JPH074318A - Egr device of diesel engine - Google Patents

Egr device of diesel engine

Info

Publication number
JPH074318A
JPH074318A JP5146576A JP14657693A JPH074318A JP H074318 A JPH074318 A JP H074318A JP 5146576 A JP5146576 A JP 5146576A JP 14657693 A JP14657693 A JP 14657693A JP H074318 A JPH074318 A JP H074318A
Authority
JP
Japan
Prior art keywords
egr
pressure
passage
signal output
pressure sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5146576A
Other languages
Japanese (ja)
Inventor
Naoya Tsutsumoto
直哉 筒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5146576A priority Critical patent/JPH074318A/en
Publication of JPH074318A publication Critical patent/JPH074318A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To provide an EGR device which can correct difference of output characteristics of pressure sensors. CONSTITUTION:This EGR device of a diesel engine is provided with a means 16 by which the opening of an EGR valve 4 is controlled so that a target EGR rate according to an operating condition can be obtained based on difference of signal output Va-Vb of first and second pressure sensors 12, 13. It is provided with a means 17 by which the signal output error DELTAV of the first and second pressure sensors 12, 13 is computed based on the detected signals Va, Vb of the first and second pressure sensors 12, 13 read under a plurality of intake pressure conditions when EGR is cut by full close of the EGR valve 4, and a means 18 by which difference of signal output Va-Vb of the first and the second pressure sensors 12, 13 is corrected based on the signal output error DELTAV.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンの
EGR装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved EGR device for diesel engines.

【0002】[0002]

【従来の技術】自動車用エンジン等にあっては、排気ガ
ス中の有害成分であるNOxの発生を抑制するために、
吸気管に不活性の排気ガスを再循環させる、いわゆるE
GR装置が設けられている。
2. Description of the Related Art In automobile engines and the like, in order to suppress the generation of NOx which is a harmful component in exhaust gas,
Recirculating inert exhaust gas to the intake pipe, so-called E
A GR device is provided.

【0003】このEGR装置として例えば図6に示すよ
うなものがある(特開昭57−165656号公報、参
照)。
An example of this EGR device is shown in FIG. 6 (see Japanese Patent Application Laid-Open No. 57-165656).

【0004】図において、20はディーゼルエンジン、
21は吸気通路、22は排気通路、23は吸気通路21
に介装された吸気絞り弁、24はこの吸気絞り弁23の
下流側において排気通路22からの排気ガスの一部であ
るEGRガスを吸気通路21に戻す排気還流通路(以下
EGR通路と呼ぶ)、25はEGR流量(排気還流量)
をコントロールするEGR弁(制御弁)を示している。
In the figure, 20 is a diesel engine,
Reference numeral 21 is an intake passage, 22 is an exhaust passage, and 23 is an intake passage 21.
An exhaust gas recirculation passage (hereinafter, referred to as an EGR passage) 24 returns an EGR gas, which is a part of the exhaust gas from the exhaust passage 22, to the intake passage 21 on the downstream side of the intake throttle valve 23. , 25 are EGR flow rate (exhaust gas recirculation amount)
The EGR valve (control valve) which controls the is shown.

【0005】吸気絞り弁23とEGR弁25はそれぞれ
ダイヤフラムアクチュエータと連動しており、バキュー
ムモジュレータ26,27から供給される負圧に応じて
作動し、このバキュームモジュレータ26,27はコン
トロールユニット28からの信号に基づいて制御負圧が
調整される。コントロールユニット28からの指令に従
って吸気絞り弁23とEGR弁25の開度が制御され、
一定量のEGRガスを吸気通路21に戻すことにより、
燃焼時の最高温度を下げ、排気ガス中のNOx量を低減
するようになっている。
The intake throttle valve 23 and the EGR valve 25 are interlocked with the diaphragm actuators and operate in accordance with the negative pressure supplied from the vacuum modulators 26 and 27. The vacuum modulators 26 and 27 are supplied from the control unit 28. The control negative pressure is adjusted based on the signal. The opening degrees of the intake throttle valve 23 and the EGR valve 25 are controlled according to a command from the control unit 28,
By returning a certain amount of EGR gas to the intake passage 21,
The maximum temperature during combustion is lowered to reduce the amount of NOx in the exhaust gas.

