JPH0742152Y2 - Uninterruptible power system - Google Patents

Uninterruptible power system

Info

Publication number
JPH0742152Y2
JPH0742152Y2 JP1987156581U JP15658187U JPH0742152Y2 JP H0742152 Y2 JPH0742152 Y2 JP H0742152Y2 JP 1987156581 U JP1987156581 U JP 1987156581U JP 15658187 U JP15658187 U JP 15658187U JP H0742152 Y2 JPH0742152 Y2 JP H0742152Y2
Authority
JP
Japan
Prior art keywords
timer
storage battery
deterioration
power
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987156581U
Other languages
Japanese (ja)
Other versions
JPH0159882U (en
Inventor
博之 羽賀
毅 岩田
Original Assignee
株式会社三陽電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三陽電機製作所 filed Critical 株式会社三陽電機製作所
Priority to JP1987156581U priority Critical patent/JPH0742152Y2/en
Publication of JPH0159882U publication Critical patent/JPH0159882U/ja
Application granted granted Critical
Publication of JPH0742152Y2 publication Critical patent/JPH0742152Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は小形電子計算機などの負荷に対し停電時に蓄
電池の電力をインバータで交流電力に変換して供給する
無停電電源装置に関する。
[Detailed Description of the Invention] "Industrial application field" The present invention relates to an uninterruptible power supply device which supplies electric power of a storage battery to AC power by an inverter in the event of a power failure to a load such as a small computer.

「従来の技術」 従来の無停電電源装置は第5図に示すように商用電力受
電時には商用電源11からの交流電力を直送スイッチ12を
通じて負荷13へ供給すると共に充電器14を通じて蓄電池
15を充電し、停電時に、蓄電池15の直流電力をインバー
タ16で交流電力に変換して負荷13へ供給する。
"Prior Art" As shown in FIG. 5, the conventional uninterruptible power supply supplies AC power from the commercial power supply 11 to the load 13 through the direct transfer switch 12 and the storage battery through the charger 14 when the commercial power is received.
15 is charged, DC power of the storage battery 15 is converted into AC power by the inverter 16 and supplied to the load 13 at the time of power failure.

あるいは第6図に示すように商用電力受電時には商用電
源11からの交流電力が整流器17で整流され、その整流出
力がインバータ16で交流電力に変換されて負荷13へ供給
され、これと共に商用電源11からの交流電力により充電
器14を通じて蓄電池15が充電されている。停電時には蓄
電池15からの直流電力がインバータ16で交流電力に変換
されて負荷13へ供給される。
Alternatively, as shown in FIG. 6, when the commercial power is received, the AC power from the commercial power supply 11 is rectified by the rectifier 17, and the rectified output is converted into the AC power by the inverter 16 and supplied to the load 13, together with the commercial power supply 11 The storage battery 15 is charged through the charger 14 by the AC power from. At the time of power failure, the DC power from the storage battery 15 is converted into AC power by the inverter 16 and supplied to the load 13.

一般に商用電力受電時には、蓄電池15は充電器14により
補償充電され、満充電の状態に保たれている。商用電力
の瞬断、電圧低下が発生すると蓄電池15はインバータ16
に電力を供給し、蓄電池15の電力が消費される。
Generally, at the time of receiving commercial power, the storage battery 15 is compensated and charged by the charger 14 and is kept in a fully charged state. When commercial power is cut off or a voltage drop occurs, the storage battery 15 turns into an inverter 16
Power is supplied to the storage battery 15, and the power of the storage battery 15 is consumed.

蓄電池15の供給可能な電力は停電あるいは瞬断直前の残
存容量で決まり、満充電の状態では蓄電池容量で決定さ
れる。
The electric power that can be supplied to the storage battery 15 is determined by the remaining capacity immediately before a power failure or momentary interruption, and is determined by the storage battery capacity in a fully charged state.

蓄電池容量は蓄電池15の劣化によって減少してゆくた
め、古くなった蓄電池15は一般に定期的に交換される。
しかし蓄電池15の劣化の速度は使用環境により大きく変
化するため、定期的に交換する方法では蓄電池15の取替
えが遅れ、容量の減少が進んで、負荷側に多大な損害を
与える事故を起こす危険性がある。
Since the storage battery capacity decreases as the storage battery 15 deteriorates, the old storage battery 15 is generally replaced regularly.
However, since the rate of deterioration of the storage battery 15 varies greatly depending on the operating environment, there is a risk that the replacement of the storage battery 15 will be delayed and the capacity will decrease due to the method of regularly replacing it, causing an accident that will cause significant damage to the load side. There is.

蓄電池15の劣化を定期的に調査すればこの危険は減る
が、柱上で使用されている等、設置場所の問題や、通常
使用される小型シール鉛蓄電池の容量調査方法の制約等
の問題があり、実施するのは困難であった。
This risk will be reduced if the deterioration of the storage battery 15 is regularly investigated, but there are problems such as installation location problems such as being used on a pillar, and restrictions on the capacity investigation method of the normally used small sealed lead acid storage battery. Yes, it was difficult to implement.

「問題点を解決するための手段」 この考案によれば蓄電池の端子間にスイッチング素子を
通じて定負荷が接続され、蓄電池の端子間電圧が比較器
で検出され、その比較器の検出信号が表示器に表示され
る。一方商用電力受電中に、満充電に必要な時間より長
い所定期間経過すると出力を出す第1タイマが起動さ
れ、その第1タイマの出力により第2タイマが起動さ
れ、第2タイマは一定期間充電器を停止させると同時に
スイッチング素子をオンにして蓄電池を定負荷に放電さ
せ、その一定期間後に第1タイマを再起動させる。停電
が発生した場合に第1タイマ、第2タイマをリセット
し、復電後に第1タイマを再起動させる。
According to the present invention, a constant load is connected between terminals of a storage battery through a switching element, a voltage between terminals of the storage battery is detected by a comparator, and a detection signal of the comparator is displayed by an indicator. Is displayed in. On the other hand, during commercial power reception, a first timer that outputs an output is activated when a predetermined period longer than the time required for full charge has elapsed, the second timer is activated by the output of the first timer, and the second timer is charged for a certain period of time. The switching element is turned on and the storage battery is discharged to a constant load at the same time when the container is stopped, and the first timer is restarted after the fixed period. When a power failure occurs, the first timer and the second timer are reset and the first timer is restarted after the power is restored.

このようにして商用電力受電中は周期的に蓄電池の定負
荷への放電が繰返され、その時の蓄電池端子電圧が基準
電圧より低下したら比較器からの検出信号により表示器
に蓄電池の劣化が表示される。
In this way, while the commercial power is being received, the storage battery is periodically discharged to the constant load.If the storage battery terminal voltage at that time falls below the reference voltage, the indicator indicates the deterioration of the storage battery by the detection signal from the comparator. It

「実施例」 第1図はこの考案の実施例の要部を示し、第5図、第6
図と対応する部分には同一符号を付けてある。蓄電池15
の端子21にスイッチング素子22を通じて定負荷23が接続
される。蓄電池15の端子21は比較器24にも接続され、蓄
電池端子電圧が電池25の基準電圧Eと比較される。比較
器24の出力はゲート26を通じて表示器27へ供給される。
ゲート26には端子28から商用電力受電信号が供給され、
商用電力を受電中のみ表示器27の表示が有効とされる。
"Embodiment" FIG. 1 shows the essential parts of an embodiment of the present invention, and FIG.
The same reference numerals are attached to the parts corresponding to the drawings. Storage battery 15
A constant load 23 is connected to a terminal 21 of the through a switching element 22. The terminal 21 of the storage battery 15 is also connected to the comparator 24, and the storage battery terminal voltage is compared with the reference voltage E of the battery 25. The output of the comparator 24 is supplied to the display 27 through the gate 26.
A commercial power reception signal is supplied to the gate 26 from the terminal 28,
The display on the display 27 is valid only while receiving commercial power.

端子28の商用電力受電信号はゲート29を通じて第1タイ
マ31へ供給され、第1タイマ31はその入力の立上りで起
動される。第1タイマ31のタイマ時間は蓄電池15を満充
電させる時間より長い値とされる。第1タイマ31の出力
で第2タイマ32が起動される。第2タイマ32は一定期間
(タイマ時間)充電器14を停止し、スイッチング素子22
をオンにする。また第2タイマ32の出力はインバータ33
を通じてゲート29へ供給され、第2タイマの出力の後縁
で第1タイマ31が起動される。
The commercial power reception signal at the terminal 28 is supplied to the first timer 31 through the gate 29, and the first timer 31 is activated at the rising edge of its input. The timer time of the first timer 31 is set to a value longer than the time for fully charging the storage battery 15. The output of the first timer 31 activates the second timer 32. The second timer 32 stops the charger 14 for a certain period (timer time) and switches the switching element 22.
Turn on. The output of the second timer 32 is the inverter 33.
Through the gate 29 and the first timer 31 is started at the trailing edge of the output of the second timer.

第2図は第1図の動作波形を示し、端子28の商用受電信
号V1、第1タイマ31の出力V2、第2タイマ32の出力V3
蓄電池15の端子電圧V4、ゲート26の出力劣化信号V5をそ
れぞれ示す。
Figure 2 shows the operation waveforms of FIG. 1, a commercial power receiving signal V 1 of the terminal 28, the output V 2 of the first timer 31, the output V 3 of the second timer 32,
The terminal voltage V 4 of the storage battery 15 and the output deterioration signal V 5 of the gate 26 are shown.

第1タイマ31は受電信号V1の立上りで計数を開始し、例
えば約240時間経過後、第2タイマ32の計数を開始させ
る。第2タイマ32はカウント開始と同時にスイッチング
素子22としてのトランジスタをオンし、かつ充電器14を
停止させる。第2タイマ32は正確に例えば1時間計測
後、トランジスタ22をオフし、かつ充電器14を作動さ
せ、同時に第1タイマ31に再び計数を開始させる。
The first timer 31 starts counting at the rising edge of the power reception signal V 1 , and starts counting by the second timer 32 after, for example, about 240 hours have elapsed. The second timer 32 turns on the transistor as the switching element 22 and stops the charger 14 at the same time when the counting is started. The second timer 32 turns off the transistor 22 and activates the charger 14 after exactly one hour, for example, and at the same time causes the first timer 31 to start counting again.

トランジスタ22がオンの間、約0.1C(Cは定格容量)の
電流が定負荷23を通じて流れ、蓄電池15の端子間電圧は
V4のように変化する。端子間電圧V4は比較器24によって
基準電圧Eと比較される。
While the transistor 22 is on, a current of about 0.1 C (C is the rated capacity) flows through the constant load 23, and the terminal voltage of the storage battery 15 is
It changes like V 4 . The terminal voltage V 4 is compared with the reference voltage E by the comparator 24.

ここでフロート充電方式で使用される蓄電池15の劣化
は、一般に第3図に示す様に進行し、劣化に伴い蓄電池
容量が減少してゆく。容量の減少によって蓄電池15の0.
1C放電特性は第4図に示す様な経緯で変化し、容量の減
少と端子間電圧には比例関係がある。したがって基準電
圧Eを適当に設定すれば、比較器24によって蓄電池15の
劣化が検出されることになる。
The deterioration of the storage battery 15 used in the float charging system generally progresses as shown in FIG. 3, and the storage battery capacity decreases with the deterioration. Due to the decrease of the capacity, the storage battery 15 0.
The 1C discharge characteristics change as shown in Fig. 4, and there is a proportional relationship between the decrease in capacity and the terminal voltage. Therefore, if the reference voltage E is set appropriately, the deterioration of the storage battery 15 will be detected by the comparator 24.

蓄電池端子電圧V4が基準電圧Eより低下した時点で比較
器24から劣化信号が出力され、表示器27によって外部に
蓄電池15の劣化が表示される。
When the storage battery terminal voltage V 4 drops below the reference voltage E, the deterioration signal is output from the comparator 24, and the deterioration of the storage battery 15 is displayed outside by the display 27.

上述の通りの無停電電源装置は、蓄電池劣化の判断のた
めの放電は、第1タイマ31により規定される所定期間例
えば240時間を経過する度毎に実施される。この期間の
間浮動充電は行なわれている訳である。そして、この期
間は、通常は高々数時間のオーダーに過ぎない満充電に
必要とされる期間と比較して充分に長い期間である。こ
の期間経過後、蓄電池15が満充電状態において、第1タ
イマ31がオフすると、これにより第2タイマ32が動作
し、第2タイマ32により規定される所定時間例えば1時
間の間比較器24により蓄電池劣化判定基準電圧Eと上記
定負荷23の電圧降下とを比較して劣化信号を検出するも
のである。即ち、商用電力受電中に第1タイマ31により
規定される所定期間例えば240時間を経過する度毎に、
周期的に蓄電池15の定負荷23への放電が繰り返され、こ
の電圧降下が蓄電池劣化判定基準電圧Eより低下した場
合に比較器24からの劣化検出信号により表示器27に蓄電
池15の劣化を表示する。
In the uninterruptible power supply as described above, the discharge for determining the deterioration of the storage battery is performed every time a predetermined period defined by the first timer 31 such as 240 hours elapses. Floating charging is performed during this period. This period is a sufficiently long period as compared with the period required for full charge, which is usually only on the order of several hours at most. After this period has elapsed, when the first timer 31 is turned off while the storage battery 15 is fully charged, the second timer 32 is activated by this, and the comparator 24 operates for a predetermined time defined by the second timer 32, for example, one hour. The deterioration signal is detected by comparing the storage battery deterioration determination reference voltage E with the voltage drop of the constant load 23. That is, each time a predetermined period defined by the first timer 31 such as 240 hours elapses during the reception of commercial power,
The discharge of the storage battery 15 to the constant load 23 is repeated periodically, and when this voltage drop becomes lower than the storage battery deterioration determination reference voltage E, the deterioration detection signal from the comparator 24 indicates the deterioration of the storage battery 15 on the display 27. To do.

「考案の効果」 蓄電池の劣化の判断を、蓄電池が満充電する度毎にこれ
を検出して実施するというものもある。これは、蓄電池
劣化の判断のための放電を実施し、次いで充電期間に入
り、満充電状態に達したところにおいて、次の劣化の判
断のための放電を実施するということを繰り返すことと
なる。停電は瞬断をも含めてそれほど頻繁に発生すると
いうものではなく、劣化の判断のための放電量自体は極
く小量であるところから満充電時間も小さくて、従って
劣化の判断は頻繁に実施されるに到る。これは蓄電池自
体にとって好ましくない。蓄電池の劣化の判断の期間
は、これが余りにも短くて頻繁に繰り返されると蓄電池
自体に悪影響を与えることとなり、またこれが余りにも
長過ぎると劣化の判断に支障を来すこととなるのであ
る。これに対して、この考案の無停電電源装置は、上述
の如く、劣化の判断は第1タイマ31により規定される期
間例えば、通常は高々数時間のオーダーに過ぎない満充
電に必要とされる期間と比較してその20倍ないし30倍に
も及ぶ充分に長い期間を経過する度毎に繰り返して自動
的に実施されるものであるから、蓄電池自体に何等悪影
響を与えるものではない。
"Effect of the device" There is also a method of judging the deterioration of the storage battery by detecting it every time the storage battery is fully charged. This means that discharge for judging deterioration of the storage battery is carried out, then the charging period is entered, and when the full charge state is reached, discharging for judging the next deterioration is repeated. Power outages do not occur very often, including momentary interruptions, and because the discharge amount itself for judging deterioration is extremely small, the full charge time is also small, so judgment of deterioration is frequent. To be implemented. This is not desirable for the storage battery itself. If the period for determining the deterioration of the storage battery is too short and repeated frequently, it will adversely affect the storage battery itself, and if it is too long, it will hinder the determination of deterioration. On the other hand, in the uninterruptible power supply of the present invention, as described above, the judgment of deterioration is required for the full charge for a period defined by the first timer 31, for example, usually only at most on the order of several hours. The storage battery itself is not adversely affected because it is automatically executed every time a sufficiently long period, which is 20 to 30 times longer than the period, is repeated.

そして、蓄電池の劣化の判断を蓄電池が満充電する度毎
にこれを検出して実施するという上述のものは、満充電
状態に達したところ検出する格別の装置を必要とする。
満充電状態に達したところ検出するには充電末期の充電
電流を検出する必要があるが、この電流の変化は極く緩
慢に減少するものであるから、何処を満充電状態に達し
たところとするかを判断する検出回路は複雑なものとな
る。これに対して、この考案は、劣化の判断は、通常は
高々数時間のオーダーに過ぎない満充電に必要とされる
期間と比較して充分に長い例えば240時間という第1タ
イマ31により規定される期間を経過する度毎に繰り返し
て自動的に実施されるものであるから、満充電状態に達
したところ検出する格別の装置を必要としない。
And the above-mentioned thing which detects this whenever the storage battery is fully charged and carries out the judgment of deterioration of a storage battery requires the special apparatus which detects when it reaches a fully charged state.
It is necessary to detect the charging current at the end of charging in order to detect when the battery reaches the fully charged state, but this change in the current decreases very slowly. The detection circuit for deciding whether to do so is complicated. On the other hand, in the present invention, the judgment of deterioration is defined by the first timer 31 of, for example, 240 hours, which is sufficiently long as compared with the period required for full charge which is normally only on the order of several hours at most. Since it is automatically executed every time a certain period of time elapses, no special device for detecting when the fully charged state is reached is required.

また、この考案は、第1タイマ31の時定数を調整するこ
とにより容易に適正に劣化の判断の繰り返し期間を設定
することができる。蓄電池の劣化を判定する時間につい
ても、これは微妙に調整設定される必要のあるものであ
るが、この設定も第2タイマ32の時定数を調整すること
により極く容易に適正に実施することができる。従っ
て、劣化の判断は極めて正確になされることとなる。
Further, according to the present invention, by adjusting the time constant of the first timer 31, it is possible to easily and appropriately set the repetition period for determining deterioration. The time for determining the deterioration of the storage battery also needs to be finely adjusted and set, but this setting should also be carried out very easily and appropriately by adjusting the time constant of the second timer 32. You can Therefore, the deterioration can be judged extremely accurately.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案による無停電電源装置の要部を示すブ
ロック図、第2図は第1図の動作波形図、第3図は蓄電
池のフロート寿命特性図、第4図は蓄電池の0.1C放電特
性図、第5図及び第6図はそれぞれ従来の無停電電源装
置を示すブロック図である。
FIG. 1 is a block diagram showing a main part of an uninterruptible power supply according to the present invention, FIG. 2 is an operation waveform diagram of FIG. 1, FIG. 3 is a float battery life characteristic diagram of a storage battery, and FIG. The discharge characteristic diagram, FIG. 5 and FIG. 6 are block diagrams showing a conventional uninterruptible power supply, respectively.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】商用電力受電時には、充電器による補償充
電によって蓄電池を満充電に保ち、停電時には上記蓄電
池より電力をインバータへ供給する無停電電源装置にお
いて、 上記蓄電池の端子間にスイッチング素子を通じて接続さ
れた定負荷と、 商用電力受電中に動作し、満充電に必要な時間より充分
に長い所定期間経過すると出力を出す第1タイマと、 その第1タイマの出力により駆動され、一定期間上記充
電器を停止させると同時に上記スイッチング素子をオン
として上記蓄電池を上記定負荷によって放電させ、その
一定期間後に上記第1タイマを再起動させる第2タイマ
と、 停電が発生した場合に上記第1タイマ、第2タイマをリ
セットし、復電後に上記第1タイマを再起動させる手段
と、 蓄電池劣化判定基準電圧と上記定負荷の電圧降下とを比
較して劣化信号を検出する比較器と、 その比較器の劣化信号を表示する表示器と、 を具備する無停電電源装置。
1. In an uninterruptible power supply device, in which a storage battery is fully charged by compensation charging by a charger when commercial power is received, and electric power is supplied from the storage battery to an inverter in the event of a power failure, a switching element is connected between terminals of the storage battery. Constant load, a first timer that operates during commercial power reception, and that outputs when a predetermined period that is sufficiently longer than the time required for full charge elapses, and is driven by the output of the first timer to charge the battery for a certain period. And a second timer for restarting the first timer after the fixed period of time by discharging the storage battery by turning on the switching element and turning on the switching element at the same time, and the first timer when a power failure occurs, A means for resetting the second timer and restarting the first timer after power recovery, a storage battery deterioration determination reference voltage and the constant load A comparator for detecting deterioration signal by comparing the pressure drop, the uninterruptible power supply comprising a display for displaying the deterioration signal of the comparator, a.
JP1987156581U 1987-10-12 1987-10-12 Uninterruptible power system Expired - Lifetime JPH0742152Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987156581U JPH0742152Y2 (en) 1987-10-12 1987-10-12 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987156581U JPH0742152Y2 (en) 1987-10-12 1987-10-12 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JPH0159882U JPH0159882U (en) 1989-04-14
JPH0742152Y2 true JPH0742152Y2 (en) 1995-09-27

Family

ID=31435249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987156581U Expired - Lifetime JPH0742152Y2 (en) 1987-10-12 1987-10-12 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JPH0742152Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196800B2 (en) 1996-06-26 2015-11-24 Osram Gmbh Light-radiating semiconductor component with a luminescence conversion element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533193B2 (en) * 1989-07-25 1996-09-11 株式会社東芝 Storage battery diagnostic method for uninterruptible power supply
JP2533194B2 (en) * 1989-07-25 1996-09-11 株式会社東芝 Power supply

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959937A (en) * 1972-10-16 1974-06-11
JPS5540823B2 (en) * 1972-10-20 1980-10-20
JPS5540824B2 (en) * 1972-11-30 1980-10-20
JPS521422A (en) * 1975-06-24 1977-01-07 Hitachi Ltd Life deciding device for emergency storage battery
JPS5731796A (en) * 1980-08-04 1982-02-20 Matsushita Electric Works Ltd Heat accumulator
JPS60124898U (en) * 1984-01-31 1985-08-22 明治ナシヨナル工業株式会社 lighting equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196800B2 (en) 1996-06-26 2015-11-24 Osram Gmbh Light-radiating semiconductor component with a luminescence conversion element

Also Published As

Publication number Publication date
JPH0159882U (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US7071654B2 (en) Battery charging/discharging apparatus and battery charging/discharging method
JP3170381B2 (en) Battery life judgment device
JPH10290533A (en) Battery charging system
JPH0717014Y2 (en) Battery life detector
EP2579383A1 (en) Battery pack for electric power tool
JP2000012104A (en) Method and device for displaying residual capacity of battery
JPH0742152Y2 (en) Uninterruptible power system
JP3571558B2 (en) Backup method and backup device
US6828761B1 (en) Battery charging/discharging apparatus and battery charging/discharging method
JP2000014035A (en) Charging method and charging equipment
JPH10285824A (en) Generator for emergency
JP2780699B2 (en) Battery control method and power supply control circuit for personal computer
JPH0332327A (en) Charge control circuit
JP2002238180A (en) Charging method and device
JPH07163058A (en) Battery life signalling system
JP3317184B2 (en) Power supply device and method for detecting deterioration of power supply device
JP2004064975A (en) Uninterruptive power unit
JP2000023384A (en) Battery charger
JP2744066B2 (en) Charge control circuit
US20230318332A1 (en) Device Assembly Comprising Sensor System
JPH11355974A (en) Control of charging for storage battery and power supply equipment using the method
US6639407B1 (en) Charging/discharging electrical energy indication apparatus and electrical energy calculation method for use in the apparatus
JPH0583874A (en) Battery charger
JPH06105483A (en) Ac uninterruptible power source
JPH06242195A (en) Estimating device for holding time of battery