JPH0743194B2 - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH0743194B2
JPH0743194B2 JP59202630A JP20263084A JPH0743194B2 JP H0743194 B2 JPH0743194 B2 JP H0743194B2 JP 59202630 A JP59202630 A JP 59202630A JP 20263084 A JP20263084 A JP 20263084A JP H0743194 B2 JPH0743194 B2 JP H0743194B2
Authority
JP
Japan
Prior art keywords
compressor
inverter
capacity
defrosting
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59202630A
Other languages
Japanese (ja)
Other versions
JPS6179959A (en
Inventor
誠二郎 近藤
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59202630A priority Critical patent/JPH0743194B2/en
Publication of JPS6179959A publication Critical patent/JPS6179959A/en
Publication of JPH0743194B2 publication Critical patent/JPH0743194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はヒートポンプ式空気調和装置の改良に関し、特
に暖房時に熱源側熱交換器に成長した霜を除霜する除霜
時間の短縮化対策に関する。
Description: TECHNICAL FIELD The present invention relates to improvement of a heat pump type air conditioner, and more particularly to measures for shortening defrosting time for defrosting frost grown on a heat source side heat exchanger during heating. .

(従来の技術) 従来より、この種のヒートポンプ式空気調和装置とし
て、例えば特開昭54-164053号公報に開示されるよう
に、圧縮機を回転数制御(能力制御)するインバータ
と、熱源側熱交換器の着霜を検出する着霜検出器とを備
え、暖房時における着霜時には冷媒循環系統を四路切換
弁により暖房サイクルとは逆サイクル(除霜サイクル)
に切換えるとともに、圧縮機を上記インバータで最高回
転数に駆動することにより、除霜能力を増大させて、熱
源側熱交換器での除霜時間を短縮するようにしたものが
知られている。
(Prior Art) Conventionally, as a heat pump type air conditioner of this type, as disclosed in, for example, Japanese Patent Laid-Open No. 54-164053, an inverter for controlling the rotation speed (capacity control) of a compressor and a heat source side It is equipped with a frost detector that detects frost formation on the heat exchanger. When frost is formed during heating, the refrigerant circulation system uses a four-way switching valve to reverse the heating cycle (defrost cycle).
It is known that the defrosting capacity of the heat source side heat exchanger is shortened by increasing the defrosting capacity by driving the compressor to the maximum rotation speed with the inverter.

(発明が解決しようとする課題) ところで、運転能力アップのため1つの冷媒循環系統に
対して複数台の圧縮機を並列に備える場合、その全てを
インバータで能力制御しようとすると、インバータの容
量、特にパワートランジスタの電流許容値を大きくする
必要が生じてコスト高,機器の大型化等を招くことか
ら、一部の圧縮機のみをインバータで能力制御すると共
に、残りを商用電源で能力固定に駆動して、機器の低コ
スト性,コンパクト性を確保するのが望ましい。
(Problems to be Solved by the Invention) By the way, in the case where a plurality of compressors are provided in parallel for one refrigerant circulation system in order to improve the operation capacity, if the capacity of all the compressors is to be controlled by the inverter, the capacity of the inverter, In particular, since it is necessary to increase the current allowable value of the power transistor, which leads to high cost and upsizing of the equipment, only a part of the compressor is capacity controlled by the inverter and the rest is driven by the commercial power source with fixed capacity. Therefore, it is desirable to secure low cost and compactness of the device.

しかるに、その場合、除霜時における圧縮機の運転は上
記と同様に一部がインバータで商用周波数に相当する能
力よりも高い高能力で行われるものの、残りは商用周波
数に相当する中能力で行われる関係上、残りの圧縮機の
能力を十分に発揮することなく除霜が行われることにな
り、除霜時間の短縮がさほど効果的でない。
However, in that case, while the compressor is operating at the time of defrosting at a high capacity that is partly higher than the capacity corresponding to the commercial frequency by the inverter, the rest is performed at medium capacity equivalent to the commercial frequency. Therefore, the defrosting is performed without fully exerting the capacity of the remaining compressor, and the shortening of the defrosting time is not so effective.