【0006】EGR流量を検出するため、EGR通路2
4の途中には、これと並列的にバイパス通路30が設け
られ、バイパス通路30には流量測定のためのベンチュ
リ部(絞り)が設けられ、この前後差圧を差圧センサ3
2で取り出すようになっている。
The EGR passage 2 is used to detect the EGR flow rate.
4, a bypass passage 30 is provided in parallel with the bypass passage 30, and a venturi portion (throttle) for measuring the flow rate is provided in the bypass passage 30.
It is supposed to be taken out in 2.

【0007】コントロールユニット28は吸気絞り弁2
3の上流側に設けられて吸入空気量を測定するエアフロ
メータ40からの吸入空気量信号と、EGR流量を測定
する差圧センサ32からのEGR流量信号を入力する。
また、車両の走行距離を検出して一定距離走行毎に信号
をコントロールユニット28に伝達する距離センサ41
が設けられる。コントロールユニット28は運転状態に
応じてEGR率(=EGR流量/吸入空気量×100
%)の制御目標値をテーブルルックアップにより選び出
し、これを指令値としてEGR弁25および吸気絞り弁
23の開度をオープンループ制御するのであるが、これ
と同時に上記所定の走行距離毎に、吸入空気量とEGR
流量の検出値からEGR率を求め、この検出EGR率の
制御目標値に対する誤差を検知するとともに、この誤差
を解消するように制御指令値を補正するようになってい
る。
The control unit 28 includes the intake throttle valve 2
An intake air amount signal from an air flow meter 40 that is provided on the upstream side of 3 to measure the intake air amount and an EGR flow rate signal from a differential pressure sensor 32 that measures the EGR flow rate are input.
In addition, a distance sensor 41 that detects the traveling distance of the vehicle and transmits a signal to the control unit 28 at every constant distance traveling.
Is provided. The control unit 28 controls the EGR rate (= EGR flow rate / intake air amount × 100) according to the operating state.
The control target value of (%) is selected by a table lookup, and the opening of the EGR valve 25 and the intake throttle valve 23 is subjected to open loop control using this as a command value. Air volume and EGR
The EGR rate is obtained from the detected value of the flow rate, the error of the detected EGR rate with respect to the control target value is detected, and the control command value is corrected so as to eliminate this error.

【0008】エアフロメータ40を介して吸入空気量を
検出することにより、車両の高地走行やエアクリーナの
詰まり等による吸入空気量の変化に伴ってEGR率が変
化することがない。
By detecting the intake air amount through the air flow meter 40, the EGR rate does not change due to changes in the intake air amount due to running of the vehicle at high altitudes or clogging of the air cleaner.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のEGR装置にあっては、EGR流量を検出す
るための差圧センサ32が設けられるとともに、吸入空
気量を測定するためのエアフロメータ40が設けられて
いるため、構造が複雑化し、製品のコストアップを招く
という問題点がある。
However, such a conventional EGR device is provided with the differential pressure sensor 32 for detecting the EGR flow rate and the air flow meter 40 for measuring the intake air amount. Is provided, there is a problem that the structure is complicated and the cost of the product is increased.

【0010】これに対策として、EGR通路24と吸気
通路21にそれぞれ絶対圧を検出する第一、第二圧力セ
ンサを設け、両者の信号出力差からEGR流量を求める
とともに、吸気通路21の圧力から吸入空気量を求める
構成とすることが考えられる。
As a countermeasure against this, the EGR passage 24 and the intake passage 21 are provided with first and second pressure sensors for detecting the absolute pressure respectively, and the EGR flow rate is obtained from the signal output difference between the two, and the pressure in the intake passage 21 is calculated. It is conceivable that the intake air amount is obtained.

【0011】ところが、絶対圧を検出する第一、第二圧
力センサの出力特性の初期設定に誤差があったり、ある
いは経時劣化等が生じた場合、第一、第二圧力センサの
出力値が互いに異なり、実際のEGR率が目標値からず
れる可能性がある。
However, if there is an error in the initial setting of the output characteristics of the first and second pressure sensors that detect absolute pressure, or if there is deterioration over time, the output values of the first and second pressure sensors will be mutually different. Differently, the actual EGR rate may deviate from the target value.

【0012】本発明は上記の問題点に着目し、圧力セン
サの出力特性差を修正できるEGR装置を提供すること
を目的とする。
It is an object of the present invention to provide an EGR device capable of correcting the output characteristic difference of the pressure sensor, focusing on the above problems.

【0013】[0013]

【課題を解決するための手段】本発明は、図1に示すよ
うに、ディーゼルエンジンの排気通路2と吸気通路1を
結ぶEGR通路3と、EGR通路3の途中に介装される
EGR弁4と、EGR通路3の圧力に応じた信号Vaを
出力する第一圧力センサ12と、吸気通路1の圧力に応
じた信号Vbを出力する第二圧力センサ13と、第一、
第二圧力センサ12,13の信号出力差Va−Vbに基
づいて運転状態に応じた目標のEGR率が得られるよう
にEGR弁4の開度を制御する手段16を備えるディー
ゼルエンジンのEGR装置において、EGR弁4を全閉
したEGRカット時に複数の吸気圧力条件のもとで読込
まれた第一、第二圧力センサ12,13の検出信号V
a,Vbに基づいて第一、第二圧力センサ12,13の
信号出力誤差ΔV(=mVb+n)を算出する手段17
と、この信号出力誤差ΔVに基づいて前記第一、第二圧
力センサ12,13の信号出力差Va−Vbを補正する
手段18を備える。
According to the present invention, as shown in FIG. 1, an EGR passage 3 connecting an exhaust passage 2 and an intake passage 1 of a diesel engine, and an EGR valve 4 provided in the middle of the EGR passage 3 are provided. A first pressure sensor 12 that outputs a signal Va corresponding to the pressure in the EGR passage 3, a second pressure sensor 13 that outputs a signal Vb corresponding to the pressure in the intake passage 1,
In an EGR device for a diesel engine, which is provided with means 16 for controlling the opening degree of the EGR valve 4 so as to obtain a target EGR rate according to the operating state based on the signal output difference Va-Vb of the second pressure sensors 12, 13. , The detection signal V of the first and second pressure sensors 12 and 13 read under a plurality of intake pressure conditions when the EGR valve 4 is fully closed and EGR is cut.
Means 17 for calculating a signal output error ΔV (= mVb + n) of the first and second pressure sensors 12 and 13 based on a and Vb.
And a means 18 for correcting the signal output difference Va-Vb of the first and second pressure sensors 12, 13 based on the signal output error ΔV.

【0014】[0014]

【作用】EGR弁が全閉となるEGRカット時にEGR
通路の圧力と吸気通路の圧力は吸気通路の圧力条件に関
係なく等しくなるため、第一、第二圧力センサ12,1
3の各信号出力VaとVbの出力特性は本来一致するも
のである。
[Operation] EGR at EGR cut when the EGR valve is fully closed
Since the pressure in the passage and the pressure in the intake passage are equal regardless of the pressure condition in the intake passage, the first and second pressure sensors 12, 1
The output characteristics of the signal outputs Va and Vb of 3 are essentially the same.

【0015】そこで、EGRカット時に複数の吸気圧力
条件のもとで読込まれた第一、第二圧力センサ12,1
3の検出信号Va,Vbに基づいて第一、第二圧力セン
サ12,13の信号出力誤差ΔV(=mVb+n)を算
出する。
Therefore, the first and second pressure sensors 12, 1 read under a plurality of intake pressure conditions during EGR cut.
The signal output error ΔV (= mVb + n) of the first and second pressure sensors 12 and 13 is calculated based on the detection signals Va and Vb of 3.

【0016】この信号出力誤差ΔVに基づいて前記第
一、第二圧力センサ12,13の信号出力差Va−Vb
を補正することにより、第一、第二圧力センサ12,1
3の出力特性のバラツキによらず、エンジン運転状態に
応じた目標のEGR率が得られる。
Based on this signal output error ΔV, the signal output difference Va-Vb between the first and second pressure sensors 12 and 13 is calculated.
By correcting the first and second pressure sensors 12, 1
A target EGR rate according to the engine operating state can be obtained regardless of the variation in the output characteristic of No. 3.

【0017】[0017]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】図2はEGR装置の概略を示している。デ
ィーゼルエンジンの排気通路2と吸気通路1を結ぶEG
R通路3が設けられ、EGR通路3の途中にはオリフィ
ス10が介装される。EGRガスの流れがこのオリフィ
ス10によって絞られるため、EGR通路3を通って吸
気通路1に還流されるEGR流量は、EGR通路3と吸
気通路1間の圧力差に応じて増大する。
FIG. 2 shows an outline of the EGR device. EG connecting the exhaust passage 2 and the intake passage 1 of the diesel engine
An R passage 3 is provided, and an orifice 10 is provided in the middle of the EGR passage 3. Since the flow of the EGR gas is throttled by the orifice 10, the EGR flow rate that returns to the intake passage 1 through the EGR passage 3 increases according to the pressure difference between the EGR passage 3 and the intake passage 1.

【0019】EGR通路3の途中にはオリフィス10よ
り排気通路2側すなわち上流側にダイヤフラム式のEG
R弁4が介装される。EGR弁4のダイヤフラム室13
には信号負圧通路5が接続される。この信号負圧通路5
はバキュームポンプ7に連通するとともに、その途中に
デューティ制御弁8が介装される。このデューティ制御
弁8によりEGR弁4のダイヤフラム室46に導かれる
負圧を適宜に希釈することによって、EGR弁4の開度
が制御される。
In the middle of the EGR passage 3, a diaphragm type EG is provided on the exhaust passage 2 side, that is, the upstream side of the orifice 10.
The R valve 4 is interposed. Diaphragm chamber 13 of EGR valve 4
A signal negative pressure passage 5 is connected to. This signal negative pressure passage 5
Is communicated with the vacuum pump 7, and a duty control valve 8 is interposed in the middle thereof. The duty control valve 8 appropriately dilutes the negative pressure introduced into the diaphragm chamber 46 of the EGR valve 4 to control the opening degree of the EGR valve 4.

【0020】EGR弁4の開度が大きくなるほど、EG
R弁4より下流側のEGR通路3の圧力は高められ、オ
リフィス10を介して吸気通路1に還流されるEGR流
量は増大する。
As the opening degree of the EGR valve 4 increases, the EG
The pressure in the EGR passage 3 on the downstream side of the R valve 4 is increased, and the EGR flow rate recirculated to the intake passage 1 via the orifice 10 is increased.

【0021】吸気通路1にはEGR通路3の合流部より
上流側にバタフライ式の吸気絞り弁9が介装される。吸
気絞り弁9はアクチュエータ10を介して開閉作動す
る。吸気絞り弁9より下流側の吸気通路1には、吸気絞
り弁9の開度が小さくなるのに伴って吸入負圧が発生
し、オリフィス10を介して吸気通路1に還流されるE
GR流量が増大する。
A butterfly type intake throttle valve 9 is provided in the intake passage 1 upstream of the confluence of the EGR passage 3. The intake throttle valve 9 is opened and closed via an actuator 10. In the intake passage 1 downstream of the intake throttle valve 9, an intake negative pressure is generated as the opening degree of the intake throttle valve 9 becomes smaller, and is returned to the intake passage 1 through the orifice 10.
GR flow rate increases.

【0022】コントロールユニット11は、エンジン運
転状態を代表する信号として、例えばエンジン回転数、
アクセルペダル開度(燃料噴射ポンプのコントロールス
リーブまたはコントロールラック位置)、燃料噴射時
期、エンジン冷却水温、あるいはエンジン油温等を表す
信号を入力し、これらに基づいて運転状態に対応して予
め設定された目標のEGR率が得られるように、EGR
弁4と吸気絞り弁9の開度を制御する。なお、エンジン
の始動後エンジン水温が一定値に達するまでの冷間時、
あるいは所定の高負荷運転時にEGR弁4を全閉するE
GRカット制御が行われる。
The control unit 11 uses, for example, the engine speed, as a signal representing the engine operating state.
Input signals indicating accelerator pedal opening (position of fuel injection pump control sleeve or control rack), fuel injection timing, engine cooling water temperature, engine oil temperature, etc., and preset based on these signals to correspond to operating conditions. So that the desired target EGR rate is obtained.
The opening degrees of the valve 4 and the intake throttle valve 9 are controlled. In addition, when the engine water temperature is cold after the engine starts until it reaches a certain value,
Alternatively, the EGR valve 4 is fully closed during a predetermined high load operation E
GR cut control is performed.

【0023】オリフィス10を介して吸気通路1に還流
されるEGR流量を検出するために、オリフィス10と
EGR弁4間におけるEGR通路3の圧力Paを検出す
る第一圧力センサ12と、吸気絞り弁9より下流側の吸
気通路1の圧力Pbを検出する第二圧力センサ13が設
けられる。
A first pressure sensor 12 for detecting the pressure Pa in the EGR passage 3 between the orifice 10 and the EGR valve 4 and an intake throttle valve for detecting the EGR flow rate returned to the intake passage 1 via the orifice 10. A second pressure sensor 13 that detects the pressure Pb in the intake passage 1 downstream of 9 is provided.

【0024】コントロールユニット11は、第一、第二
圧力センサ12,13の検出信号Va,Vbを入力し、
両者の信号出力差Va−VbからEGR流量を算出し、
第二圧力センサ13の検出信号Vbから吸入空気量を算
出するとともに、EGR率(=EGR流量/吸入空気量
×100%)を算出し、この算出されたEGR率が目標
とするEGR率と一致するようにフィードバック制御が
行われる。これにより、例えば吸気通路1の上流側に設
けられるエアフィルタの目詰まりや、EGR弁4に対す
るカーボンの付着等に起因するEGR率のずれが修正さ
れる。
The control unit 11 inputs the detection signals Va and Vb of the first and second pressure sensors 12 and 13,
The EGR flow rate is calculated from the signal output difference Va-Vb of both,
The intake air amount is calculated from the detection signal Vb of the second pressure sensor 13 and the EGR rate (= EGR flow rate / intake air amount × 100%) is calculated, and the calculated EGR rate matches the target EGR rate. Feedback control is performed so as to perform. As a result, for example, the deviation of the EGR rate due to the clogging of the air filter provided on the upstream side of the intake passage 1 or the adhesion of carbon to the EGR valve 4 is corrected.

【0025】ところで、EGR弁4が全閉となるEGR
カット時にオリフィス10を介してEGRガスの流れが
停止されるため、EGR通路3の圧力と吸気通路1の圧
力とは吸気通路1の圧力条件に関係なく等しく、第一、
第二圧力センサ12,13の出力特性は本来一致するも
のである。
By the way, the EGR in which the EGR valve 4 is fully closed
Since the flow of EGR gas is stopped via the orifice 10 at the time of cutting, the pressure in the EGR passage 3 and the pressure in the intake passage 1 are equal regardless of the pressure condition in the intake passage 1, and
The output characteristics of the second pressure sensors 12 and 13 are essentially the same.

【0026】図3はEGR弁4が全閉したEGRカット
時に吸気通路1の圧力条件に応じて第一、第二圧力セン
サ12,13の出力特性にバラツキが生じた場合を示し
ている。第一、第二圧力センサ12,13の各信号出力
誤差ΔVは、一方の信号出力Vbとの間に図4に示すよ
うな比例関係があり、ΔV=mVb+nとして表され
る。
FIG. 3 shows a case where the output characteristics of the first and second pressure sensors 12 and 13 vary depending on the pressure condition of the intake passage 1 when the EGR valve 4 is fully closed and EGR is cut. Each signal output error ΔV of the first and second pressure sensors 12 and 13 has a proportional relationship with one signal output Vb as shown in FIG. 4, and is represented as ΔV = mVb + n.

【0027】このように、第一、第二圧力センサ12,
13の出力特性にバラツキが生じた場合に対処するた
め、EGR弁4が全閉したEGRカット時にEGR通路
3の圧力と吸気通路1の吸気圧力条件に関係なく等しい
ことを利用して、コントロールユニット28はEGRカ
ット時に複数の吸気圧力条件のもとで読込まれた第一、
第二圧力センサ12,13の検出信号Va,Vbに基づ
いて第一、第二圧力センサ12,13の信号出力誤差Δ
V(=mVb+n)を求め、この信号出力誤差ΔVに基
づいて第一、第二圧力センサ12,13の信号出力差V
a−Vbを補正する。
As described above, the first and second pressure sensors 12,
In order to deal with the case where the output characteristic of the control valve 13 has a variation, the control unit is utilized by utilizing the fact that the pressure in the EGR passage 3 is equal to the intake pressure condition in the intake passage 1 at the time of EGR cut when the EGR valve 4 is fully closed. 28 is the first read under a plurality of intake pressure conditions during EGR cut,
The signal output error Δ of the first and second pressure sensors 12 and 13 based on the detection signals Va and Vb of the second pressure sensors 12 and 13.
V (= mVb + n) is obtained, and the signal output difference V between the first and second pressure sensors 12 and 13 is calculated based on this signal output error ΔV.
Correct a-Vb.

【0028】図5のフローチャートはコントロールユニ
ット11において実行される上記第一、第二圧力センサ
12,13の各信号出力誤差ΔVを補正する制御プログ
ラムを示しており、これは一定時間毎に実行される。
The flowchart of FIG. 5 shows a control program executed in the control unit 11 for correcting the signal output error ΔV of the first and second pressure sensors 12 and 13, which is executed at regular time intervals. It

【0029】まず、EGRカット条件であることを判定
すると、吸気絞り弁9を全開し、この圧力条件1のもと
で、第一、第二圧力センサ12,13の各信号出力Va
1,Vb1を読込み、両者の信号出力誤差ΔV1を算出す
る(ステップ1,2,3,4)。
First, when it is determined that the EGR cut condition is satisfied, the intake throttle valve 9 is fully opened, and under this pressure condition 1, the signal outputs Va of the first and second pressure sensors 12 and 13 are obtained.
1 and Vb 1 are read and the signal output error ΔV 1 between them is calculated (steps 1, 2, 3, 4).

【0030】続いて吸気絞り弁8を最大絞り位置にし、
この圧力条件2のもとで、第一、第二圧力センサ12,
13の各信号出力Va2,Vb2を読込み、両者の信号出
力誤差ΔV2を算出する(ステップ5,6,7,8)。
Subsequently, the intake throttle valve 8 is set to the maximum throttle position,
Under this pressure condition 2, the first and second pressure sensors 12,
The signal outputs Va 2 and Vb 2 of 13 are read, and the signal output error ΔV 2 between them is calculated (steps 5, 6, 7, and 8).

【0031】このようにして、2つの圧力条件1,2の
もとで得られた各信号出力Va1,Va2,Vb1,Vb2
に基づいて、前記ΔV=mVb+nの式におけるmとn
の値を算出する(ステップ8)。
In this way, the signal outputs Va 1 , Va 2 , Vb 1 and Vb 2 obtained under the two pressure conditions 1 and 2 are obtained.
And m and n in the equation of ΔV = mVb + n based on
The value of is calculated (step 8).

【0032】一方、排気還流が行われる運転条件では、
第一圧力センサ12の信号出力Vaを読込み、EGR通
路3の圧力PaをPa=pVa+qの式で算出する(ス
テップ1,9,10)。
On the other hand, under the operating conditions in which exhaust gas recirculation is performed,
The signal output Va of the first pressure sensor 12 is read and the pressure Pa in the EGR passage 3 is calculated by the formula Pa = pVa + q (steps 1, 9, 10).

【0033】続いて、第二圧力センサ13の信号出力V
bを読込み、第一圧力センサ12との信号出力誤差ΔV
をΔV=mVb+nの式で算出し、信号出力Vbの修正
値VbをVb=Vb+ΔVの式で算出し、吸気通路1の
圧力PbをPb=pVb+qの式で算出する(ステップ
11,12,13,14)。
Subsequently, the signal output V of the second pressure sensor 13
b is read, and the signal output error ΔV with the first pressure sensor 12
Is calculated by the formula of ΔV = mVb + n, the correction value Vb of the signal output Vb is calculated by the formula of Vb = Vb + ΔV, and the pressure Pb of the intake passage 1 is calculated by the formula of Pb = pVb + q (steps 11, 12, 13, 14).

【0034】以上のように構成され、信号出力誤差ΔV
に基づいて前記第一、第二圧力センサ12,13の信号
出力差Va−Vbを補正することにより、第一、第二圧
力センサ12,13の出力特性のバラツキによらず、エ
ンジン運転状態に応じた目標のEGR率が得られる。
With the above arrangement, the signal output error ΔV
By correcting the signal output difference Va-Vb of the first and second pressure sensors 12 and 13 on the basis of the above, the engine operating state is maintained regardless of the variation in the output characteristics of the first and second pressure sensors 12 and 13. A corresponding target EGR rate is obtained.

【0035】なお、EGRカット時に2つの吸気圧力条
件のもとで読込まれた第一、第二圧力センサ12,13
の検出信号Va,Vbに基づいて第一、第二圧力センサ
12,13の信号出力誤差ΔV(=mVb+n)を算出
したが、エンジン回転数が変われば圧力条件も変化する
ため、例えばエンジンの始動後にエンジン水温が一定値
に達するまでのEGRカット時にできるだけ多くの条件
で各検出信号Va,Vbを読み取ることにより、補正の
精度を高められる。
The first and second pressure sensors 12 and 13 read under two intake pressure conditions during EGR cut.
Although the signal output error ΔV (= mVb + n) of the first and second pressure sensors 12 and 13 was calculated based on the detection signals Va and Vb of, the pressure condition also changes when the engine speed changes, and therefore, for example, when the engine starts. The accuracy of correction can be improved by reading the detection signals Va and Vb under as many conditions as possible during EGR cut until the engine water temperature reaches a constant value later.

【0036】[0036]

【発明の効果】以上説明したように本発明は、ディーゼ
ルエンジンの排気通路と吸気通路を結ぶEGR通路と、
EGR通路の途中に介装されるEGR弁と、EGR通路
の圧力に応じた信号Vaを出力する第一圧力センサと、
吸気通路の圧力に応じた信号Vbを出力する第二圧力セ
ンサと、第一、第二圧力センサの信号出力差Va−Vb
に基づいて運転状態に応じた目標のEGR率が得られる
ようにEGR弁の開度を制御する手段を備えるディーゼ
ルエンジンのEGR装置において、EGR弁を全閉した
EGRカット時に複数の吸気圧力条件のもとで読込まれ
た第一、第二圧力センサの検出信号Va,Vbに基づい
て第一、第二圧力センサの信号出力誤差ΔV(=mVb
+n)を算出する手段と、この信号出力誤差ΔVに基づ
いて前記第一、第二圧力センサの信号出力差Va−Vb
を補正する手段を備えたため、各圧力センサの出力特性
差の影響を受けることなく、EGR制御を正確に行うこ
とができる。
As described above, according to the present invention, the EGR passage connecting the exhaust passage and the intake passage of the diesel engine,
An EGR valve interposed in the middle of the EGR passage, and a first pressure sensor that outputs a signal Va according to the pressure in the EGR passage,
A signal output difference Va-Vb between the second pressure sensor that outputs a signal Vb corresponding to the pressure in the intake passage and the first and second pressure sensors.
In an EGR device for a diesel engine equipped with a means for controlling the opening degree of the EGR valve so as to obtain a target EGR rate according to the operating state based on the above, a plurality of intake pressure conditions at the time of EGR cut with the EGR valve fully closed. The signal output error ΔV (= mVb) of the first and second pressure sensors based on the detection signals Va and Vb of the first and second pressure sensors that have been read.
+ N) and a signal output difference Va-Vb of the first and second pressure sensors based on the signal output error ΔV.
EGR control can be performed accurately without being affected by the difference in the output characteristics of the pressure sensors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクレーム対応図。FIG. 1 is a diagram corresponding to a claim of the present invention.

【図2】本発明の実施例を示すEGR装置の概略構成
図。
FIG. 2 is a schematic configuration diagram of an EGR device showing an embodiment of the present invention.

【図3】同じく圧力センサの信号出力の具体例を示す線
図。
FIG. 3 is a diagram showing a specific example of signal output of the pressure sensor.

【図4】同じく信号出力誤差と圧力センサの信号出力の
関係を示す線図。
FIG. 4 is a diagram similarly showing a relationship between a signal output error and a signal output of the pressure sensor.

【図5】同じく圧力センサの信号出力誤差を補正する制
御内容を示すフローチャート。
FIG. 5 is a flow chart showing control contents for similarly correcting a signal output error of the pressure sensor.

【図6】同じく従来例を示すEGR装置の概略構成図。FIG. 6 is a schematic configuration diagram of an EGR device similarly showing a conventional example.

【符号の説明】[Explanation of symbols]

1 吸気通路 2 排気通路 3 EGR通路 4 EGR弁 12 第一圧力センサ 13 第二圧力センサ 16 EGR弁開度制御手段 17 信号出力誤差算出手段 18 補正手段 1 Intake Passage 2 Exhaust Passage 3 EGR Passage 4 EGR Valve 12 First Pressure Sensor 13 Second Pressure Sensor 16 EGR Valve Opening Control Means 17 Signal Output Error Calculation Means 18 Correcting Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼルエンジンの排気通路と吸気通
路を結ぶEGR通路と、EGR通路の途中に介装される
EGR弁と、EGR通路の圧力に応じた信号Vaを出力
する第一圧力センサと、吸気通路の圧力に応じた信号V
bを出力する第二圧力センサと、第一、第二圧力センサ
の信号出力差Va−Vbに基づいて運転状態に応じた目
標のEGR率が得られるようにEGR弁の開度を制御す
る手段を備えるディーゼルエンジンのEGR装置におい
て、EGR弁を全閉したEGRカット時に複数の吸気圧
力条件のもとで読込まれた第一、第二圧力センサの検出
信号Va,Vbに基づいて第一、第二圧力センサの信号
出力誤差ΔV(=mVb+n)を算出する手段と、この
信号出力誤差ΔVに基づいて前記第一、第二圧力センサ
の信号出力差Va−Vbを補正する手段を備えたことを
特徴とするディーゼルエンジンのEGR装置。
1. An EGR passage connecting an exhaust passage and an intake passage of a diesel engine, an EGR valve provided in the middle of the EGR passage, and a first pressure sensor for outputting a signal Va corresponding to the pressure in the EGR passage, Signal V according to the pressure in the intake passage
Means for controlling the opening degree of the EGR valve so that a target EGR rate according to the operating state can be obtained based on the signal output difference Va-Vb between the second pressure sensor that outputs b and the first and second pressure sensors. In the EGR device of the diesel engine including the first and second pressure sensors, which are read under a plurality of intake pressure conditions at the time of EGR cut with the EGR valve fully closed, And a means for calculating a signal output error ΔV (= mVb + n) of the two pressure sensors, and a means for correcting the signal output difference Va-Vb of the first and second pressure sensors based on the signal output error ΔV. Characteristic diesel engine EGR device.
JP5146576A 1993-06-17 1993-06-17 Egr device of diesel engine Pending JPH074318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146576A JPH074318A (en) 1993-06-17 1993-06-17 Egr device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146576A JPH074318A (en) 1993-06-17 1993-06-17 Egr device of diesel engine

Publications (1)

Publication Number Publication Date
JPH074318A true JPH074318A (en) 1995-01-10

Family

ID=15410826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146576A Pending JPH074318A (en) 1993-06-17 1993-06-17 Egr device of diesel engine

Country Status (1)

Country Link
JP (1) JPH074318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459434B1 (en) * 2012-12-14 2014-11-07 현대자동차 주식회사 Egr system of engine using map sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459434B1 (en) * 2012-12-14 2014-11-07 현대자동차 주식회사 Egr system of engine using map sensor

Similar Documents

Publication Publication Date Title
US6128902A (en) Control method and apparatus for turbocharged diesel engines having exhaust gas recirculation
US4433666A (en) Exhaust gas recirculation system for diesel engine
US6981492B2 (en) Method for determining an exhaust gas recirculation amount
US10309298B2 (en) Control device of an engine
JPS618443A (en) Air-fuel ratio control device
JP3378640B2 (en) Idling control method
US4437446A (en) Electronically controlled fuel injection system
WO2013190933A1 (en) Exhaust gas recirculation apparatus for internal combustion engine and egr calculation method for exhaust gas recirculation apparatus
CN109973260B (en) Exhaust gas recirculation system for internal combustion engine
JP6234531B1 (en) Internal combustion engine control device
JPH074318A (en) Egr device of diesel engine
JP3250322B2 (en) EGR control device for diesel engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP7030888B2 (en) Internal combustion engine controller
JPH05133282A (en) Egr device
JPS63140854A (en) Exhaust gas recirculation rate detector
JPH05231244A (en) Engine control device
JPH02275055A (en) Exhaust gas recirculation controller for engine
JPH03100363A (en) Exhaust gas reflux controller of diesel engine
JPH0921356A (en) Exhaust gas recirculation control device of diesel engine with supercharger
JPH04175448A (en) Exhaust gas recirculation control device
JPS59192846A (en) Idling-speed controlling apparatus for internal- combustion engine
JPS631732A (en) Fuel control device for electronic fuel injection type engine
JPH074319A (en) Egr device of diesel engine
JPS5827864A (en) Apparatus for controlling recirculation of exhaust gas