JPH0578835A - Production of thin film of ferroelectric substance - Google Patents

Production of thin film of ferroelectric substance

Info

Publication number
JPH0578835A
JPH0578835A JP24585691A JP24585691A JPH0578835A JP H0578835 A JPH0578835 A JP H0578835A JP 24585691 A JP24585691 A JP 24585691A JP 24585691 A JP24585691 A JP 24585691A JP H0578835 A JPH0578835 A JP H0578835A
Authority
JP
Japan
Prior art keywords
thin film
potential
electrode
substrate
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24585691A
Other languages
Japanese (ja)
Inventor
Katsuto Shimada
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24585691A priority Critical patent/JPH0578835A/en
Publication of JPH0578835A publication Critical patent/JPH0578835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a thin PZT film having satisfactory ferroelectric characteristics with high reproducibility by forming an electrode on a silicon substrate with silicon dioxide in-between and depositing a thin PZT film on the electrode by high-frequency sputtering while controlling the potential of the electrode to earth potential or floating potential. CONSTITUTION:An electrode 103 is formed on a silicon substrate 101 with silicon dioxide 102 in-between and a thin PZT film is deposited on the electrode 103 by high-frequency sputtering while controlling the potential of the electrode to earth potential or floating potential.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に不揮発性メモリ装
置に使用される強誘電体薄膜の製造方法に関し、特に高
周波スパッタ法を用いて強誘電体薄膜を製造する時の基
板表面の電位の制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ferroelectric thin film mainly used in a non-volatile memory device, and more particularly to a potential of a substrate surface when manufacturing a ferroelectric thin film by using a high frequency sputtering method. Concerning the control of.

【0002】[0002]

【従来の技術】従来、例えばIBM J.Res.De
velop.第14巻、172項に記載されていた様
に、高周波スパッタ装置に於て、基板インピーダンスを
制御することにより、基板ホルダーの直流バイアス電圧
を制御していた。
2. Description of the Related Art Conventionally, for example, IBM J. Res. De
velop. As described in Volume 14, Item 172, the DC bias voltage of the substrate holder is controlled by controlling the substrate impedance in the high frequency sputtering apparatus.

【0003】これを図2の高周波スパッタ装置の電気的
な等価回路を用いて詳細に説明する。
This will be described in detail with reference to the electrical equivalent circuit of the high frequency sputtering apparatus shown in FIG.

【0004】Zs、Zt、Zwはそれぞれ基板、ターゲ
ット、器壁のシースのインピーダンス201、202、
203である。ターゲットが誘電体の時、ターゲット容
量204、基板容量205、器壁のフィルム容量206
が含まれる。
Zs, Zt, and Zw are impedances 201, 202, and 202 of the sheath of the substrate, the target, and the vessel wall, respectively.
It is 203. When the target is a dielectric, the target capacitance 204, the substrate capacitance 205, the film capacitance 206 on the wall
Is included.

【0005】Vrfは、高周波電源、Vpはプラズマ電
位である。
Vrf is a high frequency power source and Vp is a plasma potential.

【0006】Zsgは基板電位を制御するための基板イ
ンピーダンス207である。
Zsg is a substrate impedance 207 for controlling the substrate potential.

【0007】従来は、基板インピーダンス207を制御
することによって基板表面の電位ではなく、基板ホルダ
ーの電位を制御していた。
Conventionally, the potential of the substrate holder is controlled by controlling the substrate impedance 207, not the potential of the substrate surface.

【0008】[0008]

【発明が解決しようとする課題】しかし、強誘電体薄膜
を高周波スパッタ法を用いて形成する場合、基板ホルダ
ーの電位すなわち基板裏面の電位を制御するよりも、基
板表面の電位を制御する方が重要である。
However, when the ferroelectric thin film is formed by the high frequency sputtering method, it is better to control the potential of the substrate surface than to control the potential of the substrate holder, that is, the potential of the back surface of the substrate. is important.

【0009】被堆積基板表面の電位は、形成された強誘
電体薄膜の堆積速度、膜厚分布、諸特性に大きな影響を
与えており、被堆積基板の電位を制御しない場合、これ
らの再現性が得られず、良好な特性を再現性良く得るこ
とが困難であるという問題を有していた。
The potential on the surface of the substrate to be deposited has a great influence on the deposition rate, film thickness distribution, and various characteristics of the formed ferroelectric thin film. However, there is a problem that it is difficult to obtain good characteristics with good reproducibility.

【0010】ここで言う諸特性とは、残留分極、坑電界
等の強誘電体特性、及び、誘電率、電流−電圧特性など
の誘電体特性、及び結晶の組成、配向性、グレインの大
きさなどの物理的特性を含む。
The various characteristics referred to here are ferroelectric characteristics such as remanent polarization and anti-electric field, dielectric characteristics such as permittivity and current-voltage characteristics, and crystal composition, orientation, and grain size. Including physical properties such as.

【0011】そこで、本発明はこれらの課題を解決しよ
うとするもので、その目的とするところは、高周波スパ
ッタ中の被堆積基板表面の電位をアース電位または浮遊
電位に制御して、堆積された強誘電体薄膜の特性の再現
性を確保するところにある。
Therefore, the present invention is intended to solve these problems, and an object thereof is to control the potential of the surface of the substrate to be deposited during high frequency sputtering to a ground potential or a floating potential for deposition. This is to ensure the reproducibility of the characteristics of the ferroelectric thin film.

【0012】[0012]

【課題を解決するための手段】本発明の強誘電体薄膜の
製造方法は、 (1)電極が表面に形成された基板上に強誘電体薄膜を
高周波スパッタ法を用いて製造する方法に於いて、前記
電極の電位をアース電位または浮遊電位に制御して、前
記強誘電体薄膜を堆積することを特徴とする。
The method for producing a ferroelectric thin film of the present invention is (1) a method for producing a ferroelectric thin film on a substrate having electrodes formed on its surface by high frequency sputtering. The ferroelectric thin film is deposited by controlling the potential of the electrode to the ground potential or the floating potential.

【0013】(2)強誘電体薄膜がPZT、PLZTの
いずれかであることを特徴とする。
(2) The ferroelectric thin film is characterized by being either PZT or PLZT.

【0014】[0014]

【実施例】本発明の強誘電体薄膜の製造方法の第1の実
施例を図1の概念図に基づき説明する。
EXAMPLE A first example of the method for producing a ferroelectric thin film of the present invention will be described with reference to the conceptual diagram of FIG.

【0015】図1のように、6インチサイズのn型シリ
コン基板101上に、化学的気相成長法により約500
0Aの二酸化珪素膜(SiO2)102を、更にスパッ
タ法により約2000Aの白金(Pt)を電極103と
して形成されており、前記電極103上にPb(Zr0.5
Ti0.5)O3すなわちZr/Ti組成比が1のPZT薄
膜を高周波マグネトロンスパッタ法により形成する。
As shown in FIG. 1, about 500 inches is formed on a 6-inch size n-type silicon substrate 101 by chemical vapor deposition.
A silicon dioxide film (SiO2) 102 of 0 A and platinum (Pt) of about 2000 A are formed as an electrode 103 by a sputtering method, and Pb (Zr0.5) is formed on the electrode 103.
A Ti0.5) O3, that is, a PZT thin film having a Zr / Ti composition ratio of 1 is formed by a high frequency magnetron sputtering method.

【0016】シリコン基板101は浮遊電位であり、あ
るインピーダンスZ1を介して接地されている。
The silicon substrate 101 has a floating potential and is grounded via a certain impedance Z1.

【0017】前記二酸化珪素膜102と電極103が形
成されているシリコン基板101は、リングチャックで
固定されており、電極103表面の電位はリングチャッ
クを介して、接地されておりアース電位となっている。
The silicon substrate 101 on which the silicon dioxide film 102 and the electrode 103 are formed is fixed by a ring chuck, and the potential of the surface of the electrode 103 is grounded via the ring chuck and becomes the ground potential. There is.

【0018】PZT薄膜のスパッタ条件は、基板温度3
00℃、Ar:O2=9:1の雰囲気ガスとし、ガス圧
力20mTorr、ターゲットとシリコン基板の距離を
65mmとしパワー1kWとし、厚さ3000AのPZ
T薄膜を形成した。
The sputtering condition for the PZT thin film is that the substrate temperature is 3
Atmosphere gas of 00 ° C. and Ar: O 2 = 9: 1, gas pressure of 20 mTorr, distance between target and silicon substrate of 65 mm, power of 1 kW, and thickness of 3000 A PZ
A T thin film was formed.

【0019】100A/minの堆積速度が得られた。A deposition rate of 100 A / min was obtained.

【0020】強誘電体特性評価の為のサンプルの断面構
造を図3に示す。
FIG. 3 shows a cross-sectional structure of a sample for evaluating ferroelectric characteristics.

【0021】スパッタ直後のPZT薄膜104は完全な
強誘電相すなわちペロブスカイト構造を示さない。
The PZT thin film 104 immediately after sputtering does not show a perfect ferroelectric phase, that is, a perovskite structure.

【0022】すなわち、ペロブスカイト構造と強誘電相
を示さないパイロクロア相の混合状態となっている。
That is, it is in a mixed state of a perovskite structure and a pyrochlore phase which does not exhibit a ferroelectric phase.

【0023】そこで、次に酸素雰囲気中、750℃で1
時間アニールを行い完全な強誘電体相を形成する。
Then, next, in an oxygen atmosphere, at 1 at 750 ° C.
Time annealing is performed to form a complete ferroelectric phase.

【0024】最後に、厚さ1000AのPtからなる上
部電極105を直流スパッタ法によりPZT薄膜104
上全面に形成した後、普通のフォトリソグラフィーを用
いて100μm角にパターニングした。
Finally, the upper electrode 105 made of Pt having a thickness of 1000 A was formed on the PZT thin film 104 by DC sputtering.
After being formed on the entire upper surface, it was patterned into 100 μm square by using ordinary photolithography.

【0025】この強誘電体薄膜の強誘電体特性はソーヤ
・タワー回路によるヒステリシスカーブで測定された。
測定は室温、50Hzの周波数で行った。残留分極は3
0μC/cm2、坑電界は30kV/cmと良好な強誘
電体特性が得られた。
The ferroelectric characteristics of this ferroelectric thin film were measured by a hysteresis curve by a Sawyer tower circuit.
The measurement was performed at room temperature and a frequency of 50 Hz. Remanent polarization is 3
A good ferroelectric property was obtained with 0 μC / cm 2 and an anti-electric field of 30 kV / cm.

【0026】図4に図1に示す様に電極103をアース
電位としたとき、連続で100枚のウエハを流動したと
きの残留分極の値の変化を示す。
FIG. 4 shows changes in the value of remanent polarization when 100 electrodes are continuously flowed when the electrode 103 is set to the ground potential as shown in FIG.

【0027】この様に、電極表面の電位をアース電位に
するだけで、高品質のPZT薄膜を安定的に得ることが
出来る。
As described above, a high quality PZT thin film can be stably obtained only by setting the potential of the electrode surface to the ground potential.

【0028】本発明の強誘電体薄膜の製造方法の第2の
実施例を図5の概念図に基づき説明する。
A second embodiment of the method for manufacturing a ferroelectric thin film of the present invention will be described with reference to the conceptual diagram of FIG.

【0029】第1実施例と異なるところは、電極103
の電位がリングチャックを介してアース電位に落ちてい
ないことで、インピーダンスZ2を介して接地されてい
ることである。
The difference from the first embodiment is that the electrode 103
That is, the potential of is not dropped to the ground potential via the ring chuck, so that it is grounded via the impedance Z2.

【0030】PZT薄膜のスパッタ条件は、基板温度3
00℃、Ar:O2=5:1の雰囲気ガスとし、ガス圧
力20mTorr、ターゲットとシリコン基板の距離を
65mmとしパワー1kWとし、厚さ3000AのPZ
T薄膜を形成した。
The sputtering condition for the PZT thin film is that the substrate temperature is 3
Atmosphere gas of 00 ° C. and Ar: O 2 = 5: 1, gas pressure of 20 mTorr, distance between target and silicon substrate of 65 mm, power of 1 kW, thickness of 3000 A PZ
A T thin film was formed.

【0031】150A/minの堆積速度が得られた。A deposition rate of 150 A / min was obtained.

【0032】実施例1と同様の手順にしたがって、強誘
電体特性評価の為のサンプルを形成した後、ソーヤ・タ
ワー回路によるヒステリシスカーブで強誘電体特性が測
定された。測定は室温、50Hzの周波数で行った。残
留分極は45μC/cm2、坑電界は35kV/cmと
良好な強誘電体特性が得られた。
After forming a sample for evaluating the ferroelectric characteristic according to the same procedure as in Example 1, the ferroelectric characteristic was measured by a hysteresis curve by a Sawyer tower circuit. The measurement was performed at room temperature and a frequency of 50 Hz. The remanent polarization was 45 μC / cm 2 , and the anti-electric field was 35 kV / cm, and good ferroelectric properties were obtained.

【0033】図6に図5に示す様に電極103を浮遊電
位としたとき、連続で100枚のウエハを流動したとき
の残留分極の値の変化を示す。
FIG. 6 shows changes in the value of remanent polarization when the electrode 103 is set to a floating potential as shown in FIG. 5 when 100 wafers are continuously flowed.

【0034】この様に、電極表面の電位をアース電位に
するだけで、高品質のPZT薄膜を安定的に得ることが
出来る。
As described above, a high quality PZT thin film can be stably obtained only by setting the potential of the electrode surface to the ground potential.

【0035】図7(a)〜(f)に別の実施例を示す強
誘電体薄膜の製造方法を示す概念図である。
7 (a) to 7 (f) are conceptual views showing a method of manufacturing a ferroelectric thin film showing another embodiment.

【0036】図7(a)は、シリコン基板101電位が
アースで、電極103表面の電位もアースである。
In FIG. 7A, the potential of the silicon substrate 101 is ground and the potential of the surface of the electrode 103 is also ground.

【0037】図7(b)は、シリコン基板101電位が
アースで、電極103表面の電位はあるインピーダンス
Z2を介しているので浮遊電位である。
In FIG. 7B, the potential of the silicon substrate 101 is ground and the potential of the surface of the electrode 103 is a floating potential because it passes through a certain impedance Z2.

【0038】図7(c)〜(f)は、シリコン基板10
1上に直接電極103が形成されている場合であり、基
板電位及び電極の電位は下記に示す通りである。Z1、
Z2は、あるインピーダンスを示す。
FIGS. 7C to 7F show the silicon substrate 10.
In the case where the electrode 103 is directly formed on the substrate 1, the substrate potential and the electrode potential are as shown below. Z1,
Z2 represents a certain impedance.

【0039】 シリコン基板電位 電極表面電位 (c) 浮遊電位 アース電位 (d) アース電位 アース電位 (e) アース電位 浮遊電位 (f) 浮遊電位 浮遊電位 以上実施例に於て、強誘電体薄膜としてZr/Ti組成
比が1のPZTを用いて説明したが他の組成比を持つP
ZT薄膜であっても良いし、ランタン(La)をドーピ
ングしたPLZTでも勿論良いし、カルシウム(C
a)、バリウム(Ba)、マグネシウム(Mg)、ナイ
オビウム(Nb)、ストロンチウム(Sr)等がドーピ
ングされていても勿論良い。
Silicon substrate potential Electrode surface potential (c) Floating potential Earth potential (d) Earth potential Earth potential (e) Earth potential Floating potential (f) Floating potential Floating potential In the above examples, Zr was used as the ferroelectric thin film. The explanation was made using PZT with a Ti / Ti composition ratio of 1, but P with other composition ratios.
The thin film may be a ZT thin film, PLZT doped with lanthanum (La) may be used, or calcium (C
Of course, a), barium (Ba), magnesium (Mg), niobium (Nb), strontium (Sr), etc. may be doped.

【0040】更に、チタン酸バリウム(BaTiO
3)、チタン酸鉛(PbTiO3)、ニオブ酸カリウム
(KNbO3)、ニオブ酸リチウム(LiNbO3)、タ
ンタル酸リチウム(LiTaO3)やそれらの化合物で
あっても良い。
Furthermore, barium titanate (BaTiO 3
3), lead titanate (PbTiO3), potassium niobate (KNbO3), lithium niobate (LiNbO3), lithium tantalate (LiTaO3) or their compounds.

【0041】また、シリコン基板を用いて説明したがマ
グネシア(MgO)、サファイア等他の基板を用いても
良し、第1及び第2実施例では、シリコン基板101と
電極103の間に二酸化珪素膜102を挟んだ構造を用
いて説明したが、二酸化珪素膜の代わりに窒化珪素膜
(Si3N4)を用いても良いし、図7(a)〜(c)に
示したように何もはさまなくて直接基板上に電極を形成
してもよい。
Although a silicon substrate is used for the description, another substrate such as magnesia (MgO) or sapphire may be used. In the first and second embodiments, a silicon dioxide film is formed between the silicon substrate 101 and the electrode 103. Although the description has been given using the structure sandwiching 102, a silicon nitride film (Si3N4) may be used instead of the silicon dioxide film, and nothing is sandwiched as shown in FIGS. 7 (a) to 7 (c). Alternatively, the electrodes may be formed directly on the substrate.

【0042】[0042]

【発明の効果】本発明の強誘電体薄膜の製造方法は、以
上説明したように、電極が表面に形成された基板上に強
誘電体薄膜を高周波スパッタ法を用いて製造する方法に
於いて、前記電極の電位をアース電位または浮遊電位に
制御して、前記強誘電体薄膜を堆積することによって、
再現性良く特性の良い強誘電体特性の良好な薄膜を得る
ことが出来る効果を有する。
As described above, the method for producing a ferroelectric thin film of the present invention is a method for producing a ferroelectric thin film on a substrate having electrodes formed on its surface by high frequency sputtering. , Controlling the potential of the electrode to a ground potential or a floating potential, and depositing the ferroelectric thin film,
It has the effect of being able to obtain a thin film having good reproducibility and good characteristics and good ferroelectric characteristics.

【0043】更に、この強誘電体薄膜の製造方法を用い
れば、不揮発性メモリや、光スイッチ、キャパシタ、赤
外線センサ、超音波センサとして利用できるといった効
果を有する。
Further, by using this method for manufacturing a ferroelectric thin film, there is an effect that it can be used as a nonvolatile memory, an optical switch, a capacitor, an infrared sensor and an ultrasonic sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の強誘電体薄膜の製造方法の第1実施例
を示す概念図である。
FIG. 1 is a conceptual diagram showing a first embodiment of a method for manufacturing a ferroelectric thin film of the present invention.

【図2】従来の強誘電体薄膜の製造するための高周波ス
パッタ装置の電気的な等価回路図である。
FIG. 2 is an electrical equivalent circuit diagram of a high frequency sputtering apparatus for manufacturing a conventional ferroelectric thin film.

【図3】本発明の第1実施例の強誘電体薄膜の特性を評
価するための試料断面図である。
FIG. 3 is a cross-sectional view of a sample for evaluating the characteristics of the ferroelectric thin film according to the first embodiment of the present invention.

【図4】本発明の第1実施例の強誘電体薄膜の残留分極
の再現性を示すグラフである。
FIG. 4 is a graph showing reproducibility of remanent polarization of the ferroelectric thin film of Example 1 of the present invention.

【図5】本発明の強誘電体薄膜の製造方法の第2実施例
を示す概念図である。
FIG. 5 is a conceptual diagram showing a second embodiment of the method for manufacturing a ferroelectric thin film of the present invention.

【図6】本発明の第2実施例の強誘電体薄膜の残留分極
の再現性を示すグラフである。
FIG. 6 is a graph showing reproducibility of remanent polarization of the ferroelectric thin film of Example 2 of the present invention.

【図7】本発明の強誘電体薄膜の製造方法を示す概念図
である。
FIG. 7 is a conceptual diagram showing a method for manufacturing a ferroelectric thin film of the present invention.

【符号の説明】[Explanation of symbols]

101 シリコン基板 102 二酸化珪素膜 103 電極 104 PZT 105 上部電極 201 基板のシースのインピーダンス 202 ターゲットのシースのインピーダンス 203 器壁のシースのインピーダンス 204 ターゲット容量 205 基板容量 206 器壁のフィルム容量 207 基板のインピーダンス 101 Silicon Substrate 102 Silicon Dioxide Film 103 Electrode 104 PZT 105 Upper Electrode 201 Substrate Sheath Impedance 202 Target Sheath Impedance 203 Instrument Wall Sheath Impedance 204 Target Capacity 205 Substrate Capacitance 206 Instrument Wall Film Capacitance 207 Substrate Impedance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極が表面に形成された基板上に強誘電
体薄膜を高周波スパッタ法を用いて製造する方法に於い
て、前記電極の電位をアース電位または浮遊電位に制御
して、前記強誘電体薄膜を堆積することを特徴とする強
誘電体薄膜の製造方法。
1. A method of manufacturing a ferroelectric thin film on a substrate having an electrode formed on its surface by using a high frequency sputtering method, wherein the potential of the electrode is controlled to a ground potential or a floating potential, and A method of manufacturing a ferroelectric thin film, which comprises depositing a dielectric thin film.
【請求項2】 請求項1記載の強誘電体薄膜が、PZ
T、PLZTのいずれかであることを特徴とする強誘電
体薄膜の製造方法。
2. The ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is PZ.
A method of manufacturing a ferroelectric thin film, which is either T or PLZT.
JP24585691A 1991-09-25 1991-09-25 Production of thin film of ferroelectric substance Pending JPH0578835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24585691A JPH0578835A (en) 1991-09-25 1991-09-25 Production of thin film of ferroelectric substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24585691A JPH0578835A (en) 1991-09-25 1991-09-25 Production of thin film of ferroelectric substance

Publications (1)

Publication Number Publication Date
JPH0578835A true JPH0578835A (en) 1993-03-30

Family

ID=17139855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24585691A Pending JPH0578835A (en) 1991-09-25 1991-09-25 Production of thin film of ferroelectric substance

Country Status (1)

Country Link
JP (1) JPH0578835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287986B1 (en) 1998-06-02 2001-09-11 Fujitsu Limited Sputtering film forming method, sputtering film forming equipment, and semiconductor device manufacturing method
JP2006159137A (en) * 2004-12-09 2006-06-22 Fuji Photo Film Co Ltd Film deposition system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287986B1 (en) 1998-06-02 2001-09-11 Fujitsu Limited Sputtering film forming method, sputtering film forming equipment, and semiconductor device manufacturing method
JP2006159137A (en) * 2004-12-09 2006-06-22 Fuji Photo Film Co Ltd Film deposition system
JP4664054B2 (en) * 2004-12-09 2011-04-06 富士フイルム株式会社 Deposition equipment

Similar Documents

Publication Publication Date Title
KR100460595B1 (en) SINGLE C-AXIS PGO THIN FILM ON ZrO2 FOR NON-VOLATILE MEMORY APPLICATION AND METHODS OF MAKING THE SAME
US5831299A (en) Thin ferroelectric film element having a multi-layered thin ferroelectric film and method for manufacturing the same
US6198119B1 (en) Ferroelectric element and method of producing the same
IL115893A (en) Ferroelectric capacitor structures and their preparation
JPH08181128A (en) Dry etching of multilayered thin oxide film
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
EP0849780A2 (en) Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
US20220178012A1 (en) Method for producing ferroelectric film, ferroelectric film, and usage thereof
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
JP6426310B2 (en) Piezoelectric element
Fribourg-Blanc et al. PMNT films for integrated capacitors
JPH0741944A (en) Production of ferroelectric thin film and production of dielectric thin film
JPH0578835A (en) Production of thin film of ferroelectric substance
JPH08186182A (en) Ferroelectric thin-film element
JPH1056140A (en) Ferroelectric memory element and manufacturing method
JPH04206871A (en) Semiconductor device and manufacture thereof
JPH07183397A (en) Dielectric thin film element and fabrication thereof
JP3267278B2 (en) Method for manufacturing semiconductor device
JP2568505B2 (en) Ferroelectric thin film element
JP2000082796A (en) Semiconductor device
JP3267277B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JP2000106420A (en) Semiconductor device and manufacture thereof
JPH0974169A (en) Thin film capacitor