JPH0742094B2 - Solid acid compound and method for producing the same - Google Patents

Solid acid compound and method for producing the same

Info

Publication number
JPH0742094B2
JPH0742094B2 JP60277737A JP27773785A JPH0742094B2 JP H0742094 B2 JPH0742094 B2 JP H0742094B2 JP 60277737 A JP60277737 A JP 60277737A JP 27773785 A JP27773785 A JP 27773785A JP H0742094 B2 JPH0742094 B2 JP H0742094B2
Authority
JP
Japan
Prior art keywords
zirconium phosphate
compound
sulfuric acid
solid acid
acid compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60277737A
Other languages
Japanese (ja)
Other versions
JPS62138314A (en
Inventor
幸一 瀬川
真喜雄 木下
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP60277737A priority Critical patent/JPH0742094B2/en
Publication of JPS62138314A publication Critical patent/JPS62138314A/en
Publication of JPH0742094B2 publication Critical patent/JPH0742094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Conductive Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、リン酸ジルコニウムと硫酸との反応によって
得られる固体酸化合物およびその製造方法に関するもの
である。
The present invention relates to a solid acid compound obtained by reacting zirconium phosphate with sulfuric acid and a method for producing the same.

産業上の利用分野 本発明の化合物は、リン酸ジルコニウムと硫酸の反応に
よって得られ、結晶内に硫酸を含む固体酸である。した
がって、この化合物は触媒、イオン交換体、イオン導電
体、吸着剤などとしての利用およびそれらの製造原料と
して利用することができる。また、結晶内に固定化され
た硫酸は400〜500℃で脱離する性質を利用して、高温で
のみ硫酸を与える素材としての利用も開発されよう。
INDUSTRIAL APPLICABILITY The compound of the present invention is a solid acid obtained by the reaction of zirconium phosphate and sulfuric acid and containing sulfuric acid in the crystal. Therefore, this compound can be used as a catalyst, an ion exchanger, an ionic conductor, an adsorbent, etc., and also as a raw material for producing them. Further, the sulfuric acid fixed in the crystal will be desorbed at 400 to 500 ° C, and it will be developed as a material that gives sulfuric acid only at high temperature.

従来の技術 これまで、多くの固体酸が知られている。たとえば、ア
ルミナやシリカアルミナなど多くの金属酸化物および複
合酸化物、モルデナイトなどのゼオライト、モンモリロ
ナイトなど天然層状ケイ酸塩、ヘテロポリ酸およびリン
酸塩などがある。さらにイオウの酸化物を含む固体酸と
しては、たとえばペルフルオロスルホン酸樹脂などのス
ルホン酸型イオン交換樹脂がある。これらは耐熱性の理
由から通常200℃以下で使用される。また、最近Tio2,Z
rO2,Fe2O3にSO4 2-を担持した固体酸が開発された(荒
田ら,表面19,75(1981))。この固体酸は、無水条件
下では550〜600℃での焼成にも耐えるが、水または水蒸
気の存在下ではSO4 2-が脱離すると言われる。さらにま
た、グラファイトを陰極として98%硫酸を電解して層間
化合物C24 +HSO4 -・2H2SO4が合成された(H.B.Kaganら,
J.Am.Chem.Soc.,96,8113(1974))。この固体酸は、エ
ステル化触媒として高活性を示すが、加水分解によって
グラファイトオキシドに変化しやすい欠点を有すると言
われる。最近、ZrP2O7またはZr2P2O9を濃硫酸中で数日
間煮沸することによって、結晶骨格中にSO4基を含むZr2
(PO4)2(SO4が合成された(R.Royら,J.Solid State Che
m.,51,270(1984))。この固体酸化合物のα−型結晶
は、750℃まで安定であり、それより高温ではSO3を脱離
してα−Zr2P2O9になる。また、β−型結晶は、1200℃
から同様に分解する。これらの化合物は、リン酸塩と硫
酸塩から成る複リン酸塩であり、SO4基は結晶の骨格を
形成しているものであって、前記のグラファイトと硫酸
の付加物のように層間あるいは結晶内のトンネル中など
に存在する硫酸(根)ではない。
BACKGROUND OF THE INVENTION Many solid acids are known so far. For example, there are many metal oxides and complex oxides such as alumina and silica alumina, zeolites such as mordenite, natural layered silicates such as montmorillonite, heteropolyacids and phosphates. Further, examples of the solid acid containing the oxide of sulfur include sulfonic acid type ion exchange resins such as perfluorosulfonic acid resin. These are usually used at 200 ° C. or lower for heat resistance. Also, recently Tio 2 , Z
A solid acid carrying SO 4 2− on rO 2 and Fe 2 O 3 has been developed (Arata et al., Surface 19 , 75 (1981)). This solid acid is said to withstand calcination at 550-600 ° C. under anhydrous conditions, but SO 4 2− is desorbed in the presence of water or steam. Furthermore, an interlayer compound electrolyte of 98% sulfuric acid of graphite as a cathode C 24 + HSO 4 - · 2H 2 SO 4 was synthesized (HBKagan et al,
J. Am. Chem. Soc., 96 , 8113 (1974)). This solid acid shows high activity as an esterification catalyst, but is said to have a drawback that it is easily converted into graphite oxide by hydrolysis. Recently, ZrP Zr 2 comprising by boiling the 2 O 7 or Zr 2 P 2 O 9 days in concentrated sulfuric acid, the SO 4 group in the crystalline framework
(PO 4 ) 2 (SO 4 was synthesized (R. Roy et al., J. Solid State Che
m., 51 , 270 (1984)). The α-type crystal of this solid acid compound is stable up to 750 ° C, and SO 3 is desorbed to α-Zr 2 P 2 O 9 at higher temperatures. In addition, β-type crystal is 1200 ℃
Similarly disassemble from. These compounds are double phosphates composed of phosphates and sulfates, and the SO 4 group forms a crystal skeleton. It is not sulfuric acid (root) that exists in tunnels inside crystals.

発明が解決しようとする問題点 前記の公知化合物は、固体酸としての性質を有するもの
であるが、それらのうち硫酸のようなブレンステッド酸
性を示す固体酸は、熱や水に弱いものが多い。
Problems to be Solved by the Invention The known compounds described above have properties as solid acids, but among them, solid acids exhibiting Bronsted acidity such as sulfuric acid are often weak against heat and water. .

問題点を解決するための手段 本発明者は、安定な固体のブレンステッド酸を開発する
目的で、リン酸塩の研究を行った結果、リン酸ジルコニ
ウムと硫酸の反応生成物が、その目的に適合しうる化合
物であることを見出し、本発明を完成した。
Means for Solving the Problems The present inventor conducted a study on phosphates with the aim of developing a stable solid Bronsted acid, and as a result, the reaction product of zirconium phosphate and sulfuric acid was found to be the objective. They have found that they are compatible compounds and completed the present invention.

本発明に従ってリン酸ジルコニウムと硫酸の反応によっ
て得られる化合物であって、CuKαX線による粉末X線
回折図形の2θが5°〜50°の範囲において次の位置に
回折線を有する化合物が提供される。例えば、実施例1
で得られた化合物についての、相対強度百分率(I/I1
である。このI/I0は図形中の最も強い回折線を標準とし
た相対強度百分率であり、2θが14.22°,19.98°,23.7
0°,28.77°および46.24°の位置に特徴的である。この
数値は結晶化度によって変化するので絶対的なものでは
ない。
A compound obtained by the reaction of zirconium phosphate and sulfuric acid according to the present invention, the compound having a diffraction line at the following position in the range of 5 ° to 50 ° in the powder X-ray diffraction pattern by CuK α X-ray of 5 ° to 50 ° is provided. To be done. For example, Example 1
Percentage of relative intensity (I / I 1 ) for the compound obtained in
Is Is. This I / I 0 is the relative intensity percentage based on the strongest diffraction line in the figure, and 2θ is 14.22 °, 19.98 °, 23.7
Characteristic at 0 °, 28.77 ° and 46.24 °. This value is not absolute because it changes depending on the crystallinity.

この化合物の詳細な結晶構造は未だ不明であるが、その
X線回折図形はナシコン型結晶の特徴を示し、トンネル
構造を持つものと考えられる。また、この化合物の赤外
吸収スペクトルはP−O結合およびS−O結合の存在を
示す。さらに、この化合物の熱天秤測定結果は、400〜5
00℃において硫酸(SO3+H2O)の脱離および1200℃以上
においてSO3の脱離による減量を示し、2種類のSO4基が
存在することを示す。この化合物のX線回折、熱天秤に
よる分析結果は、公知のZr2(PO4)2(SO4)のものと異なっ
ており、本発明の化合物におけるSO4基は複リン酸塩の
結晶を形成するもの(1200℃脱離)と結晶内にインター
カレート(または固定)されたH2SO4(400〜500℃脱
離)に基づくものの2種類であると考えられる。
Although the detailed crystal structure of this compound is still unknown, its X-ray diffraction pattern shows the characteristics of a Nasicon type crystal, and is considered to have a tunnel structure. Further, the infrared absorption spectrum of this compound shows the presence of P—O bond and S—O bond. Furthermore, the thermobalance measurement result of this compound is 400 to 5
It shows the elimination of sulfuric acid (SO 3 + H 2 O) at 00 ° C. and the elimination of SO 3 at 1200 ° C. or higher, indicating that there are two SO 4 groups. The analysis results of this compound by X-ray diffraction and thermobalance are different from those of the known Zr 2 (PO 4 ) 2 (SO 4 ), and the SO 4 group in the compound of the present invention is a double phosphate crystal. It is considered that there are two types, one that forms (desorption at 1200 ° C.) and one that is based on H 2 SO 4 (desorption at 400 to 500 ° C.) intercalated (or fixed) in the crystal.

本発明の化合物は、リン酸ジルコニウムを硫酸中で加熱
して製造される。原料として用いられるリン酸ジルコニ
ウムは、無定形のものでも結晶性のものでもよい。好ま
しくは、層状構造を有するリン酸ジルコニウムたとえば
Zr(HPO4)2・nH2O(n=0〜2)などが用いられる。こ
れらのうち、結晶性のものの例としては、α,β,γ,
δ,ε,ζ,ηなどの結晶形のリン酸ジルコニウムがあ
げられる。さらに好ましくは、β、γおよびとくにε型
のリン酸ジルコニウムが用いられる。一方、ZrP2O7やZr
2P2O9などの縮合リン酸塩なども用いることはできる
が、必ずしも好適な原料ではない。また、用いられる硫
酸は濃硫酸が好ましい。好適な反応温度は反応時間(一
般には数時間から数ケ月であるが、通常数日から数週
間)によっても異るが一般に、70〜300℃、好ましくは1
20〜250℃、さらに好ましくは150〜220℃である。この
ようにして得られる反応混合物から目的化合物を単離す
るには、生成した結晶を母液から口過などによって分離
し、洗浄後乾燥する。目的化合物は、その粉末X線回折
図形が前記の特徴を示すので、これによって固定するこ
とができる。
The compound of the present invention is produced by heating zirconium phosphate in sulfuric acid. The zirconium phosphate used as a raw material may be amorphous or crystalline. Preferably zirconium phosphate having a layered structure, for example
Zr (HPO 4 ) 2 · nH 2 O (n = 0 to 2) and the like are used. Of these, examples of crystalline ones include α, β, γ,
Crystalline forms of zirconium phosphate such as δ, ε, ζ and η are listed. More preferably, β, γ and especially ε type zirconium phosphate is used. On the other hand, ZrP 2 O 7 and Zr
Although condensed phosphates such as 2 P 2 O 9 can be used, they are not always suitable raw materials. The sulfuric acid used is preferably concentrated sulfuric acid. The suitable reaction temperature varies depending on the reaction time (generally several hours to several months, but usually several days to several weeks), but is generally 70 to 300 ° C., preferably 1
20 to 250 ° C, more preferably 150 to 220 ° C. In order to isolate the desired compound from the reaction mixture thus obtained, the crystals formed are separated from the mother liquor by mouth-washing, washed and dried. The powder X-ray diffraction pattern of the target compound exhibits the above-mentioned characteristics and can be fixed by this.

作用および発明の効果 本発明の化合物は、その結晶内にH2SO4を固定化して保
有しており、400〜500℃でこの硫酸を脱離する性質を有
するので、耐熱性の固定化硫酸として触媒、イオン交換
体などや、高温で硫酸を与える素材として好適に利用さ
れる。
Action and Effect of the Invention The compound of the present invention has H 2 SO 4 immobilized therein in its crystal, and has a property of desorbing this sulfuric acid at 400 to 500 ° C., and therefore has heat-resistant immobilized sulfuric acid. It is preferably used as a catalyst, an ion exchanger, or a material that gives sulfuric acid at high temperature.

実施例 実施例によって本発明をさらに詳細に説明する。EXAMPLES The present invention will be described in more detail by way of examples.

実施例1 硝酸ジルコニル(ZrO(NO3)2・2H2O)水溶液をリン酸中
に滴下することによって生成した無定形リン酸ジルコニ
ウムを乾燥後、濃リン酸中、減圧下で180℃まで加熱し
た。生じた結晶を母液から分離し、洗浄後乾燥してε−
リン酸ジルコニウムを得た。
Example 1 Amorphous zirconium phosphate produced by dropping an aqueous zirconyl nitrate (ZrO (NO 3 ) 2 .2H 2 O) solution into phosphoric acid was dried and then heated to 180 ° C. in concentrated phosphoric acid under reduced pressure. did. The resulting crystals are separated from the mother liquor, washed and dried to give ε-
Zirconium phosphate was obtained.

ε−リン酸ジルコニウム10gを濃硫酸100ml中に加え、16
0℃で7日間加熱後、結晶を母液から分離し、洗浄後乾
燥した。このようにして得られた結晶の分析値は次のと
おり:ZrO2 48.36%、P2O5 41.47%、H2SO4 10.17%ま
た粉末X線回折図形は第1図に示すとおり本発明の化合
物の特徴を全て有していた。
Add 10 g of ε-zirconium phosphate to 100 ml of concentrated sulfuric acid and add 16
After heating at 0 ° C for 7 days, the crystals were separated from the mother liquor, washed and dried. The analytical values of the crystals thus obtained are as follows: ZrO 2 48.36%, P 2 O 5 41.47%, H 2 SO 4 10.17% and the powder X-ray diffraction pattern of the present invention is as shown in FIG. It had all the characteristics of the compound.

更に、この化合物の熱天秤測定結果を第2図に示す。測
定は空気中、昇温速度10°/minで行われた。
Further, the results of thermobalance measurement of this compound are shown in FIG. The measurement was performed in air at a temperature rising rate of 10 ° / min.

実施例2 実施例1で合成した本発明の化合物を空気中、500℃で
焼成したものを触媒として利用した例を示す。内容積24
0mlの閉塞循環反応装置に、この触媒200mgとシス−2−
ブテン70mHgを仕込み、反応温度40℃でシス−2−ブテ
ンの異性化反応を行った結果を表1に示す。T/1は生成
したトランス−2−ブテンと1−ブテンの生成比を表わ
し、活性は、触媒の単位表面積当りの相対活性(比較例
aおよびbとの比較)を示す。
Example 2 An example in which the compound of the present invention synthesized in Example 1 and calcined in air at 500 ° C. is used as a catalyst is shown. Inner volume 24
In a closed circulation reactor of 0 ml, 200 mg of this catalyst and cis-2-
The results of isomerizing cis-2-butene at a reaction temperature of 40 ° C. are shown in Table 1. T / 1 represents the production ratio of the produced trans-2-butene and 1-butene, and the activity shows the relative activity per unit surface area of the catalyst (compared with Comparative Examples a and b).

比較例aおよびb 実施例2において、触媒として500℃で焼成したε−リ
ン酸ジルコニウム(比較例a)およびSiO2・Al2O3(比
較例b)を用いた以外は全て同様に実施した。結果を表
1に示す。
Comparative Examples a and b All were carried out in the same manner as in Example 2 , except that ε-zirconium phosphate calcined at 500 ° C. (Comparative Example a) and SiO 2 .Al 2 O 3 (Comparative Example b) were used as catalysts. . The results are shown in Table 1.

固体酸触媒では、T/1は触媒の酸強度が大きいほど大き
くなることが知られている。したがって、実施例2の触
媒T/1値が大きいことより、これらのうちでは酸強度が
最も大きいことを示している。
It is known that in a solid acid catalyst, T / 1 increases as the acid strength of the catalyst increases. Therefore, the large T1 value of the catalyst of Example 2 indicates that the acid strength is the highest among these.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の化合物の粉末X線回折図形を示し、第
2図は熱天秤測定結果を示すグラフである。
FIG. 1 is a powder X-ray diffraction pattern of the compound of the present invention, and FIG. 2 is a graph showing thermobalance measurement results.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 5/25 11/08 // H01B 1/06 A 1/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C07C 5/25 11/08 // H01B 1/06 A 1/08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リン酸ジルコニウムと硫酸との反応によっ
て得られる化合物であって、CuKαX線による粉末X線
回折図形において、2θが14.22°,19.98°,23.70°,2
8.77°および46.24°の位置に特徴的な主たる回折線を
有する固体酸化合物。
1. A compound obtained by the reaction of zirconium phosphate and sulfuric acid, wherein 2θ is 14.22 °, 19.98 °, 23.70 °, 2 in the powder X-ray diffraction pattern by CuK α X-ray.
Solid acid compound with characteristic major diffraction lines at 8.77 ° and 46.24 °.
【請求項2】リン酸ジルコニウムが層状構造を有するリ
ン酸ジルコニウムであることを特徴とする特許請求の範
囲第1項記載の固体酸化合物。
2. The solid acid compound according to claim 1, wherein the zirconium phosphate is zirconium phosphate having a layered structure.
【請求項3】リン酸ジルコニウムを濃硫酸中で加熱する
ことを特徴とする特許請求の範囲第1項記載の固体酸化
合物の製造方法。
3. The method for producing a solid acid compound according to claim 1, wherein zirconium phosphate is heated in concentrated sulfuric acid.
【請求項4】リン酸ジルコニウムが層状構造を有するリ
ン酸ジルコニウムであることを特徴とする特許請求の範
囲第3項記載の製造方法。
4. The method according to claim 3, wherein the zirconium phosphate is zirconium phosphate having a layered structure.
【請求項5】加熱温度が70〜300℃である特許請求の範
囲第2項記載の方法。
5. The method according to claim 2, wherein the heating temperature is 70 to 300 ° C.
JP60277737A 1985-12-10 1985-12-10 Solid acid compound and method for producing the same Expired - Lifetime JPH0742094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277737A JPH0742094B2 (en) 1985-12-10 1985-12-10 Solid acid compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277737A JPH0742094B2 (en) 1985-12-10 1985-12-10 Solid acid compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62138314A JPS62138314A (en) 1987-06-22
JPH0742094B2 true JPH0742094B2 (en) 1995-05-10

Family

ID=17587620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277737A Expired - Lifetime JPH0742094B2 (en) 1985-12-10 1985-12-10 Solid acid compound and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0742094B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687038B2 (en) * 2002-01-16 2005-08-24 財団法人名古屋産業科学研究所 Proton conducting gel, proton conductor, and production method thereof
KR100803057B1 (en) 2006-11-03 2008-02-18 한국과학기술연구원 Methanol decomposition catalyst based on solid acid materials and method for preparing the same
WO2019167924A1 (en) * 2018-02-27 2019-09-06 国立大学法人東京工業大学 Negative thermal expansion material, composite material, and method for producing negative thermal expansion material
WO2021261049A1 (en) * 2020-06-22 2021-12-30 三井金属鉱業株式会社 Compound, production method therefor, and composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.SolidStateChem.(1984),51〔2〕(米),P.270〜273

Also Published As

Publication number Publication date
JPS62138314A (en) 1987-06-22

Similar Documents

Publication Publication Date Title
JP4964150B2 (en) Microporous crystalline zeolitic material (zeolite ITQ-32), process for producing the material and use of the material
KR20130132944A (en) Zeolite having copper and alkali earth metal supported thereon
JP3322115B2 (en) Method for producing porous silica
US11560317B2 (en) Method for synthesizing an AFX-structure zeolite of very high purity in the presence of an organic nitrogen-containing structuring agent
SU1407395A3 (en) Methold of producing crystalline alumosilicate
JP2016050142A (en) Method for producing aei-type zeolite
CN107934982B (en) A kind of macropore silicate molecular sieve and preparation method thereof
JPH03505720A (en) Crystalline aluminum phosphate composition
JPS60239313A (en) Crystalline zirconium phosphate and its manufacture
JPH0742094B2 (en) Solid acid compound and method for producing the same
US4562269A (en) Method of producing maleic anhydride
CN111348662B (en) Ultra-large pore silicate molecular sieve NUD-6 and preparation method thereof
US11643332B2 (en) Method for preparing a high-purity AFX structural zeolite with a nitrogen-containing organic structuring agent
Hu et al. The effect of cation type and H+ on the catalytic activity of the Keggin anion [PMo12O40] 3− in the oxidative dehydrogenation of isobutyraldehyde
Chen et al. The selective alkylation of aniline with methanol over ZSM-5 zeolite
JP3985116B2 (en) Zirconium hydroxide and method for producing the same
JP2021525767A (en) How to make aromatic compounds from biomass
CN106145155A (en) A kind of prepare the method for high silica alumina ratio Y type molecular sieve, product and application thereof
US10941045B1 (en) Process for preparing an IZM-2 zeolite in the presence of a nitrogenous organic structuring agent in hydroxide form and of an alkali metal chloride, in fluorinated or non-fluorinated medium
KR20210037773A (en) A manufacturing process of PST-32 zeolites
CN105597836B (en) Mercerising Beta zeolites and its preparation method and application and carrier and its application
CN109694090A (en) SCM-13 molecular sieve and preparation method thereof
US3492088A (en) Method of preparing an acid-acting crystalline aluminosilicate catalyst
JP6338493B2 (en) Method for producing MEI zeolite and MEI zeolite containing phosphorus
Kijima et al. Reaction in the System N (CH3) 4–ZrO2–P2O5–H2O. Preparation and Characterization of Framework Zirconium Phosphates (NH4) x H1− x Zr2 (PO4) 3 and HZr2 (PO4) 3