本発明者等は斯かる点に鑑み、除霜時における除霜サイ
クル中の諸量を仔細に計測したところ、第3図に示すよ
うに、冷媒の高圧が暖房時に比べて大きく低下するこ
と、および低圧や若干低下することから、冷媒の比体積
が増大するとともに、冷媒の高低圧力差が小さくなり、
その結果、図に破線で示す如く圧縮機を駆動するモータ
への供給電流(インバータの出力電流)が大きく減少す
ることを見出し、このことにより除霜時には全ての圧縮
機をインバータで高能力に制御しても、インバータの破
損を招くことなく除霜時間をより効果的に短縮できるこ
とを知悉した。
In view of such a point, the present inventors have made detailed measurements of various amounts during the defrosting cycle during defrosting, and as shown in FIG. 3, the high pressure of the refrigerant is significantly lower than that during heating, And because the low pressure and a slight decrease, the specific volume of the refrigerant increases and the pressure difference between the high and low refrigerant becomes smaller,
As a result, it was found that the current supplied to the motor that drives the compressor (output current of the inverter) is greatly reduced as indicated by the broken line in the figure, which makes it possible to control all compressors with high efficiency by the inverter during defrosting. Even so, I was aware that the defrosting time could be shortened more effectively without causing damage to the inverter.

そのため、本発明の目的は、上記の如く並列接続した複
数台の圧縮機のうち一部を暖房時にその圧縮機のみを駆
動するのに十分なインバータで能力制御し、他を商用電
源で能力固定に制御するものにおいて、除霜時には上記
一部の圧縮機のみを駆動可能なインバータを用いなが
ら、該インバータで全ての圧縮機を商用電源での駆動能
力以上の高能力で運転することにより、インバータの低
コスト性,コンパクト性を確保しつつ除霜時間をより効
果的に短縮することにある。
Therefore, an object of the present invention is to control the capacity of a part of a plurality of compressors connected in parallel as described above with an inverter sufficient to drive only the compressor during heating, and fix the capacity of other parts with a commercial power source. In the case of defrosting, while using an inverter that can drive only some of the above compressors during defrosting, by operating all the compressors with a high capacity that is higher than the drive capacity of the commercial power source, The objective is to reduce the defrosting time more effectively while ensuring low cost and compactness.

(課題を解決するための手段) 上記目的を達成するため、本発明の解決手段は、圧縮機
と、四路切換弁と、空調負荷側熱交換器と、膨張機構
と、熱源側熱交換器とで閉回路の冷媒循環系統を形成す
るヒートポンプ式空気調和装置において、上記圧縮機
を、暖房時にインバータにより能力制御される第1の圧
縮機と、該第1の圧縮機(1a)に並列に接続されて暖房
時に商用電源により駆動される能力固定の第2の圧縮機
とで構成するとともに、上記インバータ(10)を上記第
1および第2の圧縮機(1a),(1b)のうち第1の圧縮
機(1a)のみを暖房時に駆動するのに十分な出力電流値
を有するもので構成し、上記熱源側熱交換器の着霜を検
出する着霜検出手段と、該着霜検出手段の出力を受け、
冷媒循環系統を暖房サイクルとは逆サイクルに切換える
とともに、上記第1および第2の圧縮機を共に上記イン
バータで商用周波数に相当する能力よりも高い能力に制
御する除霜運転制御手段とを備える構成としたものであ
る。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the present invention is a compressor, a four-way switching valve, an air conditioning load side heat exchanger, an expansion mechanism, and a heat source side heat exchanger. In a heat pump type air conditioner that forms a closed circuit refrigerant circulation system with a compressor, the compressor is connected in parallel with a first compressor whose capacity is controlled by an inverter during heating and the first compressor (1a). It is composed of a second compressor that is connected and is driven by a commercial power source at the time of heating and has a fixed capacity, and the inverter (10) is the first compressor of the first and second compressors (1a) and (1b). Frost detection means for detecting only the first compressor (1a) having an output current value sufficient for driving during heating, and frost detection means for detecting frost formation on the heat source side heat exchanger; and the frost detection means. Received the output of
A configuration provided with defrosting operation control means for switching the refrigerant circulation system to a cycle opposite to the heating cycle and controlling both the first and second compressors with the inverter to have a capacity higher than the capacity corresponding to the commercial frequency. It is what

(作用) 以上の構成により、本発明では、1台の圧縮機に対する
インバータからの出力電流値が大きい暖房時には、複数
台の圧縮機のうちインバータの出力電流値に対応した一
部のみの圧縮機が上記インバータで能力制御され、残り
が商用電源で能力固定に駆動される。一方、一台の圧縮
機に対するインバータからの出力電流値が小さくなる除
霜時には、全ての圧縮機がインバータで能力制御される
ことによって、除霜時間がより効果的に短縮される。
(Operation) With the above configuration, according to the present invention, only a part of the plurality of compressors corresponding to the output current value of the inverter is heated during heating when the output current value from the inverter to the one compressor is large. Is controlled by the above-mentioned inverter, and the rest is driven by a commercial power source with fixed capacity. On the other hand, at the time of defrosting in which the output current value from the inverter for one compressor becomes small, the capacity of all the compressors is controlled by the inverter, so that the defrosting time can be shortened more effectively.

