JPH0741944A - Production of ferroelectric thin film and production of dielectric thin film - Google Patents

Production of ferroelectric thin film and production of dielectric thin film

Info

Publication number
JPH0741944A
JPH0741944A JP5185344A JP18534493A JPH0741944A JP H0741944 A JPH0741944 A JP H0741944A JP 5185344 A JP5185344 A JP 5185344A JP 18534493 A JP18534493 A JP 18534493A JP H0741944 A JPH0741944 A JP H0741944A
Authority
JP
Japan
Prior art keywords
thin film
potential
electrode
ferroelectric
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5185344A
Other languages
Japanese (ja)
Inventor
Katsuto Shimada
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5185344A priority Critical patent/JPH0741944A/en
Publication of JPH0741944A publication Critical patent/JPH0741944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a thin PZT film having satisfactory ferroelectric characteristics with high reproducibility by depositing a thin PZT film on an electrode while controlling the potential of the electrode to ground potential or levitation potential when the electrode is previously formed on a silicon substrate with silicon dioxide in-between and a thin PZT film is formed on the electrode by high-frequency sputtering. CONSTITUTION:When an electrode 103 is previously formed on a silicon substrate 101 with silicon dioxide 102 in-between and a thin PZT film is formed on the electrode 103 by high-frequency sputtering, a thin PZT-film is deposited while controlling the potential of the electrode to ground potential or levitation potential.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不揮発性メモリ装置に
使用される強誘電体薄膜の製造方法または、ダイナミッ
ク・ランダム・アクセス・メモリ装置(DRAM)に使
用される誘電体薄膜の製造方法に関し、特に高周波スパ
ッタ法を用いて強誘電体薄膜または、誘電体薄膜を製造
する時の基板表面の電位の制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ferroelectric thin film used in a non-volatile memory device or a method of manufacturing a dielectric thin film used in a dynamic random access memory device (DRAM). In particular, the present invention relates to control of the electric potential of a substrate surface when a ferroelectric thin film or a dielectric thin film is manufactured by using a high frequency sputtering method.

【0002】[0002]

【従来の技術】従来、例えばIBM J.Res.De
velop.第14巻、172項に記載されていた様
に、高周波スパッタ装置に於て、基板インピーダンスを
制御することにより、基板ホルダーの直流バイアス電圧
を制御していた。
2. Description of the Related Art Conventionally, for example, IBM J. Res. De
velop. As described in Volume 14, Item 172, the DC bias voltage of the substrate holder was controlled by controlling the substrate impedance in the high frequency sputtering apparatus.

【0003】これを図2の高周波スパッタ装置の電気的
な等価回路を用いて詳細に説明する。
This will be described in detail with reference to the electrical equivalent circuit of the high frequency sputtering apparatus shown in FIG.

【0004】Zs、Zt、Zwはそれぞれ基板、ターゲ
ット、器壁のシースのインピーダンス201、202、
203である。ターゲットが誘電体の時、ターゲット容
量204、基板容量205、器壁のフィルム容量206
が含まれる。
Zs, Zt, and Zw are impedances 201 and 202 of the substrate, the target, and the sheath of the vessel wall, respectively.
203. When the target is a dielectric, the target capacitance 204, the substrate capacitance 205, the film capacitance 206 on the wall
Is included.

【0005】Vrfは、高周波電源、Vpはプラズマ電
位である。
Vrf is a high frequency power source, and Vp is a plasma potential.

【0006】Zsgは基板電位を制御するための基板イ
ンピーダンス207である。
Zsg is a substrate impedance 207 for controlling the substrate potential.

【0007】従来は、基板インピーダンス207を制御
することによって基板表面の電位ではなく、基板ホルダ
ーの電位を制御していた。
Conventionally, the potential of the substrate holder is controlled by controlling the substrate impedance 207, not the potential of the substrate surface.

【0008】[0008]

【発明が解決しようとする課題】しかし、強誘電体薄膜
または誘電体薄膜を高周波スパッタ法を用いて形成する
場合、基板ホルダーの電位すなわち基板裏面の電位を制
御するよりも、基板表面の電位を制御する方が重要であ
る。
However, when the ferroelectric thin film or the dielectric thin film is formed by the high frequency sputtering method, the potential of the substrate surface is controlled rather than the potential of the substrate holder, that is, the potential of the rear surface of the substrate. Control is more important.

【0009】被堆積基板表面の電位は、形成された強誘
電体薄膜または誘電体薄膜の堆積速度、膜厚分布、諸特
性に大きな影響を与えており、被堆積基板の電位を制御
しない場合、これらの再現性が得られず、良好な特性を
再現性良く得ることが困難であるという問題を有してい
た。
The potential on the surface of the substrate to be deposited has a great influence on the deposition rate, film thickness distribution, and various characteristics of the formed ferroelectric thin film or dielectric thin film. If the potential of the substrate to be deposited is not controlled, There is a problem that these reproducibility cannot be obtained and it is difficult to obtain good characteristics with good reproducibility.

【0010】ここで言う諸特性とは、残留分極、抗電界
等の強誘電体特性、及び、誘電率、電流−電圧特性など
の誘電体特性、及び結晶の組成、配向性、グレインの大
きさなどの物理的特性を含む。
The various characteristics referred to here are ferroelectric characteristics such as remanent polarization and coercive electric field, dielectric characteristics such as permittivity and current-voltage characteristics, and crystal composition, orientation, and grain size. Including physical properties such as.

【0011】そこで、本発明はこれらの課題を解決しよ
うとするもので、その目的とするところは、高周波スパ
ッタ中の被堆積基板表面の電位をアース電位または浮遊
電位に制御して、堆積された強誘電体薄膜または、誘電
体薄膜の特性の再現性を確保するところにある。
Therefore, the present invention is intended to solve these problems, and an object thereof is to control the potential of the surface of the substrate to be deposited during the high frequency sputtering to the ground potential or the floating potential and deposit the deposited substance. This is to ensure the reproducibility of the characteristics of the ferroelectric thin film or the dielectric thin film.

【0012】[0012]

【課題を解決するための手段】本発明の強誘電体薄膜の
製造方法は、 (1)電極が表面に形成された基板上に強誘電体薄膜を
高周波スパッタ法を用いて製造する方法に於いて、前記
電極の電位をアース電位または浮遊電位に制御して、前
記強誘電体薄膜を堆積することを特徴とする。
The method for producing a ferroelectric thin film of the present invention is (1) a method for producing a ferroelectric thin film on a substrate having electrodes formed on its surface by high frequency sputtering. The ferroelectric thin film is deposited by controlling the potential of the electrode to the ground potential or the floating potential.

【0013】(2)強誘電体薄膜がチタン酸ジルコン酸
鉛(Pb(Zr、Ti)O3 )、略してPZT、ランタ
ン(La)ドープチタン酸ジルコン酸鉛((Pb、L
a)(Zr、Ti)O3)、略してPLZTのいずれか
であることを特徴とする。
(2) The ferroelectric thin film is lead zirconate titanate (Pb (Zr, Ti) O 3 ), abbreviated as PZT, and lanthanum (La) -doped lead zirconate titanate ((Pb, L
a) (Zr, Ti) O 3 ), or PLZT for short.

【0014】本発明の誘電体薄膜の製造方法は、 (3)電極が表面に形成された基板上に誘電体薄膜を高
周波スパッタ法を用いて製造する方法に於いて、前記電
極の電位をアース電位または浮遊電位に制御して、前記
誘電体薄膜を堆積することを特徴とする。
The method for producing a dielectric thin film of the present invention is (3) a method of producing a dielectric thin film on a substrate having an electrode formed on its surface by high frequency sputtering, wherein the potential of the electrode is grounded. It is characterized in that the dielectric thin film is deposited by controlling the potential or floating potential.

【0015】(4)誘電体薄膜が、チタン酸ストロンチ
ウム(SrTiO3 )、チタン酸バリウム・ストロンチ
ウム((Ba、Sr)TiO3 )のいずれかであること
を特徴とする。
(4) The dielectric thin film is one of strontium titanate (SrTiO 3 ) and barium strontium titanate ((Ba, Sr) TiO 3 ).

【0016】[0016]

【実施例】本発明の強誘電体薄膜の製造方法の第1の実
施例を図1の概念図に基づき説明する。
EXAMPLE A first example of the method for manufacturing a ferroelectric thin film of the present invention will be described with reference to the conceptual diagram of FIG.

【0017】図1のように、6インチサイズのn型シリ
コン基板101上に、化学的気相成長法により約500
0Åの二酸化珪素膜(SiO2 )102を、更にスパッ
タ法により約2000Åの白金(Pt)を電極103と
して形成されており、前記電極103上にPb(Zr0.5
Ti0.5)O3すなわちZr/Ti組成比が1のPZT薄
膜を高周波マグネトロンスパッタ法により形成する。
As shown in FIG. 1, about 500 inches is formed on a 6-inch size n-type silicon substrate 101 by chemical vapor deposition.
A 0 Å silicon dioxide film (SiO 2 ) 102 and about 2000 Å platinum (Pt) are formed as an electrode 103 by a sputtering method, and Pb (Zr 0.5 ) is formed on the electrode 103.
A Ti 0.5 ) O 3 film, that is, a PZT thin film having a Zr / Ti composition ratio of 1 is formed by a high frequency magnetron sputtering method.

【0018】シリコン基板101は浮遊電位であり、あ
るインピーダンスZ1 を介して接地されている。
The silicon substrate 101 has a floating potential and is grounded via a certain impedance Z1.

【0019】前記二酸化珪素膜102と電極103が形
成されているシリコン基板101は、リングチャックで
固定されており、電極103表面の電位はリングチャッ
クを介して、接地されておりアース電位となっている。
The silicon substrate 101 on which the silicon dioxide film 102 and the electrode 103 are formed is fixed by a ring chuck, and the potential of the surface of the electrode 103 is grounded via the ring chuck and becomes the ground potential. There is.

【0020】PZT薄膜のスパッタ条件は、基板温度3
00℃、Ar:O2 =9:1の雰囲気ガスとし、ガス圧
力20mTorr、ターゲットとシリコン基板の距離を
65mmとしパワー1kWとし、厚さ3000ÅのPZ
T薄膜を形成した。
The sputtering condition for the PZT thin film is that the substrate temperature is 3
Atmosphere gas of 00 ° C. and Ar: O 2 = 9: 1, gas pressure of 20 mTorr, distance between target and silicon substrate of 65 mm, power of 1 kW, thickness of 3000 Å PZ
A T thin film was formed.

【0021】100Å/minの堆積速度が得られた。A deposition rate of 100Å / min was obtained.

【0022】強誘電体特性評価の為のサンプルの断面構
造を図3に示す。
FIG. 3 shows a cross-sectional structure of a sample for evaluating ferroelectric characteristics.

【0023】スパッタ直後のPZT薄膜104は完全な
強誘電相すなわちペロブスカイト構造を示さない。
The PZT thin film 104 immediately after sputtering does not show a perfect ferroelectric phase, that is, a perovskite structure.

【0024】すなわち、ペロブスカイト構造と強誘電相
を示さないパイロクロア相の混合状態となっている。
That is, it is in a mixed state of a perovskite structure and a pyrochlore phase showing no ferroelectric phase.

【0025】そこで、次に酸素雰囲気中、750℃で1
時間アニールを行い完全な強誘電体相を形成する。
Therefore, next, in an oxygen atmosphere, at 1 at 750 ° C.
Time annealing is performed to form a complete ferroelectric phase.

【0026】最後に、厚さ1000ÅのPtからなる上
部電極105を直流スパッタ法によりPZT薄膜104
上全面に形成した後、普通のフォトリソグラフィーを用
いて100μm角にパターニングした。
Finally, an upper electrode 105 made of Pt having a thickness of 1000 Å was formed on the PZT thin film 104 by DC sputtering.
After forming on the entire upper surface, it was patterned into 100 μm square by using ordinary photolithography.

【0027】この強誘電体薄膜の強誘電体特性はソーヤ
・タワー回路によるヒステリシスカーブで測定された。
The ferroelectric characteristics of this ferroelectric thin film were measured by a hysteresis curve by a Sawyer tower circuit.

【0028】測定は室温、50Hzの周波数で行った。The measurement was carried out at room temperature and a frequency of 50 Hz.

【0029】残留分極は30μC/cm2 、抗電界は3
0kV/cmと良好な強誘電体特性が得られた。
The remanent polarization is 30 μC / cm 2 , and the coercive electric field is 3.
A good ferroelectric property of 0 kV / cm was obtained.

【0030】図4に図1に示す様に電極103をアース
電位としたとき、連続で100枚のウエハを流動したと
きの残留分極の値の変化を示す。
FIG. 4 shows changes in the value of remanent polarization when 100 electrodes are continuously flowed when the electrode 103 is set to the ground potential as shown in FIG.

【0031】この様に、電極表面の電位をアース電位に
するだけで、高品質のPZT薄膜を安定的に得ることが
出来る。
As described above, a high quality PZT thin film can be stably obtained only by setting the potential of the electrode surface to the ground potential.

【0032】本発明の強誘電体薄膜の製造方法の第2の
実施例を図5の概念図に基づき説明する。
A second embodiment of the method for manufacturing a ferroelectric thin film of the present invention will be described with reference to the conceptual diagram of FIG.

【0033】第1実施例と異なるところは、電極103
の電位がリングチャックを介してアース電位に落ちてい
ないことで、インピーダンスZ2 を介して接地されてい
ることである。
The difference from the first embodiment is that the electrode 103
That is, the potential of is not dropped to the ground potential via the ring chuck, so that it is grounded via the impedance Z2.

【0034】PZT薄膜のスパッタ条件は、基板温度3
00℃、Ar:O2 =5:1の雰囲気ガスとし、ガス圧
力20mTorr、ターゲットとシリコン基板の距離を
65mmとしパワー1kWとし、厚さ3000ÅのPZ
T薄膜を形成した。
The sputtering condition for the PZT thin film is that the substrate temperature is 3
Atmosphere gas of 00 ° C. and Ar: O 2 = 5: 1, gas pressure 20 mTorr, distance between target and silicon substrate 65 mm, power 1 kW, thickness PZ 3000 Å
A T thin film was formed.

【0035】150Å/minの堆積速度が得られた。A deposition rate of 150Å / min was obtained.

【0036】実施例1と同様の手順にしたがって、強誘
電体特性評価の為のサンプルを形成した後、ソーヤ・タ
ワー回路によるヒステリシスカーブで強誘電体特性が測
定された。
After forming a sample for evaluating the ferroelectric characteristic according to the same procedure as in Example 1, the ferroelectric characteristic was measured by a hysteresis curve by a Sawyer tower circuit.

【0037】測定は室温、50Hzの周波数で行った。The measurement was carried out at room temperature and a frequency of 50 Hz.

【0038】残留分極は45μC/cm2 、抗電界は3
5kV/cmと良好な強誘電体特性が得られた。
The remanent polarization is 45 μC / cm 2 , and the coercive electric field is 3.
Good ferroelectric characteristics of 5 kV / cm were obtained.

【0039】図6に図5に示す様に電極103を浮遊電
位としたとき、連続で100枚のウエハを流動したとき
の残留分極の値の変化を示す。
FIG. 6 shows changes in the value of remanent polarization when 100 electrodes are continuously flowed when the electrode 103 is set to a floating potential as shown in FIG.

【0040】この様に、電極表面の電位をアース電位に
するだけで、高品質のPZT薄膜を安定的に得ることが
出来る。
As described above, a high quality PZT thin film can be stably obtained only by setting the potential of the electrode surface to the ground potential.

【0041】図7(a)〜(f)は別の実施例を示す強
誘電体薄膜の製造方法を示す概念図である。図7(a)
は、シリコン基板101電位がアースで、電極103表
面の電位もアースである。図7(b)は、シリコン基板
101電位がアースで、電極103表面の電位はあるイ
ンピーダンスZ2を介しているので浮遊電位である。図
7(c)〜(f)は、シリコン基板101上に直接電極
103が形成されている場合であり、基板電位及び電極
の電位は下記に示す通りである。Z1、Z2は、あるイン
ピーダンスを示す。
FIGS. 7A to 7F are conceptual views showing a method of manufacturing a ferroelectric thin film showing another embodiment. Figure 7 (a)
Indicates that the potential of the silicon substrate 101 is ground and the potential of the surface of the electrode 103 is also ground. In FIG. 7B, the potential of the silicon substrate 101 is ground and the potential of the surface of the electrode 103 is a floating potential because it passes through an impedance Z2. 7C to 7F show the case where the electrode 103 is directly formed on the silicon substrate 101, and the substrate potential and the electrode potential are as shown below. Z1 and Z2 represent certain impedances.

【0042】 以上実施例に於て、強誘電体薄膜としてZr/Ti組成
比が1のPZTを用いて説明したが他の組成比を持つP
ZT薄膜であっても良いし、ランタン(La)をドーピ
ングしたPLZTでも勿論良いし、カルシウム(C
a)、バリウム(Ba)、マグネシウム(Mg)、ナイ
オビウム(Nb)、ストロンチウム(Sr)等がドーピ
ングされていても勿論良い。
[0042] In the above examples, PZT having a Zr / Ti composition ratio of 1 was used as the ferroelectric thin film, but P having another composition ratio was used.
The thin film may be a ZT thin film, PLZT doped with lanthanum (La) may be used, or calcium (C) may be used.
Of course, a), barium (Ba), magnesium (Mg), niobium (Nb), strontium (Sr), etc. may be doped.

【0043】更に、チタン酸バリウム(BaTi
3)、チタン酸鉛(PbTiO3)、ニオブ酸カリウム
(KNbO3)、ニオブ酸リチウム(LiNbO3)、タ
ンタル酸リチウム(LiTaO3)やそれらの化合物で
あっても良い。
Further, barium titanate (BaTi)
O 3 ), lead titanate (PbTiO 3 ), potassium niobate (KNbO 3 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ) and compounds thereof may be used.

【0044】又、上記実施例では、強誘電体薄膜を例に
して説明したが、SrTiO3 、(Ba、Sr)TiO
3等の常誘電体薄膜であっても勿論良い。
Further, although the ferroelectric thin film has been described as an example in the above embodiment, SrTiO 3 , (Ba, Sr) TiO 3 is used.
Of course, a paraelectric thin film such as 3 may be used.

【0045】また、シリコン基板を用いて説明したがマ
グネシア(MgO)、サファイア等他の基板を用いても
良し、第1及び第2実施例では、シリコン基板101と
電極103の間に二酸化珪素膜102を挟んだ構造を用
いて説明したが、二酸化珪素膜の代わりに窒化珪素膜
(Si34)を用いても良いし、図7(a)〜(c)に
示したように何もはさまなくて直接基板上に電極を形成
してもよい。
Although the description has been made using the silicon substrate, other substrates such as magnesia (MgO) and sapphire may be used. In the first and second embodiments, a silicon dioxide film is provided between the silicon substrate 101 and the electrode 103. Although the structure in which the 102 is sandwiched is used, a silicon nitride film (Si 3 N 4 ) may be used instead of the silicon dioxide film, and as shown in FIGS. The electrodes may be directly formed on the substrate without being sandwiched.

【0046】[0046]

【発明の効果】本発明の強誘電体薄膜の製造方法また
は、誘電体薄膜の製造方法は、以上説明したように、電
極が表面に形成された基板上に強誘電体薄膜または、誘
電体薄膜を高周波スパッタ法を用いて製造する方法に於
いて、前記電極の電位をアース電位または浮遊電位に制
御して、前記強誘電体薄膜または、誘電体薄膜を堆積す
ることによって、再現性良く強誘電体特性あるいは誘電
体特性の良好な薄膜を得ることが出来るといった効果を
有する。
As described above, the method for manufacturing a ferroelectric thin film or the method for manufacturing a dielectric thin film according to the present invention is a ferroelectric thin film or a dielectric thin film on a substrate having electrodes formed on the surface thereof. In the method for producing a ferroelectric thin film by using a high frequency sputtering method, the ferroelectric thin film or the dielectric thin film is deposited by controlling the potential of the electrode to a ground potential or a floating potential, thereby obtaining a ferroelectric substance with good reproducibility. It has an effect of being able to obtain a thin film having good physical properties or dielectric properties.

【0047】更に、この強誘電体薄膜の製造方法また
は、誘電体薄膜の製造方法を用いれば、不揮発性メモ
リ、DRAMの製造に制限されることなく、光スイッ
チ、キャパシタ、赤外線センサ、超音波センサ、圧電振
動子の製造に利用できるといった効果を有する。
Further, by using the method for manufacturing the ferroelectric thin film or the method for manufacturing the dielectric thin film, the invention is not limited to the manufacturing of the non-volatile memory and the DRAM, and the optical switch, the capacitor, the infrared sensor and the ultrasonic sensor can be used. It has an effect that it can be used for manufacturing a piezoelectric vibrator.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の強誘電体薄膜の製造方法の第1実施
例を示す概念図である。
FIG. 1 is a conceptual diagram showing a first embodiment of a method for manufacturing a ferroelectric thin film of the present invention.

【図2】 従来の強誘電体薄膜の製造するための高周波
スパッタ装置の電気的な等価回路図である。
FIG. 2 is an electrical equivalent circuit diagram of a conventional high frequency sputtering apparatus for manufacturing a ferroelectric thin film.

【図3】 本発明の第1実施例の強誘電体薄膜の特性を
評価するための試料断面図である。
FIG. 3 is a sectional view of a sample for evaluating the characteristics of the ferroelectric thin film according to the first embodiment of the present invention.

【図4】 本発明の第1実施例の強誘電体薄膜の残留分
極の再現性を示すグラフである。
FIG. 4 is a graph showing reproducibility of remanent polarization of the ferroelectric thin film of Example 1 of the present invention.

【図5】 本発明の強誘電体薄膜の製造方法の第2実施
例を示す概念図である。
FIG. 5 is a conceptual diagram showing a second embodiment of the method for manufacturing a ferroelectric thin film of the present invention.

【図6】 本発明の第2実施例の強誘電体薄膜の残留分
極の再現性を示すグラフである。
FIG. 6 is a graph showing reproducibility of remanent polarization of the ferroelectric thin film of Example 2 of the present invention.

【図7】 本発明の強誘電体薄膜の製造方法を示す概念
図である。
FIG. 7 is a conceptual diagram showing a method for manufacturing a ferroelectric thin film of the present invention.

【符号の説明】[Explanation of symbols]

101 シリコン基板 102 二酸化珪素膜 103 電極 104 PZT 105 上部電極 201 基板のシースのインピーダンス 202 ターゲットのシースのインピーダンス 203 器壁のシースのインピーダンス 204 ターゲット容量 205 基板容量 206 器壁のフィルム容量 207 基板のインピーダンス 101 silicon substrate 102 silicon dioxide film 103 electrode 104 PZT 105 upper electrode 201 substrate sheath impedance 202 target sheath impedance 203 instrument wall sheath impedance 204 target capacitance 205 substrate capacitance 206 instrument wall film capacitance 207 substrate impedance

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/04 21/822 21/8242 27/108 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 27/04 21/822 21/8242 27/108

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極が表面に形成された基板上に強誘電
体薄膜を高周波スパッタ法を用いて製造する方法に於い
て、前記電極の電位をアース電位または浮遊電位に制御
して、前記強誘電体薄膜を堆積することを特徴とする強
誘電体薄膜の製造方法。
1. A method for producing a ferroelectric thin film on a substrate having an electrode formed on its surface by a high frequency sputtering method, wherein the potential of the electrode is controlled to a ground potential or a floating potential, and A method for manufacturing a ferroelectric thin film, which comprises depositing a dielectric thin film.
【請求項2】 請求項1記載の強誘電体薄膜が、チタン
酸ジルコン酸鉛(Pb(Zr、Ti)O3 )、ランタン
(La)ドープチタン酸ジルコン酸鉛((Pb、La)
(Zr、Ti)O3 )のいずれかであることを特徴とす
る強誘電体薄膜の製造方法。
2. The ferroelectric thin film according to claim 1, wherein the lead zirconate titanate (Pb (Zr, Ti) O 3 ) and the lanthanum (La) -doped lead zirconate titanate ((Pb, La) are used.
(Zr, Ti) O 3 ).
【請求項3】 電極が表面に形成された基板上に誘電体
薄膜を高周波スパッタ法を用いて製造する方法に於い
て、前記電極の電位をアース電位または浮遊電位に制御
して、前記誘電体薄膜を堆積することを特徴とする誘電
体薄膜の製造方法。
3. A method for producing a dielectric thin film on a substrate having an electrode formed on its surface by using a high frequency sputtering method, wherein the potential of the electrode is controlled to a ground potential or a floating potential, and the dielectric A method of manufacturing a dielectric thin film, which comprises depositing a thin film.
【請求項4】 請求項3記載の誘電体薄膜が、チタン酸
ストロンチウム(SrTiO3)、チタン酸バリウム・
ストロンチウム((Ba、Sr)TiO3)のいずれか
であることを特徴とする誘電体薄膜の製造方法。
4. The dielectric thin film according to claim 3, wherein the dielectric thin film is strontium titanate (SrTiO 3 ), barium titanate.
A method for producing a dielectric thin film, which is one of strontium ((Ba, Sr) TiO 3 ).
JP5185344A 1993-07-27 1993-07-27 Production of ferroelectric thin film and production of dielectric thin film Pending JPH0741944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185344A JPH0741944A (en) 1993-07-27 1993-07-27 Production of ferroelectric thin film and production of dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5185344A JPH0741944A (en) 1993-07-27 1993-07-27 Production of ferroelectric thin film and production of dielectric thin film

Publications (1)

Publication Number Publication Date
JPH0741944A true JPH0741944A (en) 1995-02-10

Family

ID=16169151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185344A Pending JPH0741944A (en) 1993-07-27 1993-07-27 Production of ferroelectric thin film and production of dielectric thin film

Country Status (1)

Country Link
JP (1) JPH0741944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287986B1 (en) 1998-06-02 2001-09-11 Fujitsu Limited Sputtering film forming method, sputtering film forming equipment, and semiconductor device manufacturing method
JP2002531943A (en) * 1998-11-30 2002-09-24 アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ Method of making ferroelectric capacitor and method of growing PZT layer on substrate
JP2007208285A (en) * 2007-03-23 2007-08-16 Oki Electric Ind Co Ltd Method for manufacturing capacitor structure and method for manufacturing capacitor element
JP2009249713A (en) * 2008-04-09 2009-10-29 Fujifilm Corp Method of forming piezoelectric film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287986B1 (en) 1998-06-02 2001-09-11 Fujitsu Limited Sputtering film forming method, sputtering film forming equipment, and semiconductor device manufacturing method
JP2002531943A (en) * 1998-11-30 2002-09-24 アンテルユニヴェルシテール・ミクロ−エレクトロニカ・サントリュム・ヴェー・ゼッド・ドゥブルヴェ Method of making ferroelectric capacitor and method of growing PZT layer on substrate
JP4772188B2 (en) * 1998-11-30 2011-09-14 アイメック Method for making ferroelectric capacitor and method for growing PZT layer on substrate
JP2007208285A (en) * 2007-03-23 2007-08-16 Oki Electric Ind Co Ltd Method for manufacturing capacitor structure and method for manufacturing capacitor element
JP2009249713A (en) * 2008-04-09 2009-10-29 Fujifilm Corp Method of forming piezoelectric film

Similar Documents

Publication Publication Date Title
KR100460595B1 (en) SINGLE C-AXIS PGO THIN FILM ON ZrO2 FOR NON-VOLATILE MEMORY APPLICATION AND METHODS OF MAKING THE SAME
US5831299A (en) Thin ferroelectric film element having a multi-layered thin ferroelectric film and method for manufacturing the same
US6498097B1 (en) Apparatus and method of forming preferred orientation-controlled platinum film using oxygen
US6162293A (en) Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor
JPH08181128A (en) Dry etching of multilayered thin oxide film
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
JPH08340085A (en) Substrate coated with ferroelectric thin film, its manufacture, and capacitor-structure device
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
Jaber et al. Characterization of ferroelectric and piezoelectric properties of lead titanate thin films deposited on Si by sputtering
JPH0741944A (en) Production of ferroelectric thin film and production of dielectric thin film
Fribourg-Blanc et al. PMNT films for integrated capacitors
JPH1056140A (en) Ferroelectric memory element and manufacturing method
JPH08186182A (en) Ferroelectric thin-film element
JPH0578835A (en) Production of thin film of ferroelectric substance
JPH07183397A (en) Dielectric thin film element and fabrication thereof
JP3267278B2 (en) Method for manufacturing semiconductor device
JP3545850B2 (en) Ferroelectric thin film element
JP3267277B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JP2000082796A (en) Semiconductor device
KR19990072528A (en) Ferroelectric thin film device and method of producing the same
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it
JP2568505B2 (en) Ferroelectric thin film element
JPH088403A (en) Substrate covered with ferroelectric crystal thin film ferroelectric thin film element including the same, and method of manufacturing the ferroelectric thin film element
US6921671B1 (en) Buffer layers to enhance the C-axis growth of Bi4Ti3O12 thin film on high temperature iridium-composite electrode