JPH0743463A - Observed-information processor of weather radar - Google Patents
Observed-information processor of weather radarInfo
- Publication number
- JPH0743463A JPH0743463A JP5190268A JP19026893A JPH0743463A JP H0743463 A JPH0743463 A JP H0743463A JP 5190268 A JP5190268 A JP 5190268A JP 19026893 A JP19026893 A JP 19026893A JP H0743463 A JPH0743463 A JP H0743463A
- Authority
- JP
- Japan
- Prior art keywords
- observation
- precipitation
- representative position
- representative
- precipitation area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、気象レーダで観測毎
に得られるエコー情報から降水領域を求める情報処理装
置に係り、特に観測毎に求めた降水領域の同一性判別処
理の自動化に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information processing apparatus for obtaining a precipitation area from echo information obtained by a weather radar for each observation, and more particularly to automation of a process of determining the identity of the precipitation area obtained for each observation.
【0002】[0002]
【従来の技術】従来より、気象レーダを用いて雷雲の成
長をとらえ、雷発生を予知して警報を発令するシステム
の構築が試みられている。ところが、このような気象レ
ーダの観測情報処理は、今だオペレータの解析処理能力
に依存する面が多い。すなわち、気象レーダの観測情報
は、一般にCAPPI(定高度PPI:plan positioni
ndicator )方式に変換されており、オペレータはPP
I指示装置をモニタし、レーダの観測毎に表示される降
水エコーの同一性を判定し、エコー強度や高度の時間的
な変化を追っている。2. Description of the Related Art Conventionally, it has been attempted to construct a system that uses a weather radar to detect the growth of a thundercloud, predict the occurrence of lightning, and issue an alarm. However, the observation information processing of such a weather radar still depends on the analysis processing capability of the operator. That is, the observation information of the weather radar is generally CAPPI (constant altitude PPI: plan positioni
ndicator) method, and the operator is PP
The I indicator is monitored to determine the identity of the precipitation echo displayed for each radar observation, and the temporal changes in echo intensity and altitude are followed.
【0003】ところで、上記のような観測情報処理に
は、降水領域の識別、更新される降水領域の同一性判断
が必要不可欠である。しかしながら、観測情報はオペレ
ータが解析処理するには膨大であり、しかもレーダ観測
周期で短時間に更新されるため、雷雲のような降水エコ
ーを時系列的に見て判断することは熟練を要するばかり
か、判断も曖昧になりがちである。By the way, in the above-mentioned observation information processing, it is essential to identify the precipitation area and to judge the identity of the updated precipitation area. However, the observation information is enormous for the operator to analyze and it is updated in a short time in the radar observation period. Therefore, it takes much skill to judge precipitation echoes such as thunderclouds in time series. Or, the judgment tends to be ambiguous.
【0004】[0004]
【発明が解決しようとする課題】以上述べたように、従
来の気象レーダの観測情報処理装置では、今だオペレー
タの判断に依存する面が多く、特に降水領域の識別、更
新される降水領域の同一性判断に熟練を要し、判断も曖
昧になりがちであった。As described above, in the conventional weather radar observation information processing apparatus, there are many aspects that still depend on the operator's judgment. It required skill to judge the identity, and the judgment tended to be ambiguous.
【0005】この発明は上記の課題を解決するためにな
されたもので、自動的に降水領域を識別し、かつ時々刻
々と更新される降水領域の同一性を客観的に判別するこ
とのできる気象レーダの観測情報処理装置を提供するこ
とを目的とする。The present invention has been made to solve the above-mentioned problems, and it is possible to automatically identify a precipitation area and objectively determine the identity of the precipitation area which is updated from time to time. An object is to provide an observation information processing device for radar.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
にこの発明に係る気象レーダの観測情報処理装置は、気
象レーダで観測毎に得られるエコー情報から降水エコー
成分を抽出し、この降水エコー成分から距離方向及び高
さ方向に広がる降水領域を識別する降水領域識別手段
と、観測毎に前記降水領域識別手段で識別された降水領
域の代表位置を算出する代表位置算出手段と、この手段
で得られた過去の観測時の代表位置に基づいて次の観測
時の代表位置を予測する代表位置予測手段と、観測毎に
前記代表位置算出手段で算出された代表位置が前記代表
位置予測手段で予測された代表位置を中心とする一定範
囲内に入るか否かを判別する相関処理手段とを具備し、
前記相関処理手段で入ると判別されたときその降水領域
は前回の観測時に求めた降水領域が移動したものである
と判定するようにしたものである。In order to achieve the above object, an observation information processing apparatus of a weather radar according to the present invention extracts a precipitation echo component from echo information obtained by each observation by the weather radar, and the precipitation echo component is extracted. A precipitation area identifying means for identifying a precipitation area extending from the component in the distance direction and the height direction, a representative position calculating means for calculating a representative position of the precipitation area identified by the precipitation area identifying means for each observation, and this means. The representative position predicting means for predicting the representative position at the next observation based on the obtained representative position at the past observation, and the representative position calculated by the representative position calculating means for each observation by the representative position predicting means. Correlation processing means for determining whether or not to fall within a fixed range centered on the predicted representative position,
When it is determined by the correlation processing means that the precipitation area enters, it is determined that the precipitation area obtained in the previous observation is a moved area.
【0007】[0007]
【作用】上記構成による気象レーダの観測情報処理装置
では、降水領域識別手段により、各観測毎に降水領域を
順次識別し、代表位置算出手段により各降水領域につい
て代表位置を算出していく。そして、代表位置予測手段
により過去の降水領域における代表位置から次の観測時
における代表位置を予測し、相関処理手段で両者の相関
関係を見ることで、識別した降水領域が前回の降水領域
と同一のものであるか否かを自動的に判定するようにし
ている。In the meteorological radar observation information processing apparatus having the above structure, the precipitation area identifying means sequentially identifies the precipitation area for each observation, and the representative position calculating means calculates the representative position for each precipitation area. Then, the representative position predicting means predicts the representative position at the time of the next observation from the representative position in the past precipitation area, and the correlation processing means looks at the correlation between the two, so that the identified precipitation area is the same as the previous precipitation area. It is automatically determined whether or not it is.
【0008】[0008]
【実施例】以下、図1及び図2を参照してこの発明の一
実施例を詳細に説明する。図1はこの発明に係る観測情
報処理装置の処理機能を示すブロック図である。ハード
ウェア構成は汎用コンピュータで実現できるので、ここ
ではその説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a block diagram showing the processing functions of the observation information processing apparatus according to the present invention. Since the hardware configuration can be realized by a general-purpose computer, its description is omitted here.
【0009】図1において、観測レーダで観測毎に得ら
れるエコー情報は降水領域識別部1に送られる。この降
水領域識別部1は、入力したエコー情報から降水エコー
成分を抽出し、この降水エコー成分の強度データを高度
別に設けられた複数の観測メッシュに当て嵌め、各観測
メッシュについて強度値が基準値以上となる範囲を特定
することで、距離方向及び高さ方向に広がる降水領域を
識別する。In FIG. 1, echo information obtained for each observation by the observation radar is sent to the precipitation area identifying section 1. The precipitation area identification unit 1 extracts a precipitation echo component from the input echo information, applies the intensity data of the precipitation echo component to a plurality of observation meshes provided for each altitude, and the intensity value of each observation mesh is a reference value. By specifying the above range, the precipitation area spreading in the distance direction and the height direction is identified.
【0010】ここで得られた降水領域情報は代表位置算
出部2に送られる。この代表位置算出部2は観測毎に降
水領域識別部1で識別された各降水領域について、重心
位置を代表位置として算出する。The precipitation area information obtained here is sent to the representative position calculating section 2. The representative position calculation unit 2 calculates the center of gravity position as a representative position for each precipitation region identified by the precipitation region identification unit 1 for each observation.
【0011】ここで得られた代表位置情報は、順次代表
位置予測部3に送られる。この代表位置予測部3は過去
の代表位置を降水領域別に所定個数分蓄積しておき、個
々の降水領域について過去数回の観測時の代表位置から
次の観測時の代表位置を予測する。この予測にはα−β
トラッキング処理が適用可能である。The representative position information obtained here is sequentially sent to the representative position predicting section 3. The representative position predicting unit 3 accumulates a predetermined number of past representative positions for each precipitation region, and predicts the representative position for the next observation from the representative position for the past several observations for each precipitation region. For this prediction α-β
Tracking processing is applicable.
【0012】ここで得られた代表位置予測情報は、相関
処理部4に送られる。この相関処理部4は比較演算部4
1と判定処理部42からなる。比較演算部41は算出し
た代表位置と予測した代表位置との距離を求め、許容規
定値と比較する。判定処理部42は比較結果が許容規定
値未満であれば、相関がとれたと判定し、許容規定値以
上であれば、相関はとれなかったと判定する。The representative position prediction information obtained here is sent to the correlation processing unit 4. The correlation processing unit 4 is a comparison calculation unit 4
1 and the determination processing unit 42. The comparison calculation unit 41 obtains the distance between the calculated representative position and the predicted representative position, and compares it with the allowable specified value. If the comparison result is less than the allowable specified value, the determination processing unit 42 determines that the correlation has been obtained, and if the comparison result is greater than the allowable specified value, it determines that the correlation has not been obtained.
【0013】すなわち、上記相関処理部4は、最新の観
測における代表位置算出部2で算出された代表位置が代
表位置予測部3で予測された代表位置を中心とする一定
範囲内に入るか否かを判別し、その範囲に入ると判別さ
れたときその降水領域は前回の観測時に求めた降水領域
が移動したものであることを観測毎に判定する。That is, the correlation processing unit 4 determines whether or not the representative position calculated by the representative position calculating unit 2 in the latest observation falls within a certain range around the representative position predicted by the representative position predicting unit 3. If it is determined that the precipitation area falls within the range, it is determined for each observation that the precipitation area is a movement of the precipitation area obtained in the previous observation.
【0014】上記構成において、図2を参照してその処
理内容を説明する。尚、ここでは説明を簡単にするた
め、ある一つの高度における降水領域に着目して述べ
る。いま、時刻t1 ,t2 ,…,ti において、雲(降
水領域)A1 ,A2 ,…,Ai が図2に示すように形を
変えて移動しているとする。気象レーダから観測情報を
入力すると、まず降水領域識別部1により、各時刻毎に
エコー強度に基づく降水領域A1 ,A2 ,…を順次識別
し、代表位置算出部2により各降水領域について重心位
置G1 ,G2 ,…,Gi 算出していく。With the above configuration, the processing content will be described with reference to FIG. For simplicity of explanation, the description will focus on the precipitation region at one altitude. Now, at times t1, t2, ..., Ti, clouds (precipitation regions) A1, A2, ..., Ai change their shapes as shown in FIG. 2 and move. When the observation information is input from the meteorological radar, the precipitation area identifying unit 1 first identifies the precipitation areas A1, A2, ... Based on the echo intensity at each time, and the representative position calculating unit 2 identifies the gravity center position G1 for each precipitation area. , G2, ..., Gi are calculated.
【0015】規定個数の降水領域における重心位置が求
まると、代表位置予測部3において、過去の規定個数の
代表位置に基づいてα(位置)−β(速度)トラッキン
グ処理を行い、次の観測時刻における代表位置Gi ′を
予測する。When the barycentric position in the specified number of precipitation regions is obtained, the representative position prediction unit 3 performs α (position) -β (speed) tracking processing based on the specified number of representative positions in the past, and the next observation time. Predict the representative position Gi 'at.
【0016】ここで、時刻ti における予測代表位置G
i ′であり、識別した降水領域Aiの算出した代表位置
がGi であったとする。相関処理部4では、代表位置予
測部3で予測された代表位置Gi ′を中心とする許容半
径Rの円を想定し、算出代表位置Gi が円の中に入るか
を判別する。そして、その範囲に入ると判別されたとき
(相関あり)、その降水領域Ai は前回の観測時ti-1
に求めた降水領域Ai-1 が移動したものであると判定す
る。Here, the predicted representative position G at time ti
It is assumed that i ′, and the calculated representative position of the identified precipitation area Ai is Gi. The correlation processing unit 4 assumes a circle having an allowable radius R centered on the representative position Gi 'predicted by the representative position predicting unit 3, and determines whether the calculated representative position Gi falls within the circle. Then, when it is determined that it falls within the range (correlation exists), the precipitation area Ai is ti-1 at the time of the previous observation.
It is determined that the precipitation area Ai-1 obtained in the above step has moved.
【0017】一方、算出代表位置が円内に入らないとき
(相関なし)、その降水領域Ai は前回の観測時の降水
領域Ai-1 とは別の領域であると判定し、その領域Ai
から新たな領域識別を行っていく。On the other hand, when the calculated representative position does not fall within the circle (no correlation), the precipitation area Ai is determined to be a different area from the precipitation area Ai-1 at the time of the previous observation, and the area Ai is determined.
From now on, new area identification will be performed.
【0018】したがって、上記構成による情報処理装置
は、自動的に降水領域を識別し、かつ時々刻々と更新さ
れる降水領域の同一性を客観的に判別することができ
る。これによって、オペレータの解析処理能力が不要と
なり、レーダ観測周期で短時間に更新される膨大な観測
情報から雷雲のような降水エコーを自動的に取り出し、
時系列的にかつ客観的に判断することができるようにな
り、雷発生を予知して警報を発令するシステムの構築に
大きく貢献することができる。Therefore, the information processing apparatus having the above-described configuration can automatically identify the precipitation area and objectively determine the identity of the precipitation area, which is updated every moment. As a result, the analysis processing capability of the operator becomes unnecessary, and precipitation echoes such as thunderclouds are automatically extracted from the huge amount of observation information that is updated in a short time in the radar observation cycle.
This makes it possible to make a time-series and objective judgment, which can greatly contribute to the construction of a system for predicting lightning and issuing an alarm.
【0019】尚、上記実施例において、代表位置は、重
心位置に限らず、降水領域の雨量最強位置、水分量の最
大値をとるメッシュ位置などであってもよいことは勿論
である。また、代表位置予測は、α−βトラッキング処
理に限らず、多少精度は落ちるものの、パターンマッチ
ング処理でも実現可能である。その他、この発明は上記
実施例に限定されるものではなく、この発明の要旨を逸
脱しない範囲で種々変形しても実施可能であることはい
うまでもない。In the above embodiment, the representative position is not limited to the barycentric position, but may be the strongest rainfall amount in the precipitation region, the mesh position having the maximum water content, or the like. Further, the representative position prediction is not limited to the α-β tracking process, but can be realized by a pattern matching process, although the accuracy is somewhat lowered. In addition, the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the scope of the present invention.
【0020】[0020]
【発明の効果】以上のようにこの発明によれば、自動的
に降水領域を識別し、かつ時々刻々と更新される降水領
域の同一性を客観的に判別することのできる気象レーダ
の観測情報処理装置を提供することができる。As described above, according to the present invention, the observation information of the weather radar is capable of automatically identifying the precipitation area and objectively determining the identity of the precipitation area which is updated from time to time. A processing device can be provided.
【図1】この発明に係る気象レーダの情報処理装置の一
実施例の機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of an embodiment of an information processing apparatus for a weather radar according to the present invention.
【図2】同実施例の処理内容を説明するための概念図で
ある。FIG. 2 is a conceptual diagram for explaining the processing content of the embodiment.
1…降水領域識別部、2…代表位置算出部、3…代表位
置予測部、4…相関処理部、41…比較演算部、42…
判定処理部。DESCRIPTION OF SYMBOLS 1 ... Precipitation area identification part, 2 ... Representative position calculation part, 3 ... Representative position prediction part, 4 ... Correlation processing part, 41 ... Comparison calculation part, 42 ...
Judgment processing unit.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 成美 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Narumi Ishikawa 1 Komukai-shiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Komukai factory
Claims (5)
から降水エコー成分を抽出し、この降水エコー成分から
距離方向及び高さ方向に広がる降水領域を識別する降水
領域識別手段と、 観測毎に前記降水領域識別手段で識別された降水領域の
代表位置を算出する代表位置算出手段と、 この手段で得られた過去の観測時の代表位置に基づいて
次の観測時の代表位置を予測する代表位置予測手段と、 観測毎に前記代表位置算出手段で算出された代表位置が
前記代表位置予測手段で予測された代表位置を中心とす
る一定範囲内に入るか否かを判別する相関処理手段とを
具備し、 前記相関処理手段で入ると判別されたときその降水領域
は前回の観測時に求めた降水領域が移動したものである
と判定するようにしたことを特徴とする気象データの観
測情報処理装置。1. A precipitation area identifying means for extracting a precipitation echo component from echo information obtained for each observation by a meteorological radar, and identifying a precipitation area extending in a distance direction and a height direction from the precipitation echo component, and for each observation. Representative position calculation means for calculating a representative position of the precipitation area identified by the precipitation area identification means, and a representative for predicting a representative position for the next observation based on the representative position for the past observation obtained by this means Position prediction means, and correlation processing means for determining whether or not the representative position calculated by the representative position calculation means for each observation falls within a certain range centered on the representative position predicted by the representative position prediction means The meteorological data observation is characterized in that when the correlation processing means determines that the precipitation area enters, the precipitation area is determined to be a movement of the precipitation area obtained in the previous observation. Information processing equipment.
重心位置を算出するようにしたことを特徴とする請求項
1記載の気象レーダの観測情報処理装置。2. The meteorological radar observation information processing apparatus according to claim 1, wherein the representative position calculating means calculates a center of gravity position of the precipitation region.
雨量最強位置を算出するようにしたことを特徴とする請
求項1記載の気象レーダの観測情報処理装置。3. The meteorological radar observation information processing apparatus according to claim 1, wherein said representative position calculating means is adapted to calculate the strongest rainfall amount position in said precipitation area.
測時の代表位置についてα−βトラッキング処理を行う
ことで次の観測時の代表位置を予測するようにしたこと
を特徴とする請求項1記載の気象レーダの観測情報処理
装置。4. The representative position predicting means predicts a representative position at the next observation by performing α-β tracking processing on the representative positions at a plurality of past observations. Item 1. The meteorological radar observation information processing device according to Item 1.
測時の代表位置についてパターンマッチング処理を行う
ことで次の観測時の代表位置を予測するようにしたこと
を特徴とする請求項1記載の気象レーダの観測情報処理
装置。5. The representative position predicting means predicts a representative position at the next observation by performing pattern matching processing on the representative positions at a plurality of past observations. Observation information processing device of the described weather radar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5190268A JPH0743463A (en) | 1993-07-30 | 1993-07-30 | Observed-information processor of weather radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5190268A JPH0743463A (en) | 1993-07-30 | 1993-07-30 | Observed-information processor of weather radar |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0743463A true JPH0743463A (en) | 1995-02-14 |
Family
ID=16255328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5190268A Pending JPH0743463A (en) | 1993-07-30 | 1993-07-30 | Observed-information processor of weather radar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0743463A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000131458A (en) * | 1998-10-28 | 2000-05-12 | Mitsubishi Electric Corp | Observation system for thundercloud |
KR101666439B1 (en) * | 2015-07-28 | 2016-10-17 | 대한민국 | Weather forcasting method using domain renewal and device for suing the same |
-
1993
- 1993-07-30 JP JP5190268A patent/JPH0743463A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000131458A (en) * | 1998-10-28 | 2000-05-12 | Mitsubishi Electric Corp | Observation system for thundercloud |
KR101666439B1 (en) * | 2015-07-28 | 2016-10-17 | 대한민국 | Weather forcasting method using domain renewal and device for suing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109738970B (en) | Method, device and storage medium for realizing lightning early warning based on lightning data mining | |
CN106526708B (en) | A kind of intelligent early-warning analysis method of the meteorological strong convective weather based on machine learning | |
JP6343001B2 (en) | Capacity prediction method, system and computer equipment based on Kalman filter | |
JPH08122433A (en) | Thundercloud observation system | |
CN110780289A (en) | Multi-target vehicle tracking method and device based on scene radar | |
CN1688896A (en) | Multi-sensor information fusion technique | |
CN108983164A (en) | Radar signal processing device and method for processing radar signals | |
CN110443830B (en) | Precipitation cloud cluster detection method based on Gaussian mixture background model | |
CN106793085A (en) | Fingerprint positioning method based on normality assumption inspection | |
Han et al. | A wireless fingerprint location method based on target tracking | |
CN113253363A (en) | Lightning activity path prediction method and system | |
CN117828309B (en) | Substation safety early warning method for multi-source data fusion ranging | |
JP3446635B2 (en) | Thundercloud observation system | |
JP2965790B2 (en) | Radar rainfall short-term movement prediction device | |
US5689444A (en) | Statistical quality control of wind profiler data | |
CN110398735B (en) | Multi-radar-based perception data processing method and system | |
KR20120119749A (en) | Method for tracking reflectivity cells associated with severe weather | |
CN117784124A (en) | Millimeter wave radar falling monitoring method and device in multi-person scene | |
JPH0743463A (en) | Observed-information processor of weather radar | |
CN113866754B (en) | Moving target track association method based on Gaussian distribution wave gate | |
JP2006189403A (en) | Frosting prediction device | |
CN110584894A (en) | Wheelchair control method and device and intelligent wheelchair | |
CN114510967A (en) | Interference signal filtering method and device, electronic equipment and storage medium | |
CN111025288A (en) | Security radar monitoring device and system | |
JP2001183473A (en) | Lightning prediction system |