JPH0741910A - Dispersion reinforcing heat-resistant material and manufacture thereof - Google Patents

Dispersion reinforcing heat-resistant material and manufacture thereof

Info

Publication number
JPH0741910A
JPH0741910A JP19048393A JP19048393A JPH0741910A JP H0741910 A JPH0741910 A JP H0741910A JP 19048393 A JP19048393 A JP 19048393A JP 19048393 A JP19048393 A JP 19048393A JP H0741910 A JPH0741910 A JP H0741910A
Authority
JP
Japan
Prior art keywords
high temperature
strength
temperature
resistant material
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19048393A
Other languages
Japanese (ja)
Inventor
Nobuhiro Fujita
展弘 藤田
Kazushi Hamada
一志 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19048393A priority Critical patent/JPH0741910A/en
Publication of JPH0741910A publication Critical patent/JPH0741910A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To develop a heat-resistant material excellent in high-temp. strength and high-temp. fatigue strength by adding specified particulate oxides as dispersion reinforcing materials to the molten steel of an austenitic steel and Ni-Cr alloy steel. CONSTITUTION:The fine powders of Ta2O5 and Nb2O5 whose grain sizes are <=3mum are added to the molten steel which contains, by wt.%, 0.01-0.6% C, 0.1-2.0% Si, 0.1-11.0% Mn, 16.0-25.0% Cr, 3.0-11.0% Ni and 0.01-0.6% N, simultaneously satisfies (- 4/5X Cr equiv. +27.2 Ni equiv.)<= Ni equiv. and and (4/3X Cr equiv. -14.7)<= Ni equiv. between the Cr equivalent expressed by (Cr+1.5Si)% and the Ni equivalent expressed by (Ni+30(C+N)+0.5Mn)% and consists of the balance Fe at a ratio of 0.05-2% at >=1500 deg.C. This molten steel is cast into a slab which is hot-rolled after being heated to >=1250 deg.C and hot rolling is finished at 950 deg.C. The heat resistant material excellent in high-temp. strength and high-temp. fatigue strength is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関の
排気バルブ等の高温部材で、高温強度や高温疲労強度に
優れた耐熱材料およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat resistant material which is a high temperature member such as an exhaust valve of an internal combustion engine of an automobile or the like and which is excellent in high temperature strength and high temperature fatigue strength, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上・高出力化が望
まれ、これに伴い排気ガス温度も900℃付近にまで上
昇してきている。これまで、自動車エンジン等の排気バ
ルブ用材料としては、現在21−4N鋼(SUH35:
0.5C−9Mn−21Cr−4Ni−0.4N)が広
く用いられてきたが、この鋼は排ガスの高温化に対応十
分な高温強度や高温疲労強度を有していない。また、2
1−4Nの高温強度不足の観点から、NCF751等の
Ni基合金を用いることで対処している場合もあるが、
850℃以上の高温疲労強度はNCF751も21−4
Nとほぼ同レベルの疲労強度であり、かつコスト高でも
あるため、コスト−性能のバランスと言う観点からする
と不十分である。また、一部では、排気バルブの温度を
さげることでこれらの材料の高温強度不足分を補おうと
してバルブ材を中空化しNa封入する方法で対処してい
る。しかし、中空化加工はコスト高になるうえ、Naは
取扱いが非常に困難で危険を伴うという問題点がある。
2. Description of the Related Art In recent years, it has been desired to improve the fuel efficiency and output of automobiles, and accordingly, the exhaust gas temperature has risen to around 900.degree. Until now, as a material for exhaust valves of automobile engines, etc., 21-4N steel (SUH35:
0.5C-9Mn-21Cr-4Ni-0.4N) has been widely used, but this steel does not have sufficient high temperature strength and high temperature fatigue strength to cope with the high temperature of exhaust gas. Also, 2
From the viewpoint of insufficient high-temperature strength of 1-4N, there are cases where Ni-based alloys such as NCF751 are used to deal with the problem.
High temperature fatigue strength of 850 ° C or higher is 21-4 for NCF751.
Since the fatigue strength is almost the same level as N and the cost is high, it is insufficient from the viewpoint of cost-performance balance. Further, in some cases, a method of hollowing the valve material and encapsulating with Na is attempted in order to compensate for the insufficient high-temperature strength of these materials by lowering the temperature of the exhaust valve. However, the hollowing process has a problem that the cost is high and Na is very difficult to handle and dangerous.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来の
排気バルブ用材料では、排ガスの高温化に対して、高温
特性、特に高温疲労強度の点で不十分な場合や、素材の
高性能化(Ni基合金の使用)やバルブ材の低温化(中
空バルブ)のため高コスト・低生産性であったり、製品
取扱い上危険を伴うと言った問題をかかえている。本発
明は、オーステナイト鋼およびNi−Cr合金の高温強
度および高温疲労強度を飛躍的に向上させるため、酸化
物分散強化を用いた耐熱材料とその製造方法を提供する
ことを目的としている。すなわち、オーステナイト鋼お
よびNi−Cr合金を基本成分とし、これに超微細な酸
化物を分散させることで高温強度および高温疲労強度の
改善を図り、かつオーステナイトベース鋼については溶
解−圧延で製造可能な酸化物分散型耐熱鋼の製造方法を
提供することを目的とする。
As described above, in the conventional exhaust valve materials, when the exhaust gas temperature is high, the high temperature characteristics, particularly high temperature fatigue strength, are insufficient, and the performance of the material is high. There are problems such as high cost and low productivity due to high temperature (using Ni-based alloy) and low temperature of valve material (hollow valve), and danger in handling products. An object of the present invention is to provide a heat resistant material using oxide dispersion strengthening and a method for producing the same in order to dramatically improve the high temperature strength and high temperature fatigue strength of austenitic steel and Ni—Cr alloy. That is, austenitic steel and Ni-Cr alloy are used as basic components, and ultrafine oxides are dispersed therein to improve high temperature strength and high temperature fatigue strength, and austenitic base steel can be manufactured by melt-rolling. It is an object of the present invention to provide a method for producing oxide-dispersion heat resistant steel.

【0004】[0004]

【課題を解決するための手段】本発明は、シェフラーの
組織図から求められるオーステナイト鋼およびNi−C
r合金を基本組成とし、これの高温強度および高温疲労
強度を向上させるため、析出強化、固溶強化に加え超微
細な酸化物を均一分散させる方法を用いた。分散強化
は、強化量が大きく、高温で長時間安定した強化効
果を示すことが特徴としてあげられるが、製造性に難点
がある。本発明では、分散強化に用いる酸化物としてT
2 5 もしくはNb2 5 を選択し、酸化物粒子の大
きさおよび添加量を最適化とすることで、高温強度およ
び高温疲労強度を改善しつつ製造性を確保した。請求項
1〜3にあるオーステナイト鋼ベースでは、まず分散強
化酸化物として、Ta2 5 もしくはNb2 5 を選択
し、酸化物粒子の大きさとして3μm以下、および添加
量を0.05〜2%と最適化することで製造性を損うこ
となく高温強化を可能とした。また、析出強化では炭窒
化物形成元素の中でも、Vの単独添加が高温強化には最
も効果的で、析出強化としてはVの単独添加による炭窒
化物析出強化にて高温強度および高温疲労強度の改善を
図るものである。Vの効果を阻害することなく、さらに
強化するための方法として、700℃以上の温度で固溶
量を確保し易いMoおよびWの単独または複合添加を用
いている。また、これらのオーステナイト鋼において
は、製造方法として、溶解−圧延にて製造を可能にして
いる。すなわち、溶鋼温度を1500℃以上とし、ラン
ス等で酸化物粒子を溶鋼中に封入し、十分攪拌した後、
鋼塊を製造する。その後、本発明鋼は熱間変形抵抗が高
いため1250℃以上に加熱し、熱間加工終了温度95
0℃以上の条件にて熱間加工を行うことで製造する。
The present invention is based on the austenitic steel and Ni-C obtained from the Schaeffler structure chart.
In order to improve the high temperature strength and high temperature fatigue strength of the r alloy as a basic composition, a method of uniformly dispersing ultrafine oxide in addition to precipitation strengthening and solid solution strengthening was used. Dispersion strengthening is characterized by a large amount of strengthening and a stable strengthening effect at high temperature for a long time, but it has a drawback in productivity. In the present invention, T is used as an oxide used for dispersion strengthening.
By selecting a 2 O 5 or Nb 2 O 5 and optimizing the size and addition amount of oxide particles, the manufacturability was ensured while improving the high temperature strength and high temperature fatigue strength. In the austenitic steel base according to claims 1 to 3, first, Ta 2 O 5 or Nb 2 O 5 is selected as the dispersion strengthening oxide, the size of the oxide particles is 3 μm or less, and the addition amount is 0.05 to. By optimizing it to 2%, high temperature strengthening was possible without impairing manufacturability. Among precipitation-strengthening carbonitride forming elements, addition of V alone is the most effective for high-temperature strengthening. As precipitation-strengthening, carbonitride precipitation strengthening by single addition of V results in high-temperature strength and high-temperature fatigue strength. It is intended to improve. As a method for further strengthening without inhibiting the effect of V, Mo and W, which are easy to secure a solid solution amount at a temperature of 700 ° C. or more, are used alone or in combination. Further, these austenitic steels can be manufactured by melting-rolling as a manufacturing method. That is, the molten steel temperature is set to 1500 ° C. or higher, the oxide particles are enclosed in the molten steel with a lance or the like, and after sufficiently stirring,
Produce steel ingot. After that, since the steel of the present invention has high hot deformation resistance, it is heated to 1250 ° C. or higher, and the hot working finish temperature 95
It is manufactured by performing hot working under conditions of 0 ° C or higher.

【0005】請求項4にあるNi−Cr合金でも、まず
分散強化酸化物として、Ta2 5もしくはNb2 5
を選択し、酸化物粒子の大きさおよび添加量を最適化す
ることで、高温強度および高温疲労強度の改善を可能に
した。γ’による析出強化(Al、TiまたはNbの添
加による)で850℃付近までの高温強度を支えること
や、固溶強化元素としてMoまたはWを鉄基材料に比べ
多量添加(Ni基合金ではFe基に比べ固溶量が多量で
あるため)することで、さらなる高温における強化を図
るものとした。
Also in the Ni-Cr alloy according to claim 4, first, Ta 2 O 5 or Nb 2 O 5 is used as the dispersion strengthening oxide.
By optimizing the size and addition amount of oxide particles, it was possible to improve high temperature strength and high temperature fatigue strength. Supports high temperature strength up to around 850 ° C by precipitation strengthening (by adding Al, Ti or Nb) by γ ', and adding a large amount of Mo or W as a solid solution strengthening element compared to iron-based materials (Fe in Ni-based alloys). The amount of solid solution is larger than that of the base material), so that further strengthening at high temperature is intended.

【0006】[0006]

【作用】Ta2 5 ,Nb2 5:Ta2 5 ,Nb2
5は鋼中に分散し、分散強化によって高温引張強度、
高温クリープ強度を向上させる。これらは酸化物である
ため鋼の融点直下まで安定に存在する。従って、分散強
化効果も高温で長時間維持できる。分散強化効果は0.
05%以上の添加で顕著となる。一方、2%を超える添
加は延性の低下を招くため、0.05〜2%に限定し
た。さらにこれら酸化物の粒径が3μmを超えると酸化
物自身が疲労亀裂の発生源になり易いため、粒径は3μ
m以下に限定した。尚、粒径は小さい程強度が向上す
る。
Function: Ta 2 O 5 , Nb 2 O 5 : Ta 2 O 5 , Nb 2
O 5 is dispersed in the steel, and high temperature tensile strength,
Improves high temperature creep strength. Since these are oxides, they exist stably just below the melting point of steel. Therefore, the dispersion strengthening effect can be maintained at high temperature for a long time. The dispersion strengthening effect is 0.
It becomes remarkable with the addition of 05% or more. On the other hand, addition of more than 2% causes a decrease in ductility, so the content was limited to 0.05 to 2%. Furthermore, if the particle size of these oxides exceeds 3 μm, the oxide itself tends to be a source of fatigue cracks, so the particle size is 3 μm.
It was limited to m or less. The smaller the particle size, the higher the strength.

【0007】請求項1〜3の鉄基材料について: C:Cは析出強化に必須な添加元素であり、高温強度お
よび高温疲労強度を確保するために0.01%以上の添
加量とした。一方、0.6%超の添加は、熱間加工性、
切削性および常温延性を低下させるためこれを上限とし
た。 Si:Siは脱酸材として用い、耐酸化性向上に有効で
あるため添加量を0.1%以上とした。一方、2%超の
添加は常温延性を低下させるためこれを上限とした。
Regarding iron-based materials according to claims 1 to 3: C: C is an additive element essential for precipitation strengthening, and is added in an amount of 0.01% or more in order to secure high temperature strength and high temperature fatigue strength. On the other hand, addition of more than 0.6% results in hot workability,
This is the upper limit because it lowers the machinability and room temperature ductility. Si: Si is used as a deoxidizer and is effective in improving the oxidation resistance, so the addition amount is set to 0.1% or more. On the other hand, addition of more than 2% lowers the room temperature ductility, so this was made the upper limit.

【0008】Mn:Mnはオーステナイト形成元素であ
り0.1%以上の添加が必要である。一方、11%を超
える添加は耐酸化性を阻害するためこれを上限とした。
また、オーステナイトの安定性から、式および式を
同時に満たす範囲とした。 Cr:Crは900℃以上の耐酸化性確保のため添加量
を16.0%以上とした。また、25.0%を超える添
加は、900℃程度の温度域では、さらなる耐酸化性の
向上はないので、これを上限とした。
Mn: Mn is an austenite forming element and must be added in an amount of 0.1% or more. On the other hand, the addition of more than 11% hinders the oxidation resistance, so this was made the upper limit.
Further, from the stability of austenite, the range was set to satisfy the formula and the formula at the same time. Cr: Cr is added in an amount of 16.0% or more in order to secure oxidation resistance at 900 ° C or higher. Moreover, since the addition of more than 25.0% does not further improve the oxidation resistance in the temperature range of about 900 ° C., the upper limit was made this value.

【0009】Ni:Niはオーステナイト形成元素であ
り、耐熱性向上に有効であるため添加量を3.0%以上
とした。しかし、11.0%を超える添加は、耐熱性向
上の寄与が小さくなるためこれを上限とした。また、オ
ーステナイトの安定性から、式および式を同時に満
たす範囲とした。 N:Nは析出強化に必須な添加元素であり、高温強度お
よび高温疲労強度を確保するために添加量を0.01%
以上とした。一方、0.6%を超える添加は、熱間加工
性、切削性および常温延性を低下させるためこれを上限
とした。
Ni: Ni is an austenite-forming element and is effective in improving heat resistance, so the addition amount was made 3.0% or more. However, the addition of more than 11.0% does not contribute to the improvement of heat resistance, so the upper limit was made this. Further, from the stability of austenite, the range was set to satisfy the formula and the formula at the same time. N: N is an additive element essential for precipitation strengthening, and the addition amount is 0.01% in order to secure high temperature strength and high temperature fatigue strength.
That's it. On the other hand, the addition of more than 0.6% lowers the hot workability, machinability and room temperature ductility, so this was made the upper limit.

【0010】さらに高温強度および高温疲労強度を改善
するために、以下の元素を添加することができる。 Mo:Moは固溶強化による高温強度および高温疲労強
度の改善に不可欠な元素であり、添加量を0.1%以上
とした。一方、5.0%を超える添加は、切削性および
常温延性を低下させるためこれを上限とした。また、
0.1%≦Mo+W≦5.0%を満たす範囲とした。
In order to further improve the high temperature strength and the high temperature fatigue strength, the following elements can be added. Mo: Mo is an element indispensable for improving the high temperature strength and high temperature fatigue strength by solid solution strengthening, and the added amount was 0.1% or more. On the other hand, the addition of more than 5.0% lowers the machinability and room temperature ductility, so this was made the upper limit. Also,
The range was set to satisfy 0.1% ≦ Mo + W ≦ 5.0%.

【0011】W:Wは固溶強化による高温強度および高
温疲労強度の改善に不可欠な元素であり、添加量を0.
1%以上とした。一方、5.0%を超える添加は、切削
性および常温延性を低下させるためこれを上限とした。
また、0.1%≦Mo+W≦5.0%を満たす範囲とし
た。 V:Vは析出強化による高温強度および高温疲労強度の
改善に有効な元素であり、添加量を0.01%以上とし
た。一方、1.0%を超える添加は、切削性および常温
延性を低下させるためこれを上限とした。
W: W is an element indispensable for improving high temperature strength and high temperature fatigue strength by solid solution strengthening, and its addition amount is 0.
It was set to 1% or more. On the other hand, the addition of more than 5.0% lowers the machinability and room temperature ductility, so this was made the upper limit.
Further, the range was set to satisfy 0.1% ≦ Mo + W ≦ 5.0%. V: V is an element effective for improving high temperature strength and high temperature fatigue strength by precipitation strengthening, and the addition amount was set to 0.01% or more. On the other hand, the addition of more than 1.0% lowers the machinability and room temperature ductility, so this was made the upper limit.

【0012】請求項4のNi基材料について: C:Cは析出強化に必須な添加元素であり、高温強度お
よび高温疲労強度を確保するために添加量を0.01%
以上とした。一方、1.0%を超える添加は、γ’析
出、熱間加工性、切削性および常温延性を低下させるた
めこれを上限とした。
Regarding the Ni-based material according to claim 4, C: C is an additive element essential for precipitation strengthening, and the addition amount is 0.01% in order to secure high temperature strength and high temperature fatigue strength.
That's it. On the other hand, the addition of more than 1.0% lowers γ'precipitation, hot workability, machinability and room temperature ductility, so this was made the upper limit.

【0013】Cr:Crは耐酸化性確保のためNi基合
金では添加量を10.0%以上とした。また、Ni基合
金では25.0%を超える添加は、900℃程度の温度
域で、さらなる耐酸化性の向上はなく、これを上限とし
た。 Al:Alは析出強化相であるγ’相の形成元素である
ため添加量を0.1%以上とした。一方、Alの添加は
γ’相の体積率を増加させ高温強度や高温疲労強度を高
めるが、熱間加工性が劣化するため2.0%以下とし
た。
Cr: Cr is added to the Ni-based alloy in an amount of 10.0% or more in order to secure oxidation resistance. Further, in the Ni-based alloy, the addition of more than 25.0% did not further improve the oxidation resistance in the temperature range of about 900 ° C., and this was made the upper limit. Al: Al is an element forming the γ ′ phase which is a precipitation strengthening phase, so the addition amount was made 0.1% or more. On the other hand, the addition of Al increases the volume ratio of the γ'phase and increases the high temperature strength and high temperature fatigue strength, but since the hot workability deteriorates, it was made 2.0% or less.

【0014】Ti:Tiは析出強化相であるγ’相や炭
窒化物の形成元素であるため添加量を0.1%以上とし
た。一方、Tiの添加はγ’相の体積率を増加させ高温
強度や高温疲労強度を高めるが、熱間加工性が劣化する
ため3.0%以下とした。 Nb:Nbは析出強化相であるγ'相や炭窒化物の形成
元素であるため添加量を0.1%以上とした。一方、N
bの添加はγ’相の体積率を増加させ高温強度や高温疲
労強度を高めるが、熱間加工性が劣化するため2.0%
以下とした。
Ti: Since Ti is an element for forming a γ'phase which is a precipitation strengthening phase and a carbonitride, the addition amount is set to 0.1% or more. On the other hand, addition of Ti increases the volume ratio of the γ'phase and enhances the high temperature strength and high temperature fatigue strength, but since the hot workability deteriorates, it was made 3.0% or less. Nb: Nb is an element for forming a γ ′ phase which is a precipitation strengthening phase and carbonitride, so the addition amount is set to 0.1% or more. On the other hand, N
Addition of b increases the volume ratio of the γ'phase and increases high temperature strength and high temperature fatigue strength, but 2.0% because hot workability deteriorates.
Below.

【0015】Mo:Moは固溶強化による高温強度およ
び高温疲労強度の改善に有効な元素であり、添加量を
1.0%以上とした。一方、7.0%を超える添加は、
切削性および常温延性を低下させるためこれを上限とし
た。また、固溶させるため1.0%≦Mo+W≦10.
0%を満たす範囲とした。 W:Wは固溶強化による高温強度および高温疲労強度の
改善に有効な元素であり、添加量を0.1%以上とし
た。一方、7.0%を超える添加は、切削性および常温
延性を低下させるためこれを上限とした。また、固溶さ
せるため1.0%%≦Mo+W≦10.0%を満たす範
囲とした。
Mo: Mo is an element effective in improving the high temperature strength and high temperature fatigue strength by solid solution strengthening, and the addition amount is 1.0% or more. On the other hand, if the addition exceeds 7.0%,
This is the upper limit because it lowers the machinability and room temperature ductility. Further, in order to form a solid solution, 1.0% ≦ Mo + W ≦ 10.
The range was 0%. W: W is an element effective in improving high temperature strength and high temperature fatigue strength by solid solution strengthening, and the addition amount was set to 0.1% or more. On the other hand, the addition of more than 7.0% lowers the machinability and the room temperature ductility, so this was made the upper limit. Further, in order to form a solid solution, the range was set to satisfy 1.0 %% ≦ Mo + W ≦ 10.0%.

【0016】B:Bは高温クリープにおける粒界破壊を
抑制するため添加量を0.001%以上とした。また、
過剰添加は熱間加工性を劣化させるため上限を0.01
0%とした。 Zr:Zrは高温クリープにおける粒界破壊を抑制し、
固溶強化にて高温クリープ抵抗を向上させるため添加量
を0.01%以上とした。また、過剰添加はZrを析出
させてしまうので、固溶強化効果を有効に働かせるため
の添加量の上限を0.3%とした。
B: B is added in an amount of 0.001% or more in order to suppress grain boundary destruction during high temperature creep. Also,
Since excessive addition deteriorates hot workability, the upper limit is 0.01.
It was set to 0%. Zr: Zr suppresses intergranular fracture in high temperature creep,
In order to improve the high temperature creep resistance by solid solution strengthening, the addition amount was made 0.01% or more. Moreover, since excessive addition causes precipitation of Zr, the upper limit of the addition amount for effectively exerting the solid solution strengthening effect was set to 0.3%.

【0017】オーステナイト鋼の製造方法(請求項5)
について: 溶鋼温度:酸化物を十分に攪拌し鋼塊および鋼板にて均
一分散させるため、溶鋼温度1500℃以上にて溶鋼中
に酸化物を封入するものとした。 熱間加工条件:本発明鋼は、高温強度に優れているため
特に熱間加工性が劣り、そのため高い温度にて加工しな
くてはならない。したがって、加熱温度を1250℃以
上とし、熱間加工終了温度を950℃以上とした。
Method for producing austenitic steel (Claim 5)
About: Molten steel temperature: In order to sufficiently stir the oxide and uniformly disperse it in the steel ingot and the steel plate, the oxide is encapsulated in the molten steel at a molten steel temperature of 1500 ° C or higher. Hot working conditions: The steel of the present invention is excellent in high-temperature strength and thus particularly inferior in hot workability. Therefore, it has to be worked at a high temperature. Therefore, the heating temperature is set to 1250 ° C. or higher, and the hot working end temperature is set to 950 ° C. or higher.

【0018】[0018]

【実施例】供試鋼および供試合金の化学成分をCr−N
iベース鋼、Cr−Ni−Mnベース鋼およびNi−C
r合金に分けて表1、表2(表1のつづき−1)、表3
(表1のつづき−2)に示す。ここに示す供試材は、不
活性ガス中溶解にて溶製し、鉄基材は熱間圧延にて鋼板
を作製し、Ni基材は熱間鍛造にてバー材を作製し、固
溶化熱処理または固溶化熱処理および時効処理を施した
後、これらの製品より試験片を採取した。
[Example] The chemical composition of the test steel and the match gold was changed to Cr-N.
i base steel, Cr-Ni-Mn base steel and Ni-C
Table 1 and Table 2 (continued from Table 1-1) and Table 3
(Continued-2 in Table 1). The test material shown here is melted by melting in an inert gas, the iron base material is hot rolled to make a steel plate, and the Ni base material is hot forged to make a bar material, which is then solidified. After heat treatment or solution heat treatment and aging treatment, test pieces were taken from these products.

【0019】表4から、本発明鋼であるD1〜14につ
いては、比較鋼および従来鋼(SUS304、21−4
NおよびNCF751)に比べ良好な高温強度および高
温疲労強度が得られており、かつ熱間加工においても概
ね良好で試験片採取が可能な状態にある。酸化物の添加
量の多いC1、C3、C5、C6、C7およびC12は
熱間加工時に割れが多発し、試験片が採取できない。一
方、酸化物添加量の少ないC2、C8、C9およびC1
0や、酸化物粒径の大きい酸化物を添加したC4および
C11は類似組成材(C2とD1、C8とD6、C9と
D9、C10とD12、C4とD7およびC11とD1
2のそれぞれを比較すると)高温強度および高温疲労強
度が低めの値となり、酸化物分散強化が充分に活かせて
いない。
From Table 4, for the steels of the present invention, D1-14, comparative steels and conventional steels (SUS304, 21-4).
N and NCF751) have good high-temperature strength and high-temperature fatigue strength, and are generally good in hot working as well, and are in a state where specimens can be collected. C1, C3, C5, C6, C7 and C12, which have a large amount of oxide added, are frequently cracked during hot working, and test pieces cannot be collected. On the other hand, C2, C8, C9 and C1 with a small amount of oxide added
0, or C4 and C11 added with oxides having a large oxide particle size are similar composition materials (C2 and D1, C8 and D6, C9 and D9, C10 and D12, C4 and D7 and C11 and D1.
(Comparing each of 2), the high temperature strength and the high temperature fatigue strength have low values, and the oxide dispersion strengthening cannot be fully utilized.

【0020】表5から、D1、D2、D5、D9および
D12の5鋼種について、酸化物の封入温度が1500
℃より低い場合、加熱温度が1250℃より低い場合お
よび熱間加工終了温度が950℃より低い場合では、割
れが多く試験片が採取できない状況にあることが確認で
きた。
From Table 5, the inclusion temperature of the oxide is 1500 for the five steel types D1, D2, D5, D9 and D12.
It was confirmed that when the temperature was lower than 0 ° C, the heating temperature was lower than 1250 ° C, and the hot working end temperature was lower than 950 ° C, there were many cracks and the test piece could not be collected.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【発明の効果】本発明は、自動車等の内燃機関の排気バ
ルブ等の高温部材で、高温強度や高温疲労強度に優れた
耐熱材料を提供するものである。
The present invention provides a heat resistant material which is a high temperature member such as an exhaust valve of an internal combustion engine of an automobile or the like and which is excellent in high temperature strength and high temperature fatigue strength.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%(以下%と略す)で C : 0.01〜 0.6%、 Si: 0.1 〜 2.0%、 Mn: 0.1 〜11.0%、 Cr:16.0 〜25.0%、 Ni: 3.0 〜11.0%、 N : 0.01〜 0.6%を含有し、 Cr等量=Cr(%)+1.5Si(%) Ni等量=Ni(%)+30(C+N)(%)+0.5
Mn(%)としたとき 、−4/5×Cr等量+27.2≦Ni等量(式) 4/3×Cr等量−14.7≦Ni等量(式) を同時に満たし、さらに粒径3μm以下の酸化タンタル
(Ta2 5 )、粒径3μm以下の酸化ニオブ(Nb2
5 )の少なくとも1種を0.05〜2%含み、、残部
がFeおよび不可避的不純物からなる高温強度および高
温疲労強度に優れた分散強化型耐熱材料。
1. In weight% (hereinafter abbreviated as%) C: 0.01 to 0.6%, Si: 0.1 to 2.0%, Mn: 0.1 to 11.0%, Cr: 16 0.0 to 25.0%, Ni: 3.0 to 11.0%, N: 0.01 to 0.6%, Cr equivalent = Cr (%) + 1.5Si (%) Ni equivalent = Ni (%) + 30 (C + N) (%) + 0.5
When Mn (%) is satisfied, −4 / 5 × Cr equivalent + 27.2 ≦ Ni equivalent (formula) 4/3 × Cr equivalent−14.7 ≦ Ni equivalent (formula) are satisfied at the same time, Tantalum oxide (Ta 2 O 5 ) having a diameter of 3 μm or less, niobium oxide (Nb 2 ) having a particle diameter of 3 μm or less
A dispersion-strengthened heat-resistant material which contains 0.05 to 2% of O 5 ) and the balance is Fe and inevitable impurities and is excellent in high temperature strength and high temperature fatigue strength.
【請求項2】Mo:0.1〜5.0%、 W :0.1〜5.0%の少なくとも1種を0.1%≦
Mo+W≦5.0%を満たす範囲で含むことを特徴とす
る請求項1記載の高温強度および高温疲労強度に優れた
分散強化型耐熱材料。
2. At least one of Mo: 0.1 to 5.0% and W: 0.1 to 5.0% is 0.1% ≦.
The dispersion-strengthened heat-resistant material excellent in high-temperature strength and high-temperature fatigue strength according to claim 1, characterized in that Mo + W ≦ 5.0% is contained.
【請求項3】 V:0.01〜1.0%を含むことを特
徴とする請求項1又は2記載の高温強度および高温疲労
強度に優れた分散強化型耐熱材料。
3. The dispersion-strengthened heat-resistant material excellent in high temperature strength and high temperature fatigue strength according to claim 1 or 2, characterized by containing V: 0.01 to 1.0%.
【請求項4】C : 0.01〜 0.1%、 Cr:10.0 〜25.0%、 粒径3μm以下の酸化タンタル(Ta2 5 )、粒径3
μm以下の酸化ニオブ(Nb2 5 )の少なくとも1
種:0.05〜2%を含み、さらに Al:0.1〜2.0%、 Ti:0.1〜3.0%、 Nb:0.1〜2.0%、 Mo:1.0〜7.0%、 W :1.0〜7.0%、 B :0.001〜0.010%、 Zr:0.01 〜0.3%のうちの少なくとも1種以
上を含み、残部がマトリックスとしてNiおよび10%
までのFeと不可避的不純物からなる高温強度および高
温疲労強度に優れた分散強化型耐熱材料。
4. C: 0.01 to 0.1%, Cr: 10.0 to 25.0%, tantalum oxide (Ta 2 O 5 ) having a particle size of 3 μm or less, particle size 3
At least 1 of niobium oxide (Nb 2 O 5 ) of μm or less
Species: Including 0.05 to 2%, Al: 0.1 to 2.0%, Ti: 0.1 to 3.0%, Nb: 0.1 to 2.0%, Mo: 1.0 ˜7.0%, W: 1.0 to 7.0%, B: 0.001 to 0.010%, Zr: 0.01 to 0.3%, and at least one or more of Ni and 10% as matrix
Dispersion-strengthening heat-resistant material excellent in high-temperature strength and high-temperature fatigue strength, which is composed of Fe and unavoidable impurities.
【請求項5】 請求項1〜3のいずれかに記載の耐熱鋼
を製造するにあたり、溶鋼温度1500℃以上にて溶鋼
中に酸化物を封入し、その後1250℃以上に加熱し、
圧延の仕上温度を950℃以上としたことを特徴とする
分散強化型耐熱材料の製造方法。
5. In producing the heat-resistant steel according to claim 1, oxides are encapsulated in the molten steel at a molten steel temperature of 1500 ° C. or higher, and then heated to 1250 ° C. or higher,
A method for producing a dispersion-strengthened heat-resistant material, characterized in that a rolling finishing temperature is 950 ° C. or higher.
JP19048393A 1993-07-30 1993-07-30 Dispersion reinforcing heat-resistant material and manufacture thereof Withdrawn JPH0741910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19048393A JPH0741910A (en) 1993-07-30 1993-07-30 Dispersion reinforcing heat-resistant material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19048393A JPH0741910A (en) 1993-07-30 1993-07-30 Dispersion reinforcing heat-resistant material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0741910A true JPH0741910A (en) 1995-02-10

Family

ID=16258853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19048393A Withdrawn JPH0741910A (en) 1993-07-30 1993-07-30 Dispersion reinforcing heat-resistant material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0741910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985578A (en) * 2010-07-02 2013-03-20 蒂森克虏伯钢铁欧洲股份公司 Higher-strength, cold-formable steel and steel sheet product consisting of such a steel
WO2019107699A1 (en) * 2017-11-28 2019-06-06 포항공과대학교 산학협력단 Austenite steel having room-temperature and high-temperature strength through chromium (cr) reduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985578A (en) * 2010-07-02 2013-03-20 蒂森克虏伯钢铁欧洲股份公司 Higher-strength, cold-formable steel and steel sheet product consisting of such a steel
WO2019107699A1 (en) * 2017-11-28 2019-06-06 포항공과대학교 산학협력단 Austenite steel having room-temperature and high-temperature strength through chromium (cr) reduction

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
CN101144131B (en) Cobalt-chromium-iron-nickel alloys amenable to nitride strengthening
JP3058794B2 (en) Fe-Ni-Cr based super heat resistant alloy, knit mesh for engine valve and exhaust gas catalyst
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2011219864A (en) Heat resistant steel for exhaust valve
JPH09165655A (en) Austenitic stainless steel for high temperature apparatus and is production
US7118636B2 (en) Precipitation-strengthened nickel-iron-chromium alloy
CN103764861B (en) Vent valve high temperature steel
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JP4972972B2 (en) Ni-based alloy
JPH0138848B2 (en)
JP3412234B2 (en) Alloy for exhaust valve
JPH0741910A (en) Dispersion reinforcing heat-resistant material and manufacture thereof
JPS61238942A (en) Heat resisting alloy
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JPH09209092A (en) Secondary combustion chamber mouthpiece for diesel engine
JPH11117019A (en) Production of heat resistant parts
JPH07238349A (en) Heat resistant steel
CN114134428A (en) Nickel-saving iron-based high-temperature alloy for engine valve and manufacturing method thereof
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003