ここに、インバータは、複数台の圧縮機のうち一部のみ
を暖房時に駆動するのに十分であるものの、上記除霜時
に全ての圧縮機を上記インバータで能力制御しても、1
台の圧縮機に供給される電流値は暖房時に比して極めて
少値であるので、インバータの最大出力電流値を越え
ず、インバータの焼損を招くことがない。従って、イン
バータの容量を小さく制限しながら、除霜能力を高める
ことが可能である。
Here, the inverter is sufficient to drive only a part of the plurality of compressors during heating, but even if the capacity of all the compressors is controlled by the inverter during the defrosting,
Since the current value supplied to the compressors of the stand is extremely small compared with the time of heating, the maximum output current value of the inverter is not exceeded and the inverter is not burned. Therefore, it is possible to enhance the defrosting ability while limiting the capacity of the inverter to a small value.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明す
る。
(Example) Hereinafter, the Example of this invention is described in detail based on drawing.

第1図において、(1a)および(1b)は相互に並列に接
続された第1および第2の圧縮機、(2)は四路切換
弁、(3)は室内に配設され送風ファン(3a)を有する
空調負荷側熱交換器、(4)は膨張機構、(5)は室外
に配設され送風ファン(5a)を有する熱源側熱交換器、
(6)はアキュムレータであって、該各機器(1)〜
(6)は冷媒配管(7)…により冷媒循環可能に接続さ
れて閉回路の冷媒循環系統(A)が形成されており、暖
房時には四路切換弁(2)を実線の如く切換えて冷媒循
環系統(A)を暖房サイクルにし、冷媒を実線矢印の如
く循環させることにより、蒸発器として作用する熱源側
熱交換器(5)で外気から吸熱した熱量を凝縮器として
作用する空調負荷側熱交換器(3)で室内空気に放熱す
ることを繰返して、室内を暖房するとともに、冷房時お
よび除霜時には四路切換弁(2)を破線の如く切換えて
冷媒循環系統(A)を暖房サイクルとは逆サイクル(つ
まり冷房サイクル又は除霜サイクル)にし、冷媒を破線
矢印の如く循環させることにより、熱量の授受を上記と
は逆にして室内を冷房したり、熱源側熱交換器(5)に
成長した霜を除霜するようになされている。
In FIG. 1, (1a) and (1b) are first and second compressors connected in parallel with each other, (2) is a four-way switching valve, and (3) is an indoor ventilation fan ( An air conditioning load side heat exchanger having 3a), (4) an expansion mechanism, (5) an outdoor side heat exchanger having a blower fan (5a),
(6) is an accumulator, and each of the devices (1) to
(6) is connected by a refrigerant pipe (7) so that refrigerant can circulate to form a closed-circuit refrigerant circulation system (A). During heating, the four-way switching valve (2) is switched as shown by the solid line to circulate the refrigerant. The system (A) is set to a heating cycle and the refrigerant is circulated as indicated by the solid line arrow, so that the heat amount absorbed from the outside air in the heat source side heat exchanger (5) acting as an evaporator acts as a condenser and the air conditioning load side heat exchange is performed. The indoor unit (3) repeatedly radiates heat to the indoor air to heat the room, and at the time of cooling and defrosting, the four-way switching valve (2) is switched as shown by the broken line to set the refrigerant circulation system (A) as a heating cycle. Is a reverse cycle (that is, a cooling cycle or a defrosting cycle), and the refrigerant is circulated as indicated by a dashed arrow to transfer heat in the opposite direction to cool the room or to the heat source side heat exchanger (5). Defrost grown frost It has been made to so that.

また、(10)は上記第1の圧縮機(1a)を単独で、又は
2台の圧縮機(1a),(1b)を同時に能力制御するため
のインバータ、(11)は該インバータ(10)の駆動源で
あるとともに第2の圧縮機(1b)の駆動源となる商用電
源であって、上記インバータ(10)は、冷房時および暖
房時には室温と室温設定値との偏差に応じた周波数信号
を出力するとともに、暖房時における除霜時には商用周
波数よりも高い高周波数信号を出力するように構成され
ている。
Further, (10) is an inverter for controlling the capacity of the first compressor (1a) alone or simultaneously for the two compressors (1a), (1b), and (11) is the inverter (10). The inverter (10) is a commercial power source that is a drive source of the second compressor (1b) and a drive source of the second compressor (1b), and the inverter (10) outputs a frequency signal according to the deviation between the room temperature and the room temperature set value during cooling and heating. And a high frequency signal higher than the commercial frequency during defrosting during heating.

上記インバータ(10)は、上記第1の圧縮機(1a)及び
第2の圧縮機(1b)のうち第1の圧縮機(1a)のみを暖
房時に駆動するのに十分な出力電流値を有する容量のも
のが選定されている。
The inverter (10) has an output current value sufficient to drive only the first compressor (1a) of the first compressor (1a) and the second compressor (1b) during heating. The capacity is selected.

また、(12)は熱源側熱交換器(5)での着霜を検出す
るディアイサよりなる着霜検出手段であって、該着霜検
出手段(12)の着霜検出信号は上記2台の圧縮機(1
a),(1b)を運転制御する制御回路(13)に入力され
る。
Further, (12) is a frost formation detecting means composed of a dicer for detecting frost formation in the heat source side heat exchanger (5), and the frost formation detection signal of the frost formation detection means (12) is the above-mentioned two units. Compressor (1
It is input to the control circuit (13) that controls the operation of a) and (1b).

次に、上記制御回路(13)の内部構成を第2図に示す。
同図において、(MC1)はインバータ(10)からの周波
数信号に基づいて駆動される第1の圧縮機用モータ、
(MC2)は商用電源(11)からの給電により駆動される
第2の圧縮機用モータである。
The internal structure of the control circuit (13) is shown in FIG.
In the figure, (MC1) is a first compressor motor driven based on the frequency signal from the inverter (10),
(MC2) is a second compressor motor driven by power supply from a commercial power supply (11).

また、(3X)は切換スイッチ(14)の送風位置および温
調位置時にON作動する送風・温調リレー、(52F1)は該
送風・温調リレー(3X)のON作動時にON作動可能となる
室内ファンリレー、(15)は2極の冷/暖切換スイッ
チ、(16)は室温が室温度設定値未満のときにCOLD端子
側に切換わり、室温設定値以上のときにHOT端子側に切
換わる温度スイッチである。
Further, (3X) is an air blow / temperature control relay that is turned on when the changeover switch (14) is in the air blow position and temperature control position, and (52F1) is turned on when the air blow / temperature control relay (3X) is turned on. Indoor fan relay, (15) 2-pole cold / warm selector switch, (16) switches to the COLD terminal side when the room temperature is below the room temperature set value, and switches to the HOT terminal side when the room temperature is above the set value. It is a temperature switch to replace.

さらに、(52Fo)は冷房時および暖房時つまり上記冷/
暖切換スイッチ(15)の暖房側切換時に温度スイッチ
(16)がCOLD端子側にあるとき、および冷/暖切換スイ
ッチ(15)の冷房側切換時に温度スイッチ(16)がHOT
端子側にあるときにON作動可能となる室外送風ファンリ
レー、(52C1)は同様に上記冷房時および暖房時にON作
動可能となる第1の圧縮機モータリレー、(10X)は該
第1の圧縮機モータリレー(52C1)のON作動時にその常
開接点(52C1-2)の閉成に基づいてON作動する圧縮機の
同時起動防止用の遅延タイマ、(52C2)は該遅延タイマ
(10X)のタイマ時間後にその常開接点(10X-1)が閉じ
るとON作動可能となる第2の圧縮機モータリレーであっ
て、上記第1の圧縮機モータリレー(52C1)は第1の圧
縮機モータ(MC1)の給電回路にその常開接点(52C1-
1)が介設されているとともに、第2の圧縮機モータリ
レー(52C2)は第2の圧縮機モータ(MC2)の商用電源
(11)からの給電回路にその常開接点(52C2-1)が介設
されている。よって、暖房時には、第1の圧縮機モータ
リレー(52C1)のON作動により第1の圧縮機モータ(MC
1)をインバータ(10)で回転数制御して第1の圧縮機
(1a)を能力制御するとともに、第2の圧縮機モータリ
レー(52C2)のON作動により第2の圧縮機モータ(MC
2)を商用電源(11)で駆動して第2の圧縮機(1b)を
能力固定に運転するように構成されている。
In addition, (52Fo) is during cooling and heating
When the temperature switch (16) is on the COLD terminal side when the warm switch (15) is switched to the heating side, and when the cold / warm switch (15) is switched to the cooling side, the temperature switch (16) is set to HOT.
The outdoor blower fan relay that can be turned on when it is on the terminal side, (52C1) is the first compressor motor relay that can be turned on during the above cooling and heating, and (10X) is the first compression motor relay. Of the compressor motor relay (52C1) that is turned on when the normally open contact (52C1-2) of the relay is closed (52C2) is the delay timer of the delay timer (10X). A second compressor motor relay that can be turned on when its normally open contact (10X-1) is closed after a timer time, wherein the first compressor motor relay (52C1) is the first compressor motor (52C1). MC1) power supply circuit with its normally open contact (52C1-
1) is installed, and the second compressor motor relay (52C2) has its normally open contact (52C2-1) in the power supply circuit from the commercial power supply (11) of the second compressor motor (MC2). Is installed. Therefore, at the time of heating, the first compressor motor (MC
The inverter (10) controls the rotation speed of the first compressor (1a) to control the capacity of the first compressor (1a), and the second compressor motor relay (52C2) is turned on to turn on the second compressor motor (MC).
2) is driven by a commercial power source (11) to operate the second compressor (1b) at a fixed capacity.

