JPH0743938Y2 - Deuterium discharge tube - Google Patents

Deuterium discharge tube

Info

Publication number
JPH0743938Y2
JPH0743938Y2 JP1991065293U JP6529391U JPH0743938Y2 JP H0743938 Y2 JPH0743938 Y2 JP H0743938Y2 JP 1991065293 U JP1991065293 U JP 1991065293U JP 6529391 U JP6529391 U JP 6529391U JP H0743938 Y2 JPH0743938 Y2 JP H0743938Y2
Authority
JP
Japan
Prior art keywords
ultraviolet
discharge tube
continuous spectrum
deuterium discharge
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1991065293U
Other languages
Japanese (ja)
Other versions
JPH0517918U (en
Inventor
博 岡垣
隆之 亀谷
宏 石崎
一也 阿部
Original Assignee
江東電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江東電気株式会社 filed Critical 江東電気株式会社
Priority to JP1991065293U priority Critical patent/JPH0743938Y2/en
Publication of JPH0517918U publication Critical patent/JPH0517918U/en
Application granted granted Critical
Publication of JPH0743938Y2 publication Critical patent/JPH0743938Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は、吸光分析分光光度計に
用いる、紫外連続スペクトル特性を向上させた重水素放
電管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deuterium discharge tube used in an absorption spectrophotometer and having an improved continuous ultraviolet spectrum characteristic.

【0002】[0002]

【従来の技術】紫外連続スペクトルを用いる吸光分析分
光光度計の光源には、主に重水素放電管が使用されてい
る。重水素放電管は図4(a)に示すような外観である
が、A−Aにおける断面を図4(b)に示す。図示のよ
うに、陽極2の四囲を金属の隔壁3で囲み、一方の壁面
に設けたピンホール4を通して、上記陽極2と熱陰極1
との間に放電路を形成する構造の2極放電管である。上
記放電管はバルブ8内に数百Paの高純度重水素を封入
し、バルブ8の紫外線透過窓7には、紫外連続スペクト
ルを透過する石英ガラスまたは合成石英が用いられてい
る。上記紫外線透過窓7からバルブ8外に放射される紫
外連続スペクトルは、90〜168nm波長域の状態か
ら基底状態への一重項遷移のLymanバンドが強いバンド
スペクトルと、三重項遷移の170〜400nm波長域
の連続スペクトルが放射されるほか、真空紫外域にLym
an系列、可視域にBalmar系列の水素原子の輝線スペク
トルが現われる。これらの放射エネルギーがそれぞれの
物質に作用することは避けられず、それに伴って種々の
現象を生じることになる。物質の検索に必要な情報を得
るために紫外エネルギーを用いる重水素放電管において
も、上記紫外エネルギーが紫外線透過窓7を透過する場
合には、上記紫外線透過窓7を形成する誘電体のエネル
ギー帯構造に大きく依存し、価電子帯と伝導帯との間に
位置する禁制帯のエネルギーギャップに起因して、光の
透過、吸収、発光が行われる。
2. Description of the Related Art A deuterium discharge tube is mainly used as a light source of an absorption spectrophotometer using an ultraviolet continuous spectrum. The deuterium discharge tube has an appearance as shown in FIG. 4 (a), and a cross section taken along line AA is shown in FIG. 4 (b). As shown in the figure, the anode 2 and the hot cathode 1 are surrounded by surrounding the anode 2 with metal partition walls 3 and passing through a pinhole 4 provided on one wall surface.
It is a bipolar discharge tube having a structure in which a discharge path is formed between and. In the discharge tube, several hundred Pa of high-purity deuterium is enclosed in the bulb 8, and the ultraviolet ray transmission window 7 of the bulb 8 is made of quartz glass or synthetic quartz that transmits an ultraviolet continuous spectrum. The continuous ultraviolet spectrum emitted from the ultraviolet transmission window 7 to the outside of the bulb 8 is a band spectrum having a strong Lyman band of singlet transition from a state of 90 to 168 nm wavelength range to a ground state, and a 170 to 400 nm wavelength of triplet transition. In addition to emitting a continuous spectrum in the vacuum region, Lym also enters the vacuum ultraviolet region.
A bright line spectrum of a hydrogen atom of the Balmar series appears in the an series and the visible region. It is unavoidable that these radiant energies act on each substance, and various phenomena will occur accordingly. Even in a deuterium discharge tube that uses ultraviolet energy to obtain information necessary for searching for a substance, when the ultraviolet energy passes through the ultraviolet transmission window 7, the energy band of the dielectric material forming the ultraviolet transmission window 7 Light is transmitted, absorbed, and emitted due to the energy gap in the forbidden band, which is largely dependent on the structure and is located between the valence band and the conduction band.

【0003】石英ガラスSiO2(シリカガラス)ではシ
リコン原子(Si)の3S、3P電子がSP3混成軌道を
形成して4つの酸素原子(O)と結合し、O原子は2P
軌道が2つのSi原子とσ結合を形成している。Oの残
った2P電子は孤立電対を作っている。1つのSi原子
と4つのO原子からなるSiO4四面体構造が長距離秩序
を保ちながら、規則的に配置されているときは結晶シリ
カである。しかし、一般の石英ガラスは立体配列が不規
則であり、上記長距離秩序が失われた状態である。上記
SiO4は四面体構造が互いに頂点を共有しながら、ラン
ダムにつながった三次元の網目状構造であり、この構造
は不純物の混入ばかりでなく、製造においてもSiO4
面体という近距離秩序が保てない場合があり、そこが欠
陥の中心(常磁性欠陥)となり、酸素空孔が正孔を取込
むことにより生じる。
In silica glass SiO 2 (silica glass), 3S and 3P electrons of a silicon atom (Si) form an SP 3 hybrid orbital and bond with four oxygen atoms (O), and the O atom is 2P.
The orbit forms a σ bond with two Si atoms. The remaining 2P electrons of O form a lone couple. It is a crystalline silica when the SiO 4 tetrahedral structure consisting of one Si atom and four O atoms is regularly arranged while maintaining long-range order. However, general quartz glass has an irregular three-dimensional arrangement, and the long-range order is lost. The above-mentioned SiO 4 is a three-dimensional network structure in which tetrahedral structures share vertices and are randomly connected, and this structure not only contains impurities, but also has a short-range order of SiO 4 tetrahedrons in manufacturing. In some cases, it cannot be maintained, and it becomes the center of the defect (paramagnetic defect), and oxygen vacancies are generated by taking in holes.

【0004】酸素の供給が不足する状態で合成された石
英ガラスは、上記酸素空孔を含むことになる。酸素空孔
に起因する吸収帯には、163nm(7.6eV)、24
5nm(5.0eV)、また発光帯として285nm(4.
3eV)と460nmに現われる。この現象は重水素放
電管の紫外線透過窓7に石英ガラスを用いる限り避けら
れず、図5に示すように放射エネルギーと格子欠陥との
相互関係から、スペクトル強度が紫外短波長側で時間と
ともに増進する。現在、超臨界抽出分野で波長200〜
230nmの放射強度が重要視されているが、これらの
使用波長範囲におけるスペクトル強度の減少が顕著なこ
とは、この分野の研究に対し憂慮されることである。
Quartz glass synthesized in a state where the supply of oxygen is insufficient contains the oxygen vacancies. The absorption band due to oxygen vacancies has 163 nm (7.6 eV), 24
5 nm (5.0 eV) and an emission band of 285 nm (4.0 eV).
3 eV) and 460 nm. This phenomenon is unavoidable as long as quartz glass is used for the ultraviolet transmission window 7 of the deuterium discharge tube, and as shown in FIG. 5, the spectral intensity increases with time on the ultraviolet short wavelength side due to the correlation between radiant energy and lattice defects. To do. Currently, in the field of supercritical extraction, wavelengths of 200-
Although the radiation intensity of 230 nm is emphasized, the remarkable decrease in the spectral intensity in these used wavelength ranges is a concern for research in this field.

【0005】また、重水素放電管の紫外線透過窓を、紫
外連続スペクトルが透過した以降の外気雰囲気との関係
によって、オゾンが形成され、その結果、紫外連続スペ
クトル強度に図6に見られるように、ノイズと揺らぎを
生じるという現象がある。この現象は、重水素放電管の
点灯温度で外気雰囲気に揺れを生じ、それに伴ってオゾ
ンの発生密度が揺れを生じるためである。上記オゾンの
生成は、紫外連続スペクトルエネルギー5.8eV以上の
紫外線を大気中の酸素分子が吸収して、2個の酸素原子
に解離するが、上記酸素原子は極めて酸化力が強く、酸
素分子と出合うとこれを酸化させてオゾン(O3)を作
る。上記オゾンは波長230〜300nmの紫外連続ス
ペクトルを吸収して元の酸素分子に解離するが、200
nm以下の紫外連続スペクトルのエネルギーがある以上
は、上記現象は均衡を得るまで繰返される。オゾンの発
生根元である酸素分子の解離を絶つ方向に、5.8eV以
上の紫外連続スペクトルを極力減少させることによっ
て、オゾンの発生を制御することができる。
Further, ozone is formed by the relationship between the ultraviolet transmission window of the deuterium discharge tube and the ambient atmosphere after the ultraviolet continuous spectrum is transmitted, and as a result, the ultraviolet continuous spectrum intensity is as shown in FIG. , There is a phenomenon that noise and fluctuations occur. This phenomenon occurs because the ambient atmosphere fluctuates at the lighting temperature of the deuterium discharge tube, and the ozone generation density fluctuates accordingly. In the generation of ozone, oxygen molecules in the atmosphere absorb ultraviolet rays having an ultraviolet continuous spectrum energy of 5.8 eV or more and dissociate into two oxygen atoms. However, the oxygen atoms have extremely strong oxidizing power and are When they meet, they are oxidized to produce ozone (O 3 ). The ozone absorbs an ultraviolet continuous spectrum having a wavelength of 230 to 300 nm and dissociates into the original oxygen molecule.
As long as there is energy in the UV continuous spectrum below nm, the above phenomenon is repeated until equilibrium is obtained. The generation of ozone can be controlled by reducing the ultraviolet continuous spectrum of 5.8 eV or more as much as possible in the direction of cutting off the dissociation of oxygen molecules, which is the origin of ozone generation.

【0006】[0006]

【考案が解決しようとする課題】上記のように重水素放
電管の紫外線透過窓を透過した紫外連続スペクトルは、
該連続スペクトルが上記紫外線透過窓を透過することに
より生じる現象によって、特性の劣化を生じることがあ
る。
As described above, the ultraviolet continuous spectrum transmitted through the ultraviolet transmission window of the deuterium discharge tube is
A characteristic may be deteriorated due to a phenomenon that occurs when the continuous spectrum is transmitted through the ultraviolet transmission window.

【0007】本考案は、上記紫外線透過窓の透過以前に
おける紫外連続スペクトルエネルギーを5.8eV未満と
するように照射率を制御し、スペクトル強度と吸光率の
経時変化がほぼ一様な安定した特性が得られる重水素放
電管を得ることを目的とする。
The present invention controls the irradiation rate so that the continuous ultraviolet spectral energy before transmission through the ultraviolet transmission window is less than 5.8 eV, and has stable characteristics with substantially uniform changes over time in spectral intensity and absorptance. The object is to obtain a deuterium discharge tube that can obtain

【0008】[0008]

【課題を解決するための手段】上記目的は、紫外連続ス
ペクトルの発生源である重水素放電管において、上記放
電管のバルブの一部に設けた紫外線透過窓の内側の光軸
上に、5.8eV以上の紫外連続スペクトルエネルギーを
吸収する誘電体物質を、フィルタとして設けることによ
り達成される。
In the deuterium discharge tube, which is the source of the continuous ultraviolet spectrum, the above-mentioned object is to provide an optical axis 5 inside the ultraviolet transmission window provided in a part of the bulb of the discharge tube. This is achieved by providing a dielectric substance that absorbs ultraviolet continuous spectrum energy of 0.8 eV or more as a filter.

【0009】[0009]

【作用】重水素放電管は、上記のように通常石英ガラス
の紫外線透過窓を備えているが、上記石英ガラスは製造
時に酸素供給量が不足すると酸素空孔を含み、上記空孔
が正孔を取込むことにより、上記石英ガラスは欠陥を生
じて、吸収エネルギーの損失がおこる。
As described above, the deuterium discharge tube is usually provided with an ultraviolet ray transmitting window of quartz glass. However, the quartz glass contains oxygen vacancies when the oxygen supply amount is insufficient at the time of manufacture, and the vacancies are holes. By incorporating the quartz glass, defects are generated in the quartz glass, resulting in loss of absorbed energy.

【0010】また、紫外連続スペクトルエネルギーが
5.8eV以上の紫外線は大気中でオゾンを形成するが、
このオゾンは紫外連続スペクトル強度にノイズと揺らぎ
を生じさせる。したがって、特性がすぐれた紫外連続ス
ペクトルを得るためには、重水素放電管で生じる5.8e
V以上の紫外連続スペクトルエネルギーを、石英ガラス
で形成された紫外線透過窓を透過する以前に抑制する必
要がある。そのために本考案では、上記エネルギーを吸
収する誘電体物質をフィルタとして、上記紫外線透過窓
の内側光軸上に設ける。本考案では所望する誘電体物質
は、3.5mmの厚さにおける紫外線透過率が、波長2
50nmで66%、225nmで13%、210nmで
1%の特性を有し、上記透過率は250nmから指数関
数的に減少している。上記特性の誘電体材料を用いて、
波長185nmの紫外連続スペクトル強度の照射率が1
0%以下になるように厚さを調整することにより、上記
5.8eV以上の紫外連続スペクトルエネルギーを制御す
る紫外線透過ガラスフィルタを得ることができ、良好な
紫外連続スペクトル特性が得られる。
Further, ultraviolet rays having an ultraviolet continuous spectrum energy of 5.8 eV or more form ozone in the atmosphere,
This ozone causes noise and fluctuations in the ultraviolet continuous spectrum intensity. Therefore, in order to obtain an ultraviolet continuous spectrum with excellent characteristics, 5.8e generated in a deuterium discharge tube
It is necessary to suppress the ultraviolet continuous spectrum energy of V or more before passing through the ultraviolet transmitting window formed of quartz glass. Therefore, in the present invention, the dielectric substance that absorbs the energy is provided as a filter on the inner optical axis of the ultraviolet transmitting window. In the present invention, the desired dielectric material has a UV transmittance of 2 mm at a thickness of 3.5 mm.
It has characteristics of 66% at 50 nm, 13% at 225 nm, and 1% at 210 nm, and the above transmittance decreases exponentially from 250 nm. Using a dielectric material with the above characteristics,
Irradiation rate of UV continuous spectrum intensity of wavelength 185nm is 1
By adjusting the thickness so as to be 0% or less, it is possible to obtain an ultraviolet transmitting glass filter for controlling the ultraviolet continuous spectrum energy of 5.8 eV or more, and excellent ultraviolet continuous spectrum characteristics can be obtained.

【0011】[0011]

【実施例】つぎに本考案の実施例を図面とともに説明す
る。図1は本考案による重水素放電管の一実施例を示す
図で、(a)は正面図、(b)はA−A断面図、図2は
上記実施例における透過紫外連続スペクトル強度の経時
変化を示す図、図3は上記実施例の波長225nmにお
けるオゾンにより生じる紫外連続スペクトル強度のノイ
ズと揺らぎの状態を示す図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a deuterium discharge tube according to the present invention, (a) is a front view, (b) is a sectional view taken along line AA, and FIG. 2 is a continuous ultraviolet transmission spectrum intensity in the above embodiment. FIG. 3 is a diagram showing a change, and FIG. 3 is a diagram showing a noise and fluctuation state of the ultraviolet continuous spectrum intensity generated by ozone at the wavelength of 225 nm in the above-mentioned embodiment.

【0012】重水素放電管は図1に示すように、構造体
を蔽うバルブ8の内部に数百Paの高純度重水素を封入
し、それぞれ金属隔壁で囲んで設置した熱陰極1と陽極
2との間に放電路を形成し、該放電路を上記両隔壁の境
界壁の一部に設けたピンホール4で細く絞ることによ
り、紫外連続スペクトルを発生させている。上記紫外連
続スペクトルを、バルブ8の一部に設けた石英ガラスか
らなる紫外線透過窓7を透過させて外部に取り出してい
るが、本考案の実施例では、図1に示すように上記紫外
線透過窓7を通過する以前の紫外連続スペクトルの光軸
上にフィルタ6を設け、上記紫外線透過窓7を透過する
紫外連続スペクトルのエネルギーが、5.8eV未満にな
るように制御している。
As shown in FIG. 1, the deuterium discharge tube has a hot cathode 1 and an anode 2 in which a high purity deuterium of several hundreds of Pa is enclosed in a bulb 8 which covers the structure, and which are respectively surrounded by metal partition walls. An ultraviolet continuous spectrum is generated by forming a discharge path between and the discharge path and narrowing the discharge path with a pinhole 4 provided in a part of the boundary wall of the both partition walls. The UV continuous spectrum is transmitted to the outside through the UV transmission window 7 made of quartz glass provided in a part of the bulb 8. In the embodiment of the present invention, as shown in FIG. The filter 6 is provided on the optical axis of the ultraviolet continuous spectrum before passing through the ultraviolet ray 7, and the energy of the ultraviolet continuous spectrum transmitted through the ultraviolet transmission window 7 is controlled to be less than 5.8 eV.

【0013】上記フィルタ6は、3.5mmの厚さにお
ける紫外線透過率が、波長250nmで66%、225
nmで13%、210nmで1%というように、波長2
50nm以下で透過率が指数関数的に減少する誘電体材
料である紫外線透過ガラスを、波長185nmにおける
紫外連続スペクトル強度の照射率が10%以下になるよ
うに、厚さを調整して形成し、上記フィルタ6を光軸に
直角に、石英ガラスの放射面内に対して平行か、あるい
は上記紫外線透過ガラスのブルースター角に維持して、
上記紫外線透過窓7の内側に支持する。
The filter 6 has an ultraviolet ray transmittance of 66% at a wavelength of 250 nm and a wavelength of 225 at a thickness of 3.5 mm.
Wavelength 2 such as 13% at nm and 1% at 210 nm
An ultraviolet transmitting glass, which is a dielectric material whose transmittance decreases exponentially at 50 nm or less, is formed by adjusting the thickness so that the irradiation rate of the ultraviolet continuous spectrum intensity at a wavelength of 185 nm is 10% or less. Maintaining the filter 6 at right angles to the optical axis, parallel to the radiation surface of the quartz glass, or at the Brewster's angle of the ultraviolet transmitting glass,
It is supported inside the ultraviolet transmitting window 7.

【0014】上記のように構成することにより5.8e
V以上の紫外連続スペクトルのエネルギーを抑制するこ
とができるので、紫外線透過窓7に用いる石英ガラスが
常磁性欠陥をもち、吸収エネルギーの損失を招くのを減
少させることができ、従来技術のようにスペクトル強度
が紫外線短波長側で時間とともに減少することがなく、
図2に示すように190nmから240nmの間では時
間の変化に対するスペクトル強度の変化がなく、一様な
スペクトル強度を保持することができる。波長240〜
400nmの間では一部に増発現象があるが、上記波長
域では石英ガラス窓が紫外線による清掃効果によって清
浄化され、スペクトル強度が一様に増加している。ま
た、上記紫外連続スペクトルエネルギーを5.8eV未
満とすることは、大気中におけるオゾンの形成を制限す
ることができるので、ノイズや揺らぎに厳しい225n
mの波長に対して実施したにもかかわらず、図3に示す
ように時間の経過に対しほぼ一様の吸光度を保つことが
でき、特性の向上を確認することができた。
With the above configuration, 5.8e
Since it is possible to suppress the energy of the ultraviolet continuous spectrum of V or more, it is possible to reduce that the quartz glass used for the ultraviolet transmission window 7 has a paramagnetic defect and causes a loss of absorbed energy. Spectral intensity does not decrease with time on the ultraviolet short wavelength side,
As shown in FIG. 2, between 190 nm and 240 nm, there is no change in the spectral intensity with respect to time, and a uniform spectral intensity can be maintained. Wavelength 240 ~
Although there is a partly increased phenomenon in the wavelength range of 400 nm, the quartz glass window is cleaned by the cleaning effect of ultraviolet rays in the above wavelength range, and the spectral intensity uniformly increases. Further, if the ultraviolet continuous spectrum energy is set to less than 5.8 eV, the formation of ozone in the atmosphere can be limited.
Despite the fact that it was carried out for the wavelength of m, it was possible to maintain an almost uniform absorbance with the passage of time as shown in FIG. 3, and it was confirmed that the characteristics were improved.

【0015】なお、重水素放電管のバルブ8を上記フィ
ルタ6の材料を使用して形成し、紫外線透過窓7の厚さ
を調整することは、機械的強度に制約があるため、本考
案の効果と同様の特性向上を望むことは難しい。
It is to be noted that the mechanical strength is limited when the bulb 8 of the deuterium discharge tube is formed by using the material of the filter 6 and the thickness of the ultraviolet transmission window 7 is adjusted. It is difficult to expect the same characteristic improvement as the effect.

【0016】[0016]

【考案の効果】上記のように本考案による重水素放電管
は、紫外連続スペクトルの発生源である重水素放電管に
おいて、上記放電管のバルブの一部に設けた紫外線透過
窓の内側の光軸上に、5.8eV以上の紫外連続スペクト
ルエネルギーを吸収する誘電体物質を、フィルタとして
設けることにより、紫外線短波長側では時間経過に対し
て一様なスペクトル強度が保持でき、また、ほぼ一様な
吸光度を保つことができるので、紫外連続スペクトル特
性を向上させることが可能である。
As described above, in the deuterium discharge tube according to the present invention, in the deuterium discharge tube which is the source of the continuous ultraviolet spectrum, the light inside the ultraviolet transmission window provided in a part of the bulb of the discharge tube is used. By providing a dielectric substance that absorbs UV continuous spectrum energy of 5.8 eV or more on the axis as a filter, it is possible to maintain uniform spectral intensity over time on the short wavelength side of ultraviolet light, and also to obtain almost one Since such an absorbance can be maintained, it is possible to improve the ultraviolet continuous spectrum characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案による重水素放電管の一実施例を示す図
で、(a)は正面図、(b)はA−A断面図である。
FIG. 1 is a view showing an embodiment of a deuterium discharge tube according to the present invention, (a) is a front view and (b) is a sectional view taken along line AA.

【図2】上記実施例における透過紫外連続スペクトル強
度の経時変化を示す図である。
FIG. 2 is a view showing a change with time of a continuous transmission ultraviolet spectrum intensity in the above-mentioned example.

【図3】上記実施例の波長225nmにおけるオゾンに
よる紫外連続スペクトル強度のノイズと揺らぎの状態を
示す図である。
FIG. 3 is a diagram showing a state of noise and fluctuation of ultraviolet continuous spectrum intensity due to ozone at a wavelength of 225 nm in the above-mentioned embodiment.

【図4】従来の重水素放電管を示す図で、(a)は正面
図、(b)はA−A断面図である。
FIG. 4 is a view showing a conventional deuterium discharge tube, in which (a) is a front view and (b) is a sectional view taken along line AA.

【図5】透過紫外連続スペクトル強度の従来の経時変化
を示す図である。
FIG. 5 is a diagram showing a conventional change over time in the transmitted ultraviolet continuous spectrum intensity.

【図6】オゾンによる紫外連続スペクトル強度の、従来
におけるノイズと揺らぎの状態を示す図である。
FIG. 6 is a diagram showing a conventional noise and fluctuation state of the ultraviolet continuous spectrum intensity due to ozone.

【符号の説明】[Explanation of symbols]

6 フィルタ 7 紫外線透過窓 8 バルブ 6 Filter 7 UV transmission window 8 Bulb

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】紫外連続スペクトルの発生源である重水素
放電管において、上記放電管のバルブの一部に設けた紫
外線透過窓の内側の光軸上に、5.8eV以上の紫外連続
スペクトルエネルギーを吸収する誘電体物質を、フィル
タとして設けたことを特徴とする重水素放電管。
1. In a deuterium discharge tube which is a source of an ultraviolet continuous spectrum, an ultraviolet continuous spectrum energy of 5.8 eV or more is present on an optical axis inside an ultraviolet transmitting window provided in a part of a bulb of the discharge tube. A deuterium discharge tube, characterized in that a dielectric substance that absorbs is provided as a filter.
JP1991065293U 1991-08-19 1991-08-19 Deuterium discharge tube Expired - Lifetime JPH0743938Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991065293U JPH0743938Y2 (en) 1991-08-19 1991-08-19 Deuterium discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991065293U JPH0743938Y2 (en) 1991-08-19 1991-08-19 Deuterium discharge tube

Publications (2)

Publication Number Publication Date
JPH0517918U JPH0517918U (en) 1993-03-05
JPH0743938Y2 true JPH0743938Y2 (en) 1995-10-09

Family

ID=13282740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991065293U Expired - Lifetime JPH0743938Y2 (en) 1991-08-19 1991-08-19 Deuterium discharge tube

Country Status (1)

Country Link
JP (1) JPH0743938Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026675A (en) * 2003-06-24 2007-02-01 Matsushita Electric Ind Co Ltd Light irradiation device, lamp for it, and light irradiation method
JP2006344383A (en) * 2003-06-24 2006-12-21 Matsushita Electric Ind Co Ltd Light irradiation device
WO2012046509A1 (en) 2010-10-04 2012-04-12 浜松ホトニクス株式会社 Light source
DE102011018986A1 (en) * 2011-04-28 2012-10-31 Heraeus Noblelight Gmbh Lamp module, in particular for spectral analysis devices

Also Published As

Publication number Publication date
JPH0517918U (en) 1993-03-05

Similar Documents

Publication Publication Date Title
CA2056271C (en) Uv light-permeable glass and article comprising the same
US5572091A (en) Quartz glass with reduced ultraviolet radiation transmissivity, and electrical discharge lamp using such glass
US6376401B1 (en) Ultraviolet ray-transparent optical glass material and method of producing same
US4705987A (en) Very high efficacy electrodeless high intensity discharge lamps
JPH01244623A (en) Manufacture of oxide film
JPH0743938Y2 (en) Deuterium discharge tube
JP3346291B2 (en) Dielectric barrier discharge lamp and irradiation device
JPH0791084B2 (en) Ultraviolet-resistant synthetic quartz glass and method for producing the same
JPH0648765A (en) Ultraviolet absorptive vitreous material and lamp
JPH06291404A (en) Integrated optics element and manufacture thereof
JP3470983B2 (en) Manufacturing method of synthetic quartz glass member
Kuzuu et al. Effects of synthesis conditions on existence and nonexistence of the ArF excimer laser and x-ray induced B 2 α band in type-III fused silicas
JPS61104614A (en) Formation of deposited film
JP2000086259A (en) Optical material for vacuum ultraviolet ray
Voĭtovich et al. Investigation of spectral and energy characteristics of green radiation generated in lithium fluoride with radiation color centers
CN115108717A (en) Novel bismuth-erbium co-doped quartz optical fiber preform, application and preparation method
US4839524A (en) Filter for isotopic alteration of mercury vapor
JPH09171799A (en) Discharge lamp and device of vacuum ultraviolet ray source
JPH0421540A (en) Synthetic silica glass and production thereof
JP3519426B2 (en) Stabilization method of synthetic quartz glass for optics
JP4022657B2 (en) Method for manufacturing dielectric optical thin film
US6956328B1 (en) Tungsten halogen lamp with halogen-containing compound and silicon-containing compound
Zama et al. Improvement of the aging characteristics of deuterium lamp
JPH0460300B2 (en)
JPH04130031A (en) Synthesized quartz glass and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110620

LAPS Cancellation because of no payment of annual fees