback circuit 5 shown in FIG.
Is designed to perform a required operation such as amplification or integration at the clocks of φ = 1 and = 1. In the conventional circuit, both φ and the clock have the logic level 0, that is, all the switches included in the circuit are turned off and the feedback circuit 5 is opened to generate the spike voltage. In the block diagram of FIG. 1 of the present invention, when all the switches are off, the capacitors 42 and 41 are connected in series to form a feedback path for the operational amplifier 1. Therefore, τ 1 in the timing diagram of FIG.
During the period τ 2 and τ 2 , the circuit of FIG. 1 becomes an amplifier or a hold circuit with a gain of 1, so that no spike voltage is generated.

(実施例) 以下、本発明の有効性を実施例で示す。第4図は本発明
の第1の実施例であって、第2図に示す帰還回路5を用
いたスイッチドキャパシタ増幅器である。各スイッチは
第3図に示すタイミングの2相クロック信号で制御され
ている。φ=1の期間では第2図と同様、利得C1/C2
反転増幅作用を行い、第(1)式に示す電圧Vo(φ)を
出力する。この時、キャパシタ41と42はそれぞれV
(φ)とVo(φ)−Vi(φ)に図示の極性で充電され
る。次のτ1期間では全てのスイッチはオフとなり、キ
ャパシタ41と42が直列接続され演算増幅器1の帰還路を
構成する。この時の出力電圧Vo(τ1)は Vo(τ1)=VC1(φ)+VC4(φ) =Vi(φ)+Vo(φ)−Vi(φ)=Vo(φ) (2) となる。次の=1の期間の動作は第2図の回路のホー
ルド動作と同じであり、演算増幅器1の出力電圧V
o()は第(1)式のVo(φ)となる。この時、キャ
パシタ41の端子間電圧VC1()は0,キャパシタ42の端
子間電圧VC4()は図示の極性でVo()=Vo(φ)
となっている。次のτ2期間ではキャパシタ41と42は再
び直列接続となり演算増幅器1の帰還路を構成する。こ
の時の演算増幅器1の出力電圧Vo(τ2)は Vo(τ2)=VC1(φ)+VC4()=Vo(φ) (3) となる。従って、第4図の回路はφ=1の期間で入力信
号を増幅し、以後のτ1,,τ2の期間この増幅出力を
ホールドするので、スパイク電圧を生じない。
(Example) Hereinafter, the effectiveness of the present invention will be shown by examples. FIG. 4 shows a first embodiment of the present invention, which is a switched capacitor amplifier using the feedback circuit 5 shown in FIG. Each switch is controlled by a two-phase clock signal having the timing shown in FIG. In the period of φ = 1, as in the case of FIG. 2 , the inverting amplification action of the gain C 1 / C 2 is performed, and the voltage V o (φ) shown in the equation (1) is output. At this time, the capacitors 41 and 42 are respectively V
(Φ) and V o (φ) −V i (φ) are charged with the polarities shown. In the next τ 1 period, all the switches are turned off and the capacitors 41 and 42 are connected in series to form the feedback path of the operational amplifier 1. The output voltage V o1 ) at this time is V o1 ) = V C1 (φ) + V C4 (φ) = V i (φ) + V o (φ) −V i (φ) = V o ( φ) (2) The operation during the next period of = 1 is the same as the hold operation of the circuit of FIG.
o () is V o (φ) in the equation (1). At this time, the terminal voltage V C1 () of the capacitor 41 is 0, and the terminal voltage V C4 () of the capacitor 42 is V o () = V o (φ) with the polarity shown in the figure.
Has become. In the next τ 2 period, the capacitors 41 and 42 are again connected in series to form the feedback path of the operational amplifier 1. The output voltage V o2 ) of the operational amplifier 1 at this time is V o2 ) = V C1 (φ) + V C4 () = V o (φ) (3). Therefore, the circuit of FIG. 4 amplifies the input signal during the period of φ = 1 and holds the amplified output during the subsequent periods of τ 1 and τ 2 , so that no spike voltage is generated.

第5図は本発明を応用したサンプルホールド回路を示
す。今、第3図に示すn番目のφクロック信号でスイッ
チ31と56がオンになったとしよう。電荷保存の法則から
演算増幅器1の出力電圧Vo(n)は ただし、ΔVi(n)=Vi(n)−Vi(n−1) (5) となり、キャパシタ41と42はそれぞれ図示の極性でV
i(n)とVo(n)−Vi(n)に充電される。ここでVi
(n−1)とVi(n)はそれぞれn−1番目とn番目の
φクロック信号時の入力電源の電圧、Vo(n−1)とVo
(n)はn−1番目とn番目のφクロック時の演算増幅
器1の出力電圧である。次のτ1期間では全てのスイッ
チがオフとなり、キャパシタ41と42が直列となって演算
増幅器1の帰還路を形成する。この時の出力電圧Vo(τ
1)は Vo(τ1)=VC1(n)+VC4(n)=Vo(n) (6) となる。次のφ=1の期間はスイッチ32がオンとなるの
で、キャパシタ41のみが演算増幅器1の帰還路となる。
従って、 となる。この時、キャパシタ42はスイッチ32によって短
絡されるのでその端子間電圧VC4は0となり、一方、キ
ャパシタ52は に充電される。次のτ2期間では全てのスイッチがオフ
となり、キャパシタ41と42が直列となって再び演算増幅
器1の帰還路を形成する。この時の出力電圧Vo(τ2
となる。第(5)式から第(8)式に示されるように、
第5図の回路はφクロック時に入力信号をサンプルし、
クロック時にサンプルした入力信号を出力するサンプ
ルホールド回路であり、期間τ1とτ2では直前のφ及び
クロック時の出力電圧をホールドするので、スパイク
電圧を発生しない。
FIG. 5 shows a sample hold circuit to which the present invention is applied. Now, suppose that the switches 31 and 56 are turned on by the nth φ clock signal shown in FIG. From the law of charge conservation, the output voltage V o (n) of the operational amplifier 1 is However, ΔV i (n) = V i (n) −V i (n−1) (5), and the capacitors 41 and 42 have the polarities shown in the drawing by V.
It is charged to i (n) and V o (n) -V i ( n). Where V i
(N-1) and V i (n), respectively (n-1) th and n-th φ clock signal when the voltage of the input power supply, V o (n-1) and V o
(N) is the output voltage of the operational amplifier 1 at the (n-1) th and the nth clocks. In the next τ 1 period, all the switches are turned off and the capacitors 41 and 42 are connected in series to form the feedback path of the operational amplifier 1. Output voltage V o
1 ) becomes V o1 ) = V C1 (n) + V C4 (n) = V o (n) (6). Since the switch 32 is turned on during the next period of φ = 1, only the capacitor 41 serves as the feedback path of the operational amplifier 1.
Therefore, Becomes At this time, since the capacitor 42 is short-circuited by the switch 32, the terminal voltage V C4 becomes 0, while the capacitor 52 is Will be charged. In the next τ 2 period, all the switches are turned off and the capacitors 41 and 42 are connected in series to form the feedback path of the operational amplifier 1 again. Output voltage V o2 ) at this time
Is Becomes As shown in the equations (5) to (8),
The circuit of FIG. 5 samples the input signal at φ clock,
This is a sample and hold circuit that outputs an input signal sampled at the time of clock. During the periods τ 1 and τ 2 , since the last φ and the output voltage at the time of clock are held, no spike voltage is generated.

(発明の効果) 以上説明したように本発明によれば極めて簡単な回路構
成でスパイク電圧を発生しないスイッチドキャパシタ回
路を実現できる。本発明は増幅器,積分器,サンプルホ
ールド回路等,アナログ演算を行うのに必要な基本構成
回路全てに適用できるので、高精度アナログ信号処理に
極めて有用である。
(Effects of the Invention) As described above, according to the present invention, a switched capacitor circuit that does not generate a spike voltage can be realized with an extremely simple circuit configuration. Since the present invention can be applied to all basic constituent circuits necessary for performing analog calculation such as an amplifier, an integrator, a sample hold circuit, etc., it is extremely useful for high precision analog signal processing.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のスイッチドキャパシタ回路のブロック
図、第2図は従来用いられているスイッチドキャパシタ
増幅器の回路図、第3図は第2図、第4図、及び第5図
の回路のスイッチを制御する2相クロック信号のタイミ
ング図、第4図と第5図は本発明の実施例であるスイッ
チドキャパシタ増幅器とサンプルホールド回路の結線図
である。 第1図,第2図,第4図,第5図において、1は演算増
幅器、2は入力信号源、31は入力信号電圧をサンプルす
るスイッチ、41と42はキャパシタ、5はキャパシタとス
イッチから成る帰還回路である。
FIG. 1 is a block diagram of a switched capacitor circuit of the present invention, FIG. 2 is a circuit diagram of a conventionally used switched capacitor amplifier, and FIG. 3 is a circuit of FIG. 2, FIG. 4, and FIG. FIGS. 4 and 5 are wiring diagrams of a switched capacitor amplifier and a sample hold circuit according to an embodiment of the present invention. In FIGS. 1, 2, 4, and 5, 1 is an operational amplifier, 2 is an input signal source, 31 is a switch for sampling the input signal voltage, 41 and 42 are capacitors, 5 is a capacitor and a switch. It is a feedback circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】演算増幅器(1)と、該演算増幅器の反転
入力端子(11)と出力端子(12)の間に接続されるスイ
ッチとキャパシタを含む帰還回路(5)と、片端が該演
算増幅器の反転入力端子(11)に接続され他端は入力信
号源(2)にスイッチ(31)を介して接続されるキャパ
シタ(41)とから成るスイッチドキャパシタ回路におい
て、キャパシタ(41)とスイッチ(31)の接点と演算増
幅器(1)の出力端子(12)との間にキャパシタ(42)
を接続したスイッチドキャパシタ回路。
1. An operational amplifier (1), a feedback circuit (5) including a switch and a capacitor connected between an inverting input terminal (11) and an output terminal (12) of the operational amplifier, and one end of the operational circuit. In a switched capacitor circuit consisting of a capacitor (41) connected to an inverting input terminal (11) of an amplifier and the other end of which is connected to an input signal source (2) via a switch (31), a capacitor (41) and a switch A capacitor (42) is provided between the contact of (31) and the output terminal (12) of the operational amplifier (1).
Switched capacitor circuit that connects.
JP62053690A 1987-03-09 1987-03-09 Switched capacitor circuit Expired - Lifetime JPH0744428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62053690A JPH0744428B2 (en) 1987-03-09 1987-03-09 Switched capacitor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62053690A JPH0744428B2 (en) 1987-03-09 1987-03-09 Switched capacitor circuit

Publications (2)

Publication Number Publication Date
JPS63219219A JPS63219219A (en) 1988-09-12
JPH0744428B2 true JPH0744428B2 (en) 1995-05-15

Family

ID=12949808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62053690A Expired - Lifetime JPH0744428B2 (en) 1987-03-09 1987-03-09 Switched capacitor circuit

Country Status (1)

Country Link
JP (1) JPH0744428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097020A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Delay circuit and video signal processing circuit employing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289802A (en) 2003-03-06 2004-10-14 Denso Corp Low-pass filter and semiconductor pressure sensor device using the same
JP2007151024A (en) * 2005-11-30 2007-06-14 Toyota Motor Corp Switched capacitor amplifier circuit and gain error correction method thereof
JP6009372B2 (en) * 2013-02-26 2016-10-19 株式会社豊田中央研究所 Switched capacitor filter circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829213A (en) * 1981-08-13 1983-02-21 Oki Electric Ind Co Ltd Delay equalizer by switched capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097020A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Delay circuit and video signal processing circuit employing same

Also Published As

Publication number Publication date
JPS63219219A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
KR960012801B1 (en) Ripple-free phase detector using two sample-and-hold circuit
JPH0457125B2 (en)
JPS5835670A (en) Offset compensation for integrator having capacitors to be switched
JP2762868B2 (en) Voltage comparison circuit
US3820033A (en) Mos-fet sample and hold system for digitizing high frequency signals
JPS58170213A (en) Voltage comparating circuit
US4255715A (en) Offset correction circuit for differential amplifiers
US3676711A (en) Delay line using integrated mos circuitry
KR950014094B1 (en) A method of and a circuit arrangement for processing sampled analogue electrical signals
JPH0744428B2 (en) Switched capacitor circuit
GB1566947A (en) Signal subtraction systems
JPS58111414A (en) Amplifier system
US4151429A (en) Differential charge sensing circuit for MOS devices
US6404262B1 (en) Switched capacitor integrator using unity gain buffers
JP3991350B2 (en) Switched capacitor circuit
JPS598919B2 (en) bucket brigade shift register device
JP2994000B2 (en) Sample and hold amplifier circuit
JP2642255B2 (en) Sample hold circuit
US5113091A (en) Apparatus and method for comparing signals
JPH0828628B2 (en) Sample hold circuit
Sealer et al. A dual differential charge-coupled analog delay device
JPS61230522A (en) Sample holding circuit
WO2002045256A1 (en) Self-compensating buffer amplifier
JPH0422479Y2 (en)
JP3033346B2 (en) Sample hold circuit