加えて、(20S)は冷/暖切換スイッチ(15)の冷房側
切換時にON作動して四路切換弁(2)を破線の如く切換
える四路切換電磁弁、(23DX)は冷/暖切換スイッチ
(15)の暖房側切換時に上記着霜検出手段(12)からの
着霜検出信号を受けるとON作動する着霜検出リレーであ
って、上記四路切換電磁弁(20S)の給電回路には着霜
検出時に四路切換電磁弁(20S)をON作動させて冷媒循
環系統(A)を除霜サイクルに切換える常開接点(23DX
-1)が介設されているとともに、室外ファンリレー(52
Fo)の給電回路には着霜検出時に該室外ファンリレー
(52Fo)をOFF作動させる常閉接点(23DX-2)が介設さ
れ、同様に第2の圧縮機モータリレー(52C2)の給電回
路には着霜検出時に該第2の圧縮機モータリレー(52C
2)をOFF作動させて第2の圧縮機(MC2)の商用電源(1
1)による駆動を停止させる常閉接点(23DX-3)が介設
されている。また、(23DY)は上記着霜検出リレー(23
DX)のON作動時にその常開接点(23DX-4)の閉成により
ON作動する着霜検出反応リレー、(52C3)が該着霜検出
反応リレー(23DY)の常開接点(23DY-1)の閉成と第2
の圧縮機モータリレー(52C2)の常閉接点(52C2-2)の
閉成とに基づいてON作動する第2の圧縮機モータ切換リ
レーであって、上記インバータ(10)から第2の圧縮機
モータ(MC2)に周波数信号を給電するよう形成せしめ
た給電回路(20)の途中には、該第2の圧縮機モータ切
換リレー(52C3)の常開接点(52C3-1)が介設されてい
る。よって、暖房時における熱源側熱交換器(5)の着
霜検出時には、着霜検出リレー(23DX)のON作動に基づ
き四路切換電磁弁(20S)をON作動させて四路切換弁
(2)を破線の如く切換え、冷媒循環系統(A)を暖房
サイクルとは逆サイクル(除霜サイクル)にし、且つ室
外ファンリレー(52Fo)をOFF作動させて熱源側熱交換
器(5)の送風ファン(5a)を停止するとともに、第2
の圧縮機モータリレー(52C2)をOFF作動させて商用電
源(11)による第2圧縮機モータ(MC2)の駆動を停止
したのち、第2の圧縮機モータ切換リレー(52C3)をON
作動させて該第2の圧縮機モータ(MC2)を高周波数信
号出力中のインバータ(10)で駆動することにより、第
1及び第2の圧縮機モータ(MC1),(MC2),つまり相
互に並列接続された2台の圧縮機(1a),(1b)を共に
インバータ(10)で商用周波数に相当する能力よりも高
い能力に制御するようにした除霜運転制御手段(30)を
構成している。
In addition, (20S) is a four-way switching solenoid valve that is turned on when the cooling / warming switch (15) is switched to the cooling side to switch the four-way switching valve (2) as shown by the broken line, and (23DX) is a cold / warm switching. A frost detection relay that is turned on when a frost detection signal from the frost detection means (12) is received when the switch (15) is switched to the heating side, and is connected to the power supply circuit of the four-way switching solenoid valve (20S). Is a normally open contact (23DX) that turns on the four-way switching solenoid valve (20S) when frost is detected to switch the refrigerant circulation system (A) to the defrost cycle.
-1) is installed and the outdoor fan relay (52
The fo) power supply circuit is provided with a normally closed contact (23DX-2) for turning off the outdoor fan relay (52Fo) when frost is detected. Similarly, the power supply circuit of the second compressor motor relay (52C2) is also provided. The second compressor motor relay (52C
2) is turned off to turn on the commercial power (1) of the second compressor (MC2).
A normally-closed contact (23DX-3) for stopping the drive by 1) is provided. Also, (23DY) is the frost detection relay (23
By closing the normally open contact (23DX-4) when the DX) turns on
The frost detection reaction relay that is turned on, (52C3) is the second when the normally open contact (23DY-1) of the frost detection reaction relay (23DY) is closed and the second
A second compressor / motor switching relay that is turned on based on closing of a normally closed contact (52C2-2) of the compressor / motor relay (52C2), and the inverter (10) to the second compressor. A normally open contact (52C3-1) of the second compressor motor switching relay (52C3) is provided in the middle of a power supply circuit (20) formed to supply a frequency signal to the motor (MC2). There is. Therefore, when frost is detected on the heat source side heat exchanger (5) during heating, the four-way switching solenoid valve (20S) is turned on based on the ON operation of the frost detection relay (23DX) to turn on the four-way switching valve (2 ) Is switched as indicated by the broken line, the refrigerant circulation system (A) is set to the cycle (defrost cycle) opposite to the heating cycle, and the outdoor fan relay (52Fo) is turned off to blow the fan of the heat source side heat exchanger (5). While stopping (5a), the second
After turning off the compressor motor relay (52C2) of No.2 and stopping the drive of the second compressor motor (MC2) by the commercial power supply (11), turn on the second compressor motor switching relay (52C3).
By operating and driving the second compressor motor (MC2) by the inverter (10) outputting high frequency signals, the first and second compressor motors (MC1), (MC2), that is, the two The defrosting operation control means (30) is configured so that the two compressors (1a) and (1b) connected in parallel are both controlled by the inverter (10) to have a capacity higher than the capacity corresponding to the commercial frequency. ing.

尚、室内ファンリレー(52F1)の給電回路には着霜検出
反応リレー(23DY)の常閉接点(23DY-2)が介設されて
いて、除霜時には空調負荷側熱交換器(3)の送風ファ
ン(3a)を停止するようになされている。また、第3図
中、(3X-1)は送風・温調リレー(3X)の自己保持用の
常開接点である。
A normally closed contact (23DY-2) of the frost detection reaction relay (23DY) is provided in the power supply circuit of the indoor fan relay (52F1), and when defrosting, the air conditioning load side heat exchanger (3) It is designed to stop the blower fan (3a). In addition, in FIG. 3, (3X-1) is a normally open contact for self-holding of the blower / temperature control relay (3X).

したがって、上記実施例においては、暖房時には第1の
圧縮機モータリレー(52C1)のON作動に基づいて第1の
圧縮機モータ(MC1)がインバータ(10)により回転数
制御されて、第1の圧縮機(1a)のみが能力制御され、
該第1の圧縮機(1a)に並列接続された残りの第2の圧
縮機(1b)は第2の圧縮機モータリレー(52C2)のON作
動により第2の圧縮機モータ(MC2)が商用電源(11)
で駆動されて能力固定となる。ここに、インバータ(1
0)の容量は、第1の圧縮機(1a)のみを暖房時に駆動
するのに十分な出力電流値を有する容量のものが選定さ
れているので、インバータ(10)として低コストで小型
のものが採用可能である。
Therefore, in the above embodiment, during heating, the first compressor motor (MC1) is controlled in rotation speed by the inverter (10) based on the ON operation of the first compressor motor relay (52C1), and Only the compressor (1a) is capacity controlled,
In the remaining second compressor (1b) connected in parallel to the first compressor (1a), the second compressor motor (MC2) is commercialized by turning on the second compressor motor relay (52C2). Power (11)
The ability is fixed by being driven by. Inverter (1
Since the capacity of 0) is selected to have an output current value sufficient to drive only the first compressor (1a) during heating, the inverter (10) has a low cost and a small size. Can be adopted.

しかも、上記暖房時における熱源側熱交換器(5)の除
霜時には、インバータ(10)から最高周波数信号が出力
されて第1の圧縮機(1a)が最高能力に駆動されるもの
の、該インバータ(10)の第1の圧縮機(1a)に対する
出力電流値が減少して容量(出力電流値)に余裕が生じ
るとともに、第2の圧縮機モータ切換リレー(52C3)の
ON作動に基づき第2の圧縮機モータ(MC2)が上記イン
バータ(10)によりその余裕容量(余裕出力電流)の範
囲内で最高回転数に駆動されて、その能力が商用周波数
に相当する中能力から最高能力に増大するので、インバ
ータ(10)の出力電流値は最大値を越えずにその焼損を
招くことなく除霜能力が増大して、熱源側熱交換器
(5)での除霜が短い除霜時間でもって効果的に行われ
ることになる。
Moreover, when the heat source side heat exchanger (5) is defrosted during the heating, the inverter (10) outputs the highest frequency signal to drive the first compressor (1a) to the maximum capacity. The output current value for the first compressor (1a) of (10) decreases, and a capacity (output current value) has a margin, and the second compressor motor switching relay (52C3)
Based on the ON operation, the second compressor motor (MC2) is driven by the inverter (10) to the maximum rotation speed within the range of the margin capacity (margin output current), and its capacity corresponds to the commercial frequency. Since the output current value of the inverter (10) does not exceed the maximum value and the defrosting capacity increases without incurring its burning, the defrosting at the heat source side heat exchanger (5) It will be effectively done with a short defrosting time.

よって、インバータ(10)として出力電流値の少ない小
容量のものを採用しつつ、除霜能力を高めることが可能
である。
Therefore, it is possible to enhance the defrosting capacity while adopting the inverter (10) having a small capacity with a small output current value.

尚、上記実施例では、本発明を冷暖房装置に適用した
が、本発明はこれに限らず、少なくとも暖房機能を備え
たものに適用できるものである。
In addition, although the present invention is applied to the cooling and heating device in the above-described embodiment, the present invention is not limited to this, and can be applied to a device having at least a heating function.

(発明の効果) 以上説明したように、本発明のヒートポンプ式空気調和
装置によれば、除霜時には、暖房時にインバータで能力
制御される第1の圧縮機と商用電源により能力固定に駆
動される第2の圧縮機とが共に、第1の圧縮機のみを暖
房時に駆動するのに十分な出力電流値を有する小容量の
インバータにより商用周波数に相当する能力よりも高い
能力に制御されるので、上記インバータとして低コスト
且つ小型のものを採用しつつ、熱源側熱交換器の除霜を
より短い除霜時間でもって効果的に行うことができ、よ
って機器の低コスト化,小型化を図りつつ除霜能力の向
上を顕著に図ることができるものである。
(Effects of the Invention) As described above, according to the heat pump type air conditioner of the present invention, during defrosting, the capacity is driven to be fixed by the first compressor and the commercial power supply whose capacity is controlled by the inverter during heating. Since the second compressor and the second compressor are both controlled to have a capacity higher than that corresponding to the commercial frequency by a small capacity inverter having an output current value sufficient to drive only the first compressor during heating, While adopting a low-cost and small-sized inverter as the above-mentioned inverter, the defrosting of the heat source side heat exchanger can be effectively performed with a shorter defrosting time, and thus the cost and size of the device can be reduced. It is possible to remarkably improve the defrosting ability.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示し、第1図は冷媒配管系統
図、第2図は制御回路の内部構成を示す電気回路図、第
3図は除霜時における冷媒の高圧、低圧およびインバー
タの出力電流の特性を示す図である。 (1a)……第1の圧縮機、(1b)……第2の圧縮機、
(2)……四路切換弁、(3)……空調負荷側熱交換
器、(4)……膨張機構、(5)……熱源側熱交換器、
(A)……冷媒循環系統、(10)……インバータ、(1
1)……商用電源、(12)……着霜検出手段、(30)…
…除霜運転制御手段。
The drawings show an embodiment of the present invention, FIG. 1 is a refrigerant piping system diagram, FIG. 2 is an electric circuit diagram showing an internal configuration of a control circuit, and FIG. 3 is a high pressure and low pressure of the refrigerant during defrosting and an inverter. It is a figure which shows the characteristic of an output current. (1a) ... first compressor, (1b) ... second compressor,
(2) ... four-way switching valve, (3) ... air conditioning load side heat exchanger, (4) ... expansion mechanism, (5) ... heat source side heat exchanger,
(A) …… Refrigerant circulation system, (10) …… Inverter, (1
1) …… Commercial power supply, (12) …… Frost detection means, (30)…
... Defrosting operation control means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)と、四路切換弁(2)と、空
調負荷側熱交換器(3)と、膨張機構(4)と、熱源側
熱交換器(5)とで閉回路の冷媒循環系統(A)を形成
するヒートポンプ式空気調和装置において、上記圧縮機
(1)を、暖房時にインバータ(10)により能力制御さ
れる第1の圧縮機(1a)と、該第1の圧縮機(1a)に並
列に接続されて暖房時に商用電源(11)により駆動され
る能力固定の第2の圧縮機(1b)とで構成するととも
に、上記インバータ(10)を上記第1および第2の圧縮
機(1a),(1b)のうち第1の圧縮機(1a)のみを暖房
時に駆動するのに十分な出力電流値を有するもので構成
し、上記熱源側熱交換器(5)の着霜を検出する着霜検
出手段(12)と、該着霜検出手段(12)の出力を受け、
冷媒循環系統(A)を暖房サイクルとは逆サイクルに切
換えるとともに、上記第1および第2の圧縮機(1a),
(1b)を共に上記インバータ(10)で商用周波数に相当
する能力よりも高い能力に制御する除霜運転制御手段
(30)とを備えたことを特徴とするヒートポンプ式空気
調和装置。
1. A compressor (1), a four-way switching valve (2), an air conditioning load side heat exchanger (3), an expansion mechanism (4) and a heat source side heat exchanger (5). In a heat pump type air conditioner that forms a refrigerant circulation system (A) of a circuit, the compressor (1) includes a first compressor (1a) whose capacity is controlled by an inverter (10) during heating, and the first compressor (1a). Second compressor (1b) connected in parallel to the compressor (1a) and having a fixed capacity to be driven by the commercial power supply (11) during heating, and the inverter (10) is connected to the first and second inverters (10). Of the second compressors (1a) and (1b), only the first compressor (1a) is configured to have an output current value sufficient for driving during heating, and the heat source side heat exchanger (5 ) Frost detection means (12) for detecting frost formation, and an output of the frost detection means (12),
The refrigerant circulation system (A) is switched to a cycle opposite to the heating cycle, and the first and second compressors (1a),
A defrosting operation control means (30) for controlling both (1b) by the inverter (10) to a capacity higher than that corresponding to a commercial frequency, a heat pump type air conditioner.
JP59202630A 1984-09-27 1984-09-27 Heat pump type air conditioner Expired - Fee Related JPH0743194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202630A JPH0743194B2 (en) 1984-09-27 1984-09-27 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202630A JPH0743194B2 (en) 1984-09-27 1984-09-27 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS6179959A JPS6179959A (en) 1986-04-23
JPH0743194B2 true JPH0743194B2 (en) 1995-05-15

Family

ID=16460526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202630A Expired - Fee Related JPH0743194B2 (en) 1984-09-27 1984-09-27 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0743194B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106671A (en) * 1988-10-13 1990-04-18 Daikin Ind Ltd Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190660A (en) * 1982-04-28 1983-11-07 松下精工株式会社 Heat pump type air conditioner
JPS58221349A (en) * 1982-06-17 1983-12-23 三菱電機株式会社 Refrigeration cycle device
JPS59161649A (en) * 1983-03-05 1984-09-12 ダイキン工業株式会社 Controller for capacity of air conditioner

Also Published As

Publication number Publication date
JPS6179959A (en) 1986-04-23

Similar Documents

Publication Publication Date Title
JP2504437B2 (en) air conditioner
JP3208323B2 (en) Control method of multi-type air conditioner
US4723414A (en) Low-temperature showcase
JPH0684839B2 (en) Air conditioner
US3276220A (en) Fan speed control for refrigeration system
WO2022053071A1 (en) Air conditioner control system and air conditioner
JPH0743194B2 (en) Heat pump type air conditioner
JPH04174B2 (en)
JPH10274448A (en) Air-conditioning device
JPS5839338Y2 (en) Refrigeration/heating equipment
JPH045970Y2 (en)
JP2000088318A (en) Outdoor-air introducing type air conditioning equipment
JPH058459Y2 (en)
JPS5930867Y2 (en) Heat pump air conditioner
JPS589160Y2 (en) Heat Pump Shiki Reidanbou Souchi
JPH0233109Y2 (en)
JPS5926202Y2 (en) air conditioner
JPS5815791Y2 (en) Kuukichiyouwaki
JP6491969B2 (en) Air conditioner for vehicles
JPH0718938Y2 (en) air conditioner
JPS5810896Y2 (en) heating device
JPS596346Y2 (en) Control circuit for heat pump air conditioner
JPH0737175Y2 (en) Cooling and heating device for vending machines
JPH0533889Y2 (en)
JPS6273029A (en) Controlling device for air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees