JPH0743467B2 - Scanning optics - Google Patents

Scanning optics

Info

Publication number
JPH0743467B2
JPH0743467B2 JP60086705A JP8670585A JPH0743467B2 JP H0743467 B2 JPH0743467 B2 JP H0743467B2 JP 60086705 A JP60086705 A JP 60086705A JP 8670585 A JP8670585 A JP 8670585A JP H0743467 B2 JPH0743467 B2 JP H0743467B2
Authority
JP
Japan
Prior art keywords
lens
scanning
scanning direction
sub
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60086705A
Other languages
Japanese (ja)
Other versions
JPS61245129A (en
Inventor
玲 森本
Original Assignee
旭光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭光学工業株式会社 filed Critical 旭光学工業株式会社
Priority to JP60086705A priority Critical patent/JPH0743467B2/en
Priority to US06/823,236 priority patent/US4715699A/en
Publication of JPS61245129A publication Critical patent/JPS61245129A/en
Publication of JPH0743467B2 publication Critical patent/JPH0743467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 a. 技術分野 本発明は、走査のピツチむら等を除去したレーザービー
ムプリンター等の走査光学系に関する。
TECHNICAL FIELD The present invention relates to a scanning optical system, such as a laser beam printer, in which scanning irregularities are removed.

b. 従来技術とその問題点 レーザービームプリンター等のように半導体レーザーを
光源に用いた走査光学系は、第7図に示すように、レー
ザー光を放射する半導体レーザー1と、該半導体レーザ
ー1から放射されたレーザー光を略平行光束にするコリ
メートレンズ2と、該光束を偏向する回転多面鏡等の偏
向器3と、偏向された光束を所定の位置に集光する走査
レンズ系4とから成り、走査面5上にスポツトを形成す
る。
b. Prior Art and its Problems A scanning optical system using a semiconductor laser as a light source, such as a laser beam printer, has a semiconductor laser 1 that emits laser light and a semiconductor laser 1 that emits laser light, as shown in FIG. It comprises a collimator lens 2 for converting the emitted laser light into a substantially parallel light beam, a deflector 3 such as a rotating polygon mirror for deflecting the light beam, and a scanning lens system 4 for collecting the deflected light beam at a predetermined position. , Spots are formed on the scanning surface 5.

尚、以下、走査面5上における走査方向を主走査方向と
いい、該走査方向と垂直な方向を副走査方向という。
Hereinafter, the scanning direction on the scanning surface 5 will be referred to as the main scanning direction, and the direction perpendicular to the scanning direction will be referred to as the sub-scanning direction.

上記スポツト径Sは、上記光束の径をD、走査レンズ系
4の焦点距離をf、波長をλとしたとき、 で与えられる。ここで、Kは定数で、上記光束の形状に
より決定される量であり、また、 光束径で決まるFナンバーに相当する。
Where the spot diameter S is D, the focal length of the scanning lens system 4 is f, and the wavelength is λ, Given in. Here, K is a constant, an amount determined by the shape of the light flux, and It corresponds to the F number determined by the luminous flux diameter.

そして、上記走査レンズ系4は、偏向速度と走査速度と
が比例する様、f・θレンズが用いられることが多い。
The scanning lens system 4 often uses an f.theta. Lens so that the deflection speed is proportional to the scanning speed.

f・θレンズは、入射ビームのレンズ光軸となす角(入
射角)θと走査面5上でのスポツトの光軸からの距離
(像高)yが、焦点距離をfとして、 y=f・θ となるレンズで、この特性は、走査レンズ系が歪曲収差
Distとして、 なる負の値を持つ様設計することで得られる。
In the f.theta. lens, the angle (incident angle) .theta. formed with the lens optical axis of the incident beam and the distance (image height) y from the optical axis of the spot on the scanning surface 5 are y = f, where f is the focal length.・ This is a lens with θ, and this characteristic is that the scanning lens system has distortion.
As a Dist, It is obtained by designing to have a negative value.

また、光源としての半導体レーザーは、その接合面に平
行な方向(以下、単に平行方向という)と垂直な方向
(以下、単に垂直方向という)とで光の放射のされ方が
異なる。即ち、第8図に示すように平行方向の広がり角
をθ、垂直方向の広がり角をθとしたとき、 θ<θ となる。
Further, a semiconductor laser as a light source emits light differently in a direction parallel to the bonding surface (hereinafter, simply referred to as a parallel direction) and a direction perpendicular to the bonding surface (hereinafter, simply referred to as a vertical direction). That is, when the spread angle in the parallel direction is θ 2 and the spread angle in the vertical direction is θ 1 as shown in FIG. 8, θ 21 .

従つて、上記の如き、半導体レーザー,コリメートレン
ズ,偏向器及び走査レンズ系から成る走査光学系では、
半導体レーザーから放射されるレーザー光の広がり角が
異なるため、コリメートレンズを出たあとの平行方向の
ビーム径DA及び垂直方向のビーム径DBも異なり、 DA=2・fc・sin(θ2/2)<2・fc・sin(θ1/2)=DB (ここで、fcはコリメートレンズの焦点距離)であるた
め、スポツト径も、 (ここで、S2は平行方向のスポツト径、S1は垂直方向の
スポツト径)となり円形のスポツトが得られない。
Therefore, in the scanning optical system including the semiconductor laser, the collimator lens, the deflector and the scanning lens system as described above,
Since the divergence angle of the laser light emitted from the semiconductor laser is different, the beam diameter D A in the parallel direction after exiting the collimating lens and the beam diameter D B in the vertical direction are also different, and D A = 2 · fc · sin (θ 2/2) <2 · fc · sin (θ 1/2) = D B ( where, because fc is the focal length) of the collimating lens, Supotsuto diameter also (Here, S 2 is the spot diameter in the parallel direction and S 1 is the spot diameter in the vertical direction), so a circular spot cannot be obtained.

半導体レーザーを光源に用いることによつて生じる上記
の欠点即ち、円形のスポツトが得られないという欠点の
解決方法としては、コリメートレンズ2の口径を小さく
したり又は、スリツトを設けて垂直方向の光をけつてし
まい光ビームの径をそろえるとか、第9図に示すよう
に、コリメートレンズ2と偏向器3との間にアフオーカ
ルアナモフイツク光学系10を配して光ビーム径を調整す
る等のビーム整形手段がとられているが、前者の方法で
は、エネルギー効率が低下し、後者では、光学系が複雑
になる。
As a method of solving the above-mentioned drawbacks caused by using a semiconductor laser as a light source, that is, the drawback that a circular spot cannot be obtained, the collimator lens 2 may be made small in diameter or a slit may be provided to provide a vertical light beam. The optical beam diameter is adjusted by arranging the optical beam diameters, or by arranging the afocal anamorphic optical system 10 between the collimator lens 2 and the deflector 3 as shown in FIG. However, the former method reduces the energy efficiency and the latter method complicates the optical system.

更に、偏向器3には、回転多面鏡やホログラムスキヤナ
ー等が用いられるが、加工精度上、回転多面鏡の各面の
倒れ誤差やホログラムスキヤナーの各エレメント間誤差
等による偏向面の副走査方向誤差が生じ、これによつ
て、走査のピツチむらが生じてしまう。
Further, although a rotary polygon mirror, a hologram scanner, etc. are used for the deflector 3, due to processing accuracy, sub-scanning of the deflection surface due to tilt error of each surface of the rotary polygon mirror, error between elements of the hologram scanner, etc. A directional error occurs, which causes uneven scanning pitch.

これを補正するための方法としては、従来、第10図に示
すように、コリメートレンズ2と偏向器3との間に、副
走査方向面内に作用する第1のアナモフイツク光学系13
を配して偏向面上に線像を形成すると共に、走査レンズ
系4に第2のアナモフイツク光学系14を付加するか或
は、走査レンズ系4自体をアナモフイツクな構成とし、
偏向面と走査面を副走査方向面内で共役にし、面倒れに
よつて生じる副走査方向像点誤差をなくすやり方等が示
されているが、いずれのやり方も、偏向器の後の光学系
で副走査方向での正の屈折力が増すため走査される像面
の湾曲が大きくなるという欠点を有し、このやり方とし
ては、特公昭52−28666号公報,特開昭57−144515号公
報及び特開昭58−93021号公報等が挙げられる。特に、
特開昭58−93021号公報にあつては、第2のアナモフイ
ツク光学系としてシリンダーレンズを使用しているが、
像面の湾曲を低減させるために、該シリンダーレンズを
走査面近くに配置しなければならず、結果的に長いシリ
ンダーレンズが必要となる。
As a method for correcting this, conventionally, as shown in FIG. 10, a first anamorphic optical system 13 acting in the sub-scanning direction plane between the collimator lens 2 and the deflector 3 is used.
To form a line image on the deflecting surface, and to add a second anamorphic optical system 14 to the scanning lens system 4, or to make the scanning lens system 4 itself an anamorphic structure.
A method of making the deflecting surface and the scanning surface conjugate in the sub-scanning direction plane to eliminate the image point error in the sub-scanning direction caused by the surface tilt, etc. are shown. In either method, the optical system after the deflector is used. However, there is a drawback that the curvature of the image surface to be scanned becomes large due to an increase in the positive refracting power in the sub-scanning direction. As this method, Japanese Patent Publication Nos. 52-28666 and 57-144515 are disclosed. And JP-A-58-93021. In particular,
In JP-A-58-93021, a cylinder lens is used as the second anamorphic optical system.
In order to reduce the field curvature, the cylinder lens must be placed close to the scan plane, resulting in a long cylinder lens.

c.目的 本発明は、より確実に偏向器の面倒れ補正を行なうこと
ができる走査光学系を得ることを目的とする。
c. Object The present invention has an object to obtain a scanning optical system capable of more surely correcting the surface tilt of the deflector.

d.発明の概要 本発明は、半導体レーザーと、該半導体レーザーから発
散されるレーザー光を略平行光束にするコリメートレン
ズと、このコリメートレンズを出た光束を偏向する偏向
器と、この偏向器で偏向された光束を走査面に集光する
走査レンズ系とを備えた走査光学系において、コリメー
トレンズと偏向器との間に、該コリメートレンズを出射
した光束を、その副走査断面の径を細く成形して該偏向
器に入射させる凸レンズを配設し、走査レンズ系を、そ
の最も偏向器側の面が主走査方向より副走査方向に強い
負のパワーを有する面からなり、その最も偏向器から離
れた面が主走査方向より副走査方向に強い正のパワーを
有する面からなるアナモフィックレンズ系とし、凸レン
ズの焦点距離をfp、凸レンズの後側主点と偏向器の偏向
面との距離をd、走査レンズ系の主走査方向断面の焦点
距離をf1として、 0.5<(fp−d)/f1<2.5 (1) を満足することを特徴としている。
d. Summary of the Invention The present invention is directed to a semiconductor laser, a collimator lens for making a laser beam emitted from the semiconductor laser a substantially parallel light beam, a deflector for deflecting the light beam emitted from the collimator lens, and this deflector. In a scanning optical system including a scanning lens system for condensing a deflected light beam on a scanning surface, a light beam emitted from the collimator lens is narrowed in a sub-scanning cross section between a collimator lens and a deflector. A convex lens which is shaped and made incident on the deflector is disposed, and the scanning lens system has a surface on the most deflector side that has a strong negative power in the sub-scanning direction rather than the main scanning direction. An anamorphic lens system in which the surface away from the main scanning direction has a strong positive power in the sub-scanning direction, the focal length of the convex lens is f p , and the rear principal point of the convex lens and the deflecting surface of the deflector are Is d and the focal length of the cross section of the scanning lens system in the main scanning direction is f 1 , and 0.5 <(f p −d) / f 1 <2.5 (1) is satisfied.

すなわち本発明は、偏向器の偏向面上でのゴミや傷が投
影されないように、敢えて偏向器より光源側の凸レンズ
による結像位置を(fp−d)だけ偏向器よりずらし、一
方、副走査方向のピント位置を主走査方向のピント位置
に合わせるため、副走査方向の主点位置を主走査像面方
向へずらしたものであって、そのための構成が、走査レ
ンズ系を、その最も偏向器側の面が主走査方向より副走
査方向に強い負のパワーを有する面からなり、その最も
偏向器から離れた面が主走査方向より副走査方向に強い
正のパワーを有する面からなる、レトロフォーカスなア
ナモフィックレンズ系としている。条件式(1)は、凸
レンズの焦点距離と結像位置のずれ量との関係を示して
いる。
That is, according to the present invention, the image forming position by the convex lens on the light source side of the deflector is intentionally shifted by (f p −d) from the deflector so that dust and scratches on the deflecting surface of the deflector are not projected. In order to match the focus position in the scanning direction with the focus position in the main scanning direction, the position of the principal point in the sub-scanning direction is shifted in the main scanning image plane direction. The surface on the device side is a surface having a negative power stronger in the sub-scanning direction than the main scanning direction, and the surface farthest from the deflector is a surface having a positive power stronger in the sub-scanning direction than the main scanning direction. It uses a retrofocus anamorphic lens system. Conditional expression (1) shows the relationship between the focal length of the convex lens and the shift amount of the image forming position.

e.発明の実施例 以下、図面に従つて本発明の一実施例を説明する。第1
図は、本発明に係るレーザービームプリンター等の走査
光学系の基本内容を示す図であり、半導体レーザーの垂
直方向がレーザービームプリンター等の主走査方向に一
致し、半導体レーザーの平行方向がレーザービームプリ
ンター等の副走査方向に一致している。上記走査光学系
は、物点側から半導体レーザー,該半導体レーザーから
発散されるレーザー光を略平行光束にするコリメートレ
ンズ2,副走査方向にパワーを持つ凸のシリンダーレンズ
11,該シリンダーレンズ11を通過し副走査方向が収斂光
となり、前記コリメートレンズ2の出射時よりも副走査
方向で細く整形された断面を持つ光束を偏向する偏向器
3,アナモフイツクな走査レンズ系20の順に構成されてい
るが、半導体レーザー,コリメートレンズ2及び偏向器
3は、公知のものなので説明を簡略して、凸のシリンダ
ーレンズ11及びアナモフイツクな走査レンズ系20を中心
に説明する。
e. Embodiment of the Invention An embodiment of the present invention will be described below with reference to the drawings. First
The figure is a diagram showing the basic contents of a scanning optical system such as a laser beam printer according to the present invention, the vertical direction of the semiconductor laser corresponds to the main scanning direction of the laser beam printer, the parallel direction of the semiconductor laser is a laser beam It matches the sub-scanning direction of the printer or the like. The scanning optical system includes a semiconductor laser from the object side, a collimator lens 2 for converting a laser beam emitted from the semiconductor laser into a substantially parallel light beam, and a convex cylinder lens having power in the sub-scanning direction.
11, a deflector for deflecting a light beam that passes through the cylinder lens 11 and becomes convergent light in the sub-scanning direction, and has a cross section that is thinner in the sub-scanning direction than when the collimator lens 2 is emitted.
3. The anamorphic scanning lens system 20 is constructed in this order. However, the semiconductor laser, the collimator lens 2 and the deflector 3 are publicly known, so the description thereof will be simplified and the convex cylinder lens 11 and the anamorphic scanning lens system 20 will be described. I will explain mainly.

尚、Hf1,Hb1は、走査レンズ20の主走査方向断面内の前
側及び後側主点位置、Hf2,Hb2は、副走査方向断面内の
前側及び後側主点位置を示す。また、dは凸シリンダー
レンズ11の後側主点Hpと偏向面3までの距離、eは偏向
面3と走査レンズ20の副走査方向断面内の前側主点Hf2
までの距離を示す。
Hf 1 and Hb 1 are front and rear principal point positions in the main scanning direction cross section of the scanning lens 20, and Hf 2 and Hb 2 are front and rear principal point positions in the sub scanning direction cross section. Further, d is the distance between the rear principal point Hp of the convex cylinder lens 11 and the deflecting surface 3, and e is the front principal point Hf 2 in the sub-scanning direction cross section of the deflecting surface 3 and the scanning lens 20.
Indicates the distance to.

(1) 偏向面の副走査方向誤差について 従来の走査レンズ系4に例えばf・θレンズを用いた場
合、先にも述べたように y=f・θ であるので、その焦点距離fは、レーザービームプリン
ター等の走査幅と走査角によりある値に決定される。
(1) Regarding the error in the sub-scanning direction of the deflecting surface When, for example, an f.theta. Lens is used in the conventional scanning lens system 4, since y = f.theta. As described above, the focal length f is It is determined to be a certain value depending on the scanning width and scanning angle of a laser beam printer or the like.

しかしながら、球面レンズ系で構成されるf・θ走査レ
ンズ系においては、副走査方向も主走査方向と同じ焦点
距離をもつているので、偏向面3の面倒れ誤差等により
副走査方向に光束がΔθsだけ振わると、スポツトも副
走査方向に基準位置よりf・Δθsだけずれた位置で走
査され、ピツチむらを生じてしまう。
However, in the f.theta. Scanning lens system composed of the spherical lens system, the sub-scanning direction also has the same focal length as the main scanning direction, so that the light beam is emitted in the sub-scanning direction due to the surface tilt error of the deflecting surface 3 or the like. When the spot is swung by Δθs, the spot is also scanned at a position displaced from the reference position by f · Δθs in the sub-scanning direction, resulting in uneven pitch.

本発明においては、コリメートレンズ2と偏向器3の間
に凸のシリンダーレンズ11があり、また、走査レンズ系
20がアナモフイツクな構成であるので、主走査方向の焦
点距離をf1、副走査方向の焦点距離をf2、シリンダーレ
ンズ11の焦点距離をfpとすると、 f1>f2 とすることができ、且つ副走査方向の像点誤差は、 であるので、副走査方向の偏向面誤差に対する感度は、
走査レンズが焦点距離f1の球面レンズ系から成る場合に
比し、 に軽減される。
In the present invention, a convex cylinder lens 11 is provided between the collimator lens 2 and the deflector 3, and the scanning lens system
Since 20 is an anamorphic structure, if the focal length in the main scanning direction is f 1 , the focal length in the sub scanning direction is f 2 , and the focal length of the cylinder lens 11 is fp, then f 1 > f 2 can be obtained. , And the image point error in the sub-scanning direction is Therefore, the sensitivity to the deflection surface error in the sub-scanning direction is
Compared to the case where the scanning lens consists of a spherical lens system with a focal length f 1 , Is reduced to.

この方式では、偏向面に線像を形成する方式の様に、完
全な補正は行なわれないが、光束が偏向面に面で当つて
反射するため偏向面のキズ,ゴミ等のノイズに対して強
いという長所をもつ。
In this method, unlike the method of forming a line image on the deflecting surface, complete correction is not performed, but since the light beam impinges on the deflecting surface and is reflected, noise such as scratches and dust on the deflecting surface is generated. It has the advantage of being strong.

(2) ビーム整形効果について 本発明においては、半導体レーザー1の広がり角の広い
垂直方向と走査レンズ系20の焦点距離の長い主走査方
向、広がり角の狭い平行方向と焦点距離の短い副走査方
向とが組み合わされるので実質的なビーム整形効果を有
する。即ち、半導体レーザーの広がり角は、先にも述べ
た如く θ>θ であるので、コリメートレンズ2を通過した後のビーム
径は、主走査方向におけるビーム径をD1、副走査方向に
おけるビーム径をD2とすると、 D1=2・fcsin(θ1/2)>2・fcsin(θ2/2)=D2 となり、ここでシリンダーレンズ11を含めた副走査方向
の焦点距離f2′は、 であり、主走査方向,副走査方向のスポツト径S1,S
2は、 なので、主走査方向,副走査方向のスポツト径の比は、 となる。即ち、 の割合だけビーム整形効果を生じる。
(2) Beam shaping effect In the present invention, in the present invention, the vertical direction with a wide divergence angle and the main scanning direction with a long focal length of the scanning lens system 20, the parallel direction with a narrow divergence angle and the sub-scanning direction with a short focal length. And have a substantial beam shaping effect. That is, since the divergence angle of the semiconductor laser is θ 1 > θ 2 as described above, the beam diameter after passing through the collimating lens 2 is the beam diameter in the main scanning direction D 1 and in the sub scanning direction. When the beam diameter is D 2, D 1 = 2 · fc sin (θ 1/2)> 2 · fc sin (θ 2/2) = D 2 , and the focus of the sub-scanning direction, including the cylindrical lens 11 where The distance f 2 ′ is And the spot diameters S 1 and S 1 in the main scanning direction and the sub scanning direction.
2 is Therefore, the ratio of the spot diameters in the main scanning direction and the sub scanning direction is Becomes That is, The beam shaping effect is produced by the ratio of.

従つて、 とすれば、ほぼ円形のスポツトを得ることができる。ち
なみに、凸シリンダーレンズ11がない場合、即ちfp=∞
のときには、 f′=f2 であり、偏向面の副走査方向誤差補正効果の割合も、ビ
ーム整形効果の割合もf2/f1となつてしまうが、本発明
においては、偏向面の副走査方向誤差補正効果の割合
と、ビーム整形効果の割合は上記の式及び式で与え
られるので、fp,d,eを適当に定めることで両者の効果の
割合に自由度がでてくる。
Therefore, Then, a spot having a substantially circular shape can be obtained. By the way, when there is no convex cylinder lens 11, namely fp = ∞
In the case of, f ′ 2 = f 2 and the ratio of the sub-scanning direction error correction effect of the deflection surface and the ratio of the beam shaping effect are both f 2 / f 1. However, in the present invention, the deflection surface Since the ratio of the error correction effect in the sub-scanning direction and the ratio of the beam shaping effect are given by the above formulas and formulas, by appropriately setting fp, d, and e, there is a degree of freedom in the ratio of both effects.

即ち、本発明においては、凸シリンダーレンズ11の存在
により、偏向面の副走査方向誤差補正の割合とビーム整
形効果の割合とを調整することができ、上記式を満す
ことによつてほぼ円形のスポツトを得ることができると
共に、偏向面の副走査方向誤差補正効果をさらに大きく
とることができる。
That is, in the present invention, the presence of the convex cylinder lens 11 makes it possible to adjust the ratio of the error correction in the sub-scanning direction of the deflecting surface and the ratio of the beam shaping effect. Can be obtained, and the effect of correcting the error in the sub-scanning direction of the deflecting surface can be further increased.

また、製造上の問題等からコリメートレンズ2のNAが十
分大きくとれず垂直方向の光をけつてしまう場合には、
上記式を満しても S1>S2 となつてしまうので、平行方向にさらにスリツトを入れ
て光束を制限し、スポツト径をそろえることもできる
が、本発明においては、コリメートレンズ2と走査レン
ズ系20との間に副走査方向にパワーを持つ凸のシリンダ
ーレンズ11を入れることにより、該シリンダーレンズ11
を通過した光束は副走査方向が収斂光となり、走査レン
ズ系20に入射する光束をコリメートレンズ2の出射時よ
りも副走査方向で細く整形された断面をもつ光束とする
効果があるため、スリツトを入れても光束の制限をゆる
くすることができ、光量の損失が少なくて済む。また、
本発明においては、凸シリンダーレンズ11によつて走査
レンズ20を通過する光束が副走査方向で細くなつている
ので、収差補正上や加工の難しいトーリツク面の面精度
公差に於て有利である。
In addition, when the NA of the collimator lens 2 cannot be set sufficiently large and the light in the vertical direction is cut off due to manufacturing problems,
Even if the above formula is satisfied, S 1 > S 2 will be satisfied, so it is possible to limit the luminous flux by further inserting slits in the parallel direction to make the spot diameters uniform, but in the present invention, the collimator lens 2 and the scanning are used. By inserting a convex cylinder lens 11 having power in the sub-scanning direction between the lens system 20 and the lens system 20,
Since the light flux that has passed through becomes a convergent light in the sub-scanning direction and has the effect of making the light flux incident on the scanning lens system 20 into a light flux having a cross section that is thinner in the sub-scanning direction than when it exits the collimator lens 2, the slit Even if it is inserted, the restriction of the luminous flux can be loosened, and the loss of the light quantity can be reduced. Also,
In the present invention, since the light flux passing through the scanning lens 20 is thinned in the sub-scanning direction by the convex cylinder lens 11, it is advantageous in terms of surface accuracy tolerance of the toric surface which is difficult to correct aberrations and is difficult to process.

次に、本発明に係る走査光学系の具体的構成について説
明する。
Next, a specific configuration of the scanning optical system according to the present invention will be described.

第2図は、本発明に係る走査光学系の全体を示す構成図
であり、1は半導体レーザー、2はコリメートレンズ、
11は副走査方向に曲率をもつ凸のシリンダーレンズ、3
は偏向器、20は2群構成からなるアナモフイツクな走査
レンズ系である。本発明においては、上記走査レンズ系
20がアナモフイツクであるため、f2をf1より小さくとる
ことができるので、偏向面の副走査方向誤差の補正効果
や凸シリンダーレンズ11によつて調整されたビーム整形
効果が得られる。また、上記走査レンズ系20が、副走査
方向断面内で、偏向器側に負の屈折力をもつ凹のシリン
ダー面、走査面側に正の屈折力をもつ凸のトーリツク面
を含み、いわゆるレトロフオーカスの構成をとることが
できるので、副走査方向の像側主点位置を走査面側に大
きくずらし、凸シリンダーレンズ11を含めた光学系で主
走査方向と副走査方向の像点を一致させることができ
る。但し、像面の湾曲や最良像面のずれを考慮して軸上
の像点は、若干ずらす場合もある。
FIG. 2 is a block diagram showing the entire scanning optical system according to the present invention, in which 1 is a semiconductor laser, 2 is a collimating lens,
11 is a convex cylindrical lens having a curvature in the sub-scanning direction, 3
Is a deflector, and 20 is an anamorphic scanning lens system composed of two groups. In the present invention, the above scanning lens system
Since 20 is an anamorphic, f 2 can be made smaller than f 1 , so that the effect of correcting the error in the sub-scanning direction of the deflecting surface and the beam shaping effect adjusted by the convex cylinder lens 11 can be obtained. Further, the scanning lens system 20 includes a concave cylinder surface having a negative refractive power on the deflector side and a convex toric surface having a positive refractive power on the scanning surface side in a cross section in the sub-scanning direction. Since a focus configuration can be adopted, the image-side principal point position in the sub-scanning direction is largely shifted to the scanning surface side, and the image points in the main-scanning direction and the sub-scanning direction coincide with each other in the optical system including the convex cylinder lens 11. Can be made. However, the image point on the axis may be slightly shifted in consideration of the curvature of the image plane and the shift of the best image plane.

尚、半導体レーザーの構造上平行方向において、発振の
横モード等の関係から、光源が理想的でなく、結果とし
てスポツトが太つてしまう事がある。この様な場合で
も、本発明においては、走査レンズの副走査方向の焦点
距離が短かく、光源の投影倍率が小さくなつている構成
であるので有利である。
In the parallel direction due to the structure of the semiconductor laser, the light source is not ideal because of the transverse mode of oscillation and the like, and as a result, the spot becomes thick. Even in such a case, the present invention is advantageous because the scanning lens has a short focal length in the sub-scanning direction and the projection magnification of the light source is small.

さらに、上記走査レンズ系20は偏向面より後で、副走査
方向面内において負の屈折力をもつ面と正の屈折力をも
つ面があり、かつそれらの面は走査方向断面内よりも強
い屈折力をもつため、これらを適宜調整することによ
り、コンパクトな構成で像面の湾曲を良好に補正でき
る。
Further, the scanning lens system 20 has a surface having a negative refracting power and a surface having a positive refracting power in the sub-scanning direction surface after the deflecting surface, and these surfaces are stronger than in the scanning direction section. Since they have refracting power, by appropriately adjusting these, it is possible to satisfactorily correct the curvature of field with a compact configuration.

ここで、上記走査レンズ系20をf・θレンズで構成する
と、該f・θレンズは、偏向器3側より第1面イが副走
査方向断面に曲率をもつ凹のシリンダー面に形成され第
2面ロが凹の球面に形成された第1群レンズ21と第3面
ハが平面に形成され第4面ニが走査方向断面よりも副走
査方向断面で強い曲率をもつトーリツク面に形成された
第2群レンズ22とから成る2群レンズ構成にすることが
でき、最低限の構成枚数で性能良好な本発明に係る走査
レンズ系20を構成できる。
Here, when the scanning lens system 20 is composed of an f.theta. Lens, the f.theta. Lens has a first surface a formed on a concave cylinder surface having a curvature in a cross section in the sub-scanning direction from the deflector 3 side. The first group lens 21 having a concave spherical surface on the two sides and the third surface C are formed on a flat surface, and the fourth surface D is formed on a toric surface having a greater curvature in the sub-scanning direction cross section than in the scanning direction cross section. The second lens group 22 and the second lens group 22 can be used as the second lens group, and the scanning lens system 20 according to the present invention having good performance can be configured with the minimum number of lenses.

即ち、上記f・θレンズによれば、走査方向断面では、
入射側より第1群レンズ21が平凹レンズ、第2群レンズ
22が平凸であり、第1群レンズが負の屈折力をもつた
め、球面収差,コマ収差の補正に有利である。
That is, according to the f · θ lens, in the scanning direction cross section,
From the incident side, the first lens group 21 is a plano-concave lens, and the second lens group
Since 22 is plano-convex and the first lens group has a negative refractive power, it is advantageous for correction of spherical aberration and coma.

また、第2面ロが凹面であり軸外光束に対して屈折力が
強く働くので、第3面ハへの入射高さが増し、この面で
発生する負の歪曲収差が大きくでき良好なf・θ特性を
得られる。
Further, since the second surface (b) is concave and the refracting power is strong against the off-axis light flux, the height of incidence on the third surface (c) is increased, and the negative distortion aberration generated on this surface can be increased, so that good f・ Theta characteristics can be obtained.

更に、副走査方向断面では、第1群レンズ21が両凹レン
ズ、第2群レンズ22が平凸レンズとなつており、第1面
イが強い曲をもつ凹面で強い負の屈折力をもち、第4面
ニが強い曲率をもつ凸面で強い正の屈折力をもつので、
いわゆるレトロフオーカスの構成になつており、副走査
方向における焦点距離を短かくし像側主点位置を像面に
近づけることができる。
Further, in the cross section in the sub-scanning direction, the first lens group 21 is a biconcave lens and the second lens group 22 is a plano-convex lens, and the first surface (a) has a strong curved concave surface and a strong negative refractive power. Since the four-sided d is a convex surface with a strong curvature and has a strong positive refractive power,
With the so-called retro focus structure, it is possible to shorten the focal length in the sub-scanning direction and bring the image-side principal point position closer to the image plane.

また、本f・θレンズでは、第1面イがシリンダー面、
第4面ニがトーリツク面であり、また、偏向面3の前に
もシリンダーレンズ11を含んでいるので、走査方向とは
独立のパラメーターをもち副走査方向断面での像面湾曲
を補正する上で有利である。
Further, in the f / θ lens, the first surface a is a cylinder surface,
The fourth surface D is a toric surface, and the cylindrical lens 11 is included in front of the deflecting surface 3 as well, so that it has a parameter independent of the scanning direction to correct the curvature of field in the sub-scanning direction cross section. Is advantageous.

そして、本f・θレンズにおいては、第1群レンズ21に
シリンダー面を、第2群レンズ22にトーリツク面を含む
が、シリンダー面は比較的加工が容易であり、またトー
リツク面を含む第2群レンズ22も、片面が平面であるた
め製作上有利である。更に、第1群レンズ21と第2群レ
ンズ22は、夫々、シリンダー面,トーリツク面を有して
いるが、それらの面が加工上の誤差を生じた場合にも、
第1群レンズ21と第2群レンズ22との間隔により主走査
方向及び副走査方向の焦点位置の調整が可能である。
In this f.theta. Lens, the first lens group 21 includes a cylinder surface, and the second lens group 22 includes a toric surface, but the cylinder surface is relatively easy to process, and the second lens surface includes the toric surface. The group lens 22 is also advantageous in manufacturing because one surface is flat. Further, the first lens group 21 and the second lens group 22 respectively have a cylinder surface and a toric surface, but even if these surfaces cause a processing error,
The focus position in the main scanning direction and the sub scanning direction can be adjusted by the distance between the first group lens 21 and the second group lens 22.

これは、第1群レンズ21と第2群レンズ22の屈折力が副
走査方向の方で強くなつており、間隔変化に対する焦点
位置変化の感度も異なることを利用したものである。
This is because the refracting powers of the first group lens 21 and the second group lens 22 are stronger in the sub-scanning direction, and the sensitivity of the focal position change with respect to the interval change is also different.

特に、半導体レーザーが光源として非点隔差もつ場合、
主走査方向と副走査方向で光軸方向に像点がずれてしま
うが、この方法により補正が可能である。また、主走査
方向と副走査方向の焦点位置の調整は、凸のシリンダー
レンズ11の曲率や位置を変えることによつてもでき、こ
の場合には、主走査方向の像点は動かず走査性も変わら
ないという利点がある。
Especially when the semiconductor laser has an astigmatic difference as a light source,
Although the image points deviate in the optical axis direction between the main scanning direction and the sub scanning direction, this method can correct the image points. Further, the adjustment of the focus position in the main scanning direction and the sub-scanning direction can also be performed by changing the curvature or position of the convex cylinder lens 11, and in this case, the image point in the main scanning direction does not move and the scannability is improved. Has the advantage that it does not change.

更に、前記走査光学系において、副走査方向に曲率をも
つ凸シリンダーレンズ11の焦点距離をfp、凸シリンダー
レンズの後側主点と偏向面3との距離をd、走査レンズ
系20の主走査方向断面の焦点距離をf1、副走査方向断面
の焦点距離をf2、走査レンズ系20の第1面イの副走査方
向断面の曲率半径をr1′、第4面ニの副走査方向断面の
曲率半径をr4′として、 を満たすと性能良好な走査光学系が構成される。
Further, in the scanning optical system, the focal length of the convex cylinder lens 11 having a curvature in the sub-scanning direction is fp, the distance between the rear principal point of the convex cylinder lens and the deflection surface 3 is d, and the main scanning of the scanning lens system 20 is performed. F 1 is the focal length of the cross section in the directional direction, f 2 is the focal length of the cross section in the sub-scanning direction, r 1 ′ is the radius of curvature of the cross section in the sub-scanning direction of the first surface a of scanning lens system 20, and the sub-scanning direction of the fourth surface Let the radius of curvature of the cross section be r 4 ′, If the above conditions are satisfied, a scanning optical system with good performance is constructed.

条件(1)は、凸シリンダーレンズ11の焦点距離に関す
る条件であり、 が左辺より小さいと、光束を副走査方向断面内で狭い光
束として入射する効果は大きくなるが、副走査方向の焦
点を主走査方向と一致させるために、第1面イのシリン
ダー面の曲率半径が小さくなり過ぎて加工上の困難を生
ずる。
The condition (1) relates to the focal length of the convex cylinder lens 11, Is smaller than the left side, the effect of making the light beam incident as a narrow light beam in the cross section in the sub-scanning direction becomes large, but in order to make the focal point in the sub-scanning direction coincide with the main scanning direction, the radius of curvature of the cylinder surface of the first surface b. Becomes too small and causes processing difficulties.

また、右辺を超えると、上記の効果が小さくなるととも
に、凸シリンダーの曲率半径が大きくなり、やはり加工
が難しくなる。
On the other hand, if it exceeds the right side, the above effect becomes small, and the radius of curvature of the convex cylinder becomes large, so that the machining becomes difficult.

条件(2)は、走査レンズ系20の副走査方向と主走査方
向の焦点距離の比に関する条件であり、偏向面の副走査
方向誤差の補正効果と、ビーム整形効果をバランスする
ものである。
The condition (2) is a condition regarding the ratio of the focal lengths of the scanning lens system 20 in the sub-scanning direction and the main scanning direction, and balances the correction effect of the sub-scanning direction error of the deflecting surface and the beam shaping effect.

が左辺より小さいと副走査方向誤差の補正効果は大きく
なるが、ビーム整形効果が過剰になつてしまう。また、 が右辺を超えると偏向面の副走査方向誤差の補正効果も
ビーム整形効果も不足する。
Is smaller than the left side, the effect of correcting the error in the sub-scanning direction becomes large, but the beam shaping effect becomes excessive. Also, Is greater than the right side, the effect of correcting the error in the sub-scanning direction of the deflecting surface and the effect of beam shaping are insufficient.

条件(3)は、シリンダー面の曲率半径に対する条件で
あり、|r1′|/f2が左辺より小さいと、第1面における
副走査方向面内の光束の発散のされ方が大きくなりす
ぎ、うまくr4′とバランスさせて像面湾曲の補正を行う
ことが難しくなる。又、|r1′|/f2が右辺を超えると、
副走査方向面内の主点間隔を大きくする作用が弱まり、
像側主点位置を像側に近づけるためには、レンズ系全体
が大きくなつてしまい、トーリツク面で発生するアンダ
ーの像面湾曲の補正も不足する。
The condition (3) is a condition for the radius of curvature of the cylinder surface. If | r 1 ′ | / f 2 is smaller than the left side, the divergence of the light beam in the sub-scanning direction surface on the first surface becomes too large. , It becomes difficult to correct the field curvature by well balancing with r 4 ′. If | r 1 ′ | / f 2 exceeds the right side,
The effect of increasing the principal point spacing in the sub-scanning direction surface weakens,
In order to bring the image-side principal point position closer to the image side, the entire lens system becomes large, and the correction of the under-field curvature that occurs on the toric surface is insufficient.

条件(4)は、トーリツク面の副走査方向面内の曲率半
径に対する条件であり、|r4′|/f1が左辺より小さい
と、像側主点が像面に近づかず、又、アンダーの像面湾
曲の発生が大きくなる。
Condition (4) is a condition for the radius of curvature in the surface of the Torrick surface in the sub-scanning direction. If | r 4 ′ | / f 1 is smaller than the left side, the image-side principal point does not approach the image surface, and under The occurrence of field curvature becomes large.

|r4′|/f1が右辺を超えると副走査方向の焦点距離を走
査方向よりも十分短かくとれず、倒れ補正効果ビーム整
形効果が薄くなる。
If | r 4 ′ | / f 1 exceeds the right side, the focal length in the sub-scanning direction cannot be made sufficiently shorter than that in the scanning direction, and the tilt correction effect and the beam shaping effect become thin.

尚、ペツツバールの和を小さく保ち、良好な収差補正を
行うために、第1群レンズの屈折率をn1、第2群レンズ
の屈折率をn2としたとき、 n1<n2 である事が望ましい。
In order to keep the Petzval's sum small and perform good aberration correction, n 1 <n 2 where n 1 is the refractive index of the first lens group and n 2 is the refractive index of the second lens group. Things are desirable.

以下、本発明に係る走査光学系の具体的な実施例を第3
図乃至第6図を用いて示す。尚、第3図,第4図までが
実施例1を示し、第5図,第6図までが実施例2を示
す。
Hereinafter, the third specific example of the scanning optical system according to the present invention will be described.
This will be shown with reference to FIGS. 3 and 4 show the first embodiment, and FIGS. 5 and 6 show the second embodiment.

ここでは、コリメートレンズ2の焦点距離をfc、コリメ
ートレンズ2を射出した光束の直径を主走査方向では
D1、副走査方向ではD2、凸シリンダーレンズ11の焦点距
離をfp、凸シリンダーレンズ11の後側主点と偏向面3と
の距離をd、偏向面3と走査レンズ系20の前側主点との
距離をe、走査レンズ系20の焦点距離を走査方向では
f1、副走査方向ではf2、凸シリンダーレンズ11を含む副
走査方向の焦点距離をf2′とする。
Here, the focal length of the collimator lens 2 is fc, and the diameter of the light beam emitted from the collimator lens 2 is the main scanning direction.
D 1 , in the sub scanning direction, D 2 , the focal length of the convex cylinder lens 11 is fp, the distance between the rear principal point of the convex cylinder lens 11 and the deflecting surface 3 is d, the deflecting surface 3 and the front principal of the scanning lens system 20. The distance from the point is e, and the focal length of the scanning lens system 20 is in the scanning direction.
Let f 1 be f 2 in the sub-scanning direction, and f 2 ′ be the focal length in the sub-scanning direction that includes the convex cylinder lens 11.

また、本走査レンズ系20は、走査方向にf・θ特性を有
する2群構成であり、偏向器側より、第1面が副走査方
向に曲率をもつシリンダー面、第2面が凹面、第3面が
平面、第4面が副走査方向に強い曲率をもつ凸面であ
る。
Further, the main scanning lens system 20 has a two-group structure having f.theta. Characteristics in the scanning direction. From the deflector side, the first surface is a cylinder surface having a curvature in the sub-scanning direction, the second surface is a concave surface, and the second surface is a concave surface. The third surface is a flat surface, and the fourth surface is a convex surface having a strong curvature in the sub-scanning direction.

第i面の走査方向断面の曲率半径をri、副走査方向断面
の曲率半径をri′、第1群レンズの中心厚をd1、レンズ
間隔をd2、第2群レンズの中心厚をd3とし、使用波長78
0mmにおける第1群レンズの屈折率をn1、第2群レンズ
の屈折率をn2とする。また、走査角度は±ω゜とする。
また、この走査レンズ系20は、その入射瞳位置EnP.が偏
向面と一致するように配置される。
The radius of curvature of the cross section in the scanning direction of the i-th surface is r i , the radius of curvature of the cross section in the sub-scanning direction is r i ′, the center thickness of the first group lens is d 1 , the lens interval is d 2 , and the center thickness of the second group lens is Is d 3 and the wavelength used is 78
The refractive index of the first lens group at 0 mm is n 1 and the refractive index of the second lens group at 0 mm is n 2 . The scanning angle is ± ω °.
The scanning lens system 20 is arranged so that its entrance pupil position EnP. Coincides with the deflecting surface.

実施例1 全体の構成 走査レンズ系の構成 2ω=96.5゜ 入射瞳位置 1面より前方 15.17 実施例2 全体の構成 走査レンズ系の構成 2ω=96.5゜ 入射瞳位置 1面より前方 16.0 f.発明の効果 本発明の走査光学系は、偏向器の偏向面上でのゴミや傷
が投影されないように、偏向器より光源側の凸レンズに
よる結像位置を(fp−d)だけ偏向器よりずらし、一
方、副走査方向のピント位置を主走査方向のピント位置
に合わせるため、走査レンズ系を、その最も偏向器側の
面が主走査方向より副走査方向に強い負のパワーを有す
る面からなり、その最も偏向器から離れた面が主走査方
向より副走査方向に強い正のパワーを有する面からな
る、レトロフォーカスなアナモフィックレンズ系とし、
さらに凸レンズの焦点距離と結像位置のずれ量との関係
を条件式(1)によって規定している。このため、より
確実に偏向器の面倒れ補正を行なうことができる。
Example 1 Overall configuration Scan lens system configuration 2ω = 96.5 ° Entrance pupil position Forward from one plane 15.17 Example 2 Overall configuration Scan lens system configuration 2ω = 96.5 ° Entrance pupil position 1 in front of plane 16.0 f. Effect of the invention The scanning optical system of the present invention uses a convex lens on the light source side of the deflector so that dust and scratches are not projected on the deflecting surface of the deflector. an imaging position shifting from (f p -d) only deflector, whereas, for aligning the sub-scanning direction of the focus position in the focus position of the main scanning direction, the scanning lens system, the surface of its most deflector-side main scanning A retrofocus anamorphic lens system having a surface having a stronger negative power in the sub-scanning direction than the main direction and a surface having the strongest positive power in the sub-scanning direction than the main scanning direction. ,
Furthermore, the relationship between the focal length of the convex lens and the shift amount of the image forming position is defined by the conditional expression (1). Therefore, it is possible to more surely correct the surface tilt of the deflector.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る走査光学系の基本内容を示す
図、第2図は、本発明に係る走査光学係の全体を示す構
成図、第3図は、実施例1の走査レンズ系の構成を示す
図、第4図は、実施例1の全系の収差図、第5図は、実
施例2の走査レンズ系の構成を示す図、第6図は実施例
2の全系の収差図、第7図は従来のレーザービームプリ
ンター等の走査光学系を示す全体図、第8図は半導体レ
ーザーがその接合面に平行な方向と垂直な方向とで光の
放射のされ方が異なることを示す図、第9図及び第10図
は従来の走査光学系を示す図である。 1……半導体レーザー、2……コリメートレンズ、3…
…偏向器、4……走査レンズ系、5……走査面、11……
凸シリンダーレンズ、20……走査レンズ系、21……第1
群レンズ、22……第2群レンズ
FIG. 1 is a diagram showing the basic contents of a scanning optical system according to the present invention, FIG. 2 is a configuration diagram showing the entire scanning optical system according to the present invention, and FIG. 3 is a scanning lens system of Example 1. FIG. 4 is a diagram showing the aberration of the entire system of Example 1, FIG. 5 is a diagram showing the configuration of the scanning lens system of Example 2, and FIG. 6 is a diagram of the entire system of Example 2. FIG. 7 is an aberration diagram, FIG. 7 is an overall view showing a scanning optical system of a conventional laser beam printer and the like, and FIG. 8 is different in how a semiconductor laser emits light in a direction parallel to a bonding surface and a direction perpendicular to the bonding surface. FIG. 9 and FIG. 10 are views showing a conventional scanning optical system. 1 ... Semiconductor laser, 2 ... Collimating lens, 3 ...
... Deflector, 4 ... Scanning lens system, 5 ... Scanning surface, 11 ...
Convex cylinder lens, 20 ... Scanning lens system, 21 ... First
Group lens, 22 ... Second group lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体レーザーと、 該半導体レーザーから発散されるレーザー光を略平行光
束にするコリメートレンズと、 このコリメートレンズを出た光束を偏向する偏向器と、 この偏向器で偏向された光束を走査面に集光する走査レ
ンズ系と、 を備えた走査光学系において、 上記コリメートレンズと上記偏向器との間に、該コリメ
ートレンズを出射した光束を、その副走査断面の径を細
く成形して該偏向器に入射させる凸レンズを配設し、 上記走査レンズ系を、その最も偏向器側の面が主走査方
向より副走査方向に強い負のパワーを有する面からな
り、その最も偏向器から離れた面が主走査方向より副走
査方向に強い正のパワーを有する面からなるアナモフィ
ックレンズ系とし、 上記凸レンズの焦点距離をfp、凸レンズの後側主点と偏
向器の偏向面との距離をd、走査レンズ系の主走査方向
断面の焦点距離をf1として、 0.5<(fp−d)/f1<2.5 (1) を満足することを特徴とする走査光学系。
1. A semiconductor laser, a collimator lens for converting a laser beam emitted from the semiconductor laser into a substantially parallel light beam, a deflector for deflecting the light beam emitted from the collimator lens, and a light beam deflected by the deflector. In a scanning optical system including a scanning lens system for condensing light on a scanning surface, a light beam emitted from the collimator lens is formed between the collimator lens and the deflector so that a diameter of a sub-scanning cross section thereof is reduced. And a convex lens to be incident on the deflector is disposed, and the scanning lens system has a surface on the most deflector side which has a negative power stronger in the sub-scanning direction than in the main scanning direction. distant plane from is an anamorphic lens system consisting of a surface having strong positive power than the main scanning direction in the sub-polarized focal length of the convex lens f p, the rear principal point of the convex lens The distance between the deflecting surface of the vessel d, a focal length in the main scanning cross section of the scanning lens system as f 1, and satisfies a 0.5 <(f p -d) / f 1 <2.5 (1) Scanning optics.
JP60086705A 1985-01-28 1985-04-22 Scanning optics Expired - Fee Related JPH0743467B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60086705A JPH0743467B2 (en) 1985-04-22 1985-04-22 Scanning optics
US06/823,236 US4715699A (en) 1985-01-28 1986-01-28 Scanning optical system for laser beam printers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086705A JPH0743467B2 (en) 1985-04-22 1985-04-22 Scanning optics

Publications (2)

Publication Number Publication Date
JPS61245129A JPS61245129A (en) 1986-10-31
JPH0743467B2 true JPH0743467B2 (en) 1995-05-15

Family

ID=13894342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086705A Expired - Fee Related JPH0743467B2 (en) 1985-01-28 1985-04-22 Scanning optics

Country Status (1)

Country Link
JP (1) JPH0743467B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776465B2 (en) * 1987-05-12 1998-07-16 株式会社リコー Fθ lens system in optical scanning device
US5130840A (en) * 1987-08-26 1992-07-14 Asahi Kogyo Kogaku Kabushiki Kaisha Light scanning system
US5162938A (en) * 1987-08-26 1992-11-10 Asahi Kogaku Kogyo Kabushiki Kaisha Light scanning system
JP2613600B2 (en) * 1987-09-22 1997-05-28 株式会社日立製作所 High resolution light beam scanner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722218A (en) * 1980-07-16 1982-02-05 Canon Inc Scanning optical system using plural beams
JPS60423A (en) * 1984-04-27 1985-01-05 Hitachi Ltd Optical scanner

Also Published As

Publication number Publication date
JPS61245129A (en) 1986-10-31

Similar Documents

Publication Publication Date Title
JP3072061B2 (en) Optical scanning device
JP2566405B2 (en) f / θ lens
JPH0627904B2 (en) Laser beam scanning optics
JPS6336482B2 (en)
US6396640B2 (en) Collimator lens and optical scanning apparatus using the same
JP2584640B2 (en) Scanning optical system such as laser beam printer
JPH0727123B2 (en) Surface tilt correction scanning optical system
US5270850A (en) Laser scanner
JP3073790B2 (en) Optical scanning device
JPH0743467B2 (en) Scanning optics
JP2956169B2 (en) Scanning optical device
JP3500873B2 (en) Scanning optical system
JPH08240768A (en) Scanning optical system
JP3627781B2 (en) Laser scanner
JP4628516B2 (en) Collimator lens and optical scanning device using the same
JP4219429B2 (en) Manufacturing method of imaging mirror in multi-beam scanning imaging optical system
JP2811949B2 (en) Optical scanning optical system
JP3441624B2 (en) Scanning optical system and optical scanning device
JPH05127077A (en) Cylindrical lens system
JPH1184304A (en) Optical scanner
JP3472205B2 (en) Optical scanning optical device and image forming apparatus using the same
JPS61173213A (en) Scanning optical system of laser printer or the like
JP3492911B2 (en) Optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JPH112769A (en) Optical scanner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees