JPH0741837A - Rh vacuum degassing treatment - Google Patents

Rh vacuum degassing treatment

Info

Publication number
JPH0741837A
JPH0741837A JP16122693A JP16122693A JPH0741837A JP H0741837 A JPH0741837 A JP H0741837A JP 16122693 A JP16122693 A JP 16122693A JP 16122693 A JP16122693 A JP 16122693A JP H0741837 A JPH0741837 A JP H0741837A
Authority
JP
Japan
Prior art keywords
molten steel
depth
degassing treatment
pressure
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16122693A
Other languages
Japanese (ja)
Inventor
Kenichi Miyazawa
宮沢憲一
Akito Kiyose
清瀬明人
Hironori Goto
後藤裕規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16122693A priority Critical patent/JPH0741837A/en
Publication of JPH0741837A publication Critical patent/JPH0741837A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To accelerate the decarburization speed of molten steel and to steady smelt an low carbon steel at a low cost by controlling the depth of the molten steel in a vacuum vessel in corresponding to the threshold value of the depth of the molten steel at which gaseous CO bubbles are generatable in the prescribed period within degassing treatment time. CONSTITUTION:The lower parts of immersion pipes 2, 3 of the vacuum vessel 1 are immersed into the molten steel 10 in ladle 5. The pressure in the vacuum vessel 1 is reduced to rise the molten steel 10 and gaseous Ar is supplied from the wall of the immersion pipe 2 to induce circulating flow. As a result, the gaseous CO formed by reaction of carbon and oxygen in the molten steel 10 is removed to decarbonize the molten steel 10. The degassing treatment is executed by controlling the depth h1 of the molten steel in the vacuum vessel 1 to alphaH in the period of the degassing treatment time satisfying alphaH>=15cm in the RH degassing treatment described above, where 0.5<=alpha<1.0, H=gamma(PCO-PV-beta), (PCO: pressure (atom) of the gaseous CO balanced to the carbon concn. and oxygen concn. in the molten steel, PV: the pressure (atm) in the vacuum vessel, beta: constant 0.02, gamma: coefft. 140, H: the threshold value (cm) of the depth of the molten steel at which the gaseous CO bubbles are generatable).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼のRH脱ガス処理
に関する。
FIELD OF THE INVENTION The present invention relates to RH degassing of molten steel.

【0002】[0002]

【従来の技術】溶鋼中の炭素を除去する方法として、R
H脱ガス処理を行うことは一般によく行われているが、
昨今、低炭素鋼の脱ガス処理時間の短縮の要求や、極低
炭素鋼製造の要求が高まり、脱炭速度のさらなる向上が
必要となっている。従来、RH脱ガス処理における脱炭
速度の促進には、上昇管からの吹込みガス量の増加や浸
漬管径の増加により溶鋼還流量を増大する方法、真空槽
内の溶鋼に酸素ガスを吹込み、溶鋼中の酸素濃度や気液
界面積を増大する方法などが平岡照祥:第143回西山
記念技術講座、1992、p.107−135[日本鉄
鋼協会](文献1)に開示されている。
As a method for removing carbon in molten steel, R
It is common to carry out H 2 degassing treatment,
Recently, demands for shortening the degassing treatment time of low carbon steels and demands for manufacturing ultra-low carbon steels have increased, and further improvement of the decarburization rate is required. Conventionally, in order to accelerate the decarburization rate in the RH degassing process, a method of increasing the amount of gas injected from the rising pipe or the diameter of the dipping pipe to increase the amount of molten steel reflux, and blowing oxygen gas into the molten steel in the vacuum chamber Hiraoka Teruyoshi: The 143rd Nishiyama Memorial Technical Lecture, 1992, p. 107-135 [Japan Iron and Steel Institute] (Reference 1).

【0003】[0003]

【発明が解決しようとする課題】文献1に開示されてい
る方法では、脱炭速度向上に有効であるが脱炭速度に限
度があり、また、上昇管からの吹込みガス量増加や真空
槽内の溶鋼への酸素吹きおよび浸漬管径の増加は操業コ
ストや設備費の増加を伴う。これらの理由で、さらなる
脱炭速度促進を低コストで行う方法が望まれている。
The method disclosed in Document 1 is effective in improving the decarburization rate, but has a limited decarburization rate, and increases the amount of gas blown from the riser pipe and the vacuum chamber. Oxygen blowing to the molten steel inside and the increase of the immersion pipe diameter are accompanied by an increase in operating costs and equipment costs. For these reasons, a method for further promoting decarburization rate at low cost is desired.

【0004】[0004]

【課題を解決するための手段】本発明は、RH脱ガス処
理において、減圧下で溶鋼中の炭素を酸素との反応によ
り除去する際、αH≧15cmを満足する脱ガス処理時
間内の期間において、真空槽内の溶鋼深さをαHに制御
して脱ガス処理することにより、真空槽の底部における
COガス気泡の発生を促進して脱炭反応速度を増加する
ことを特徴とするRH真空処理方法である。ただし、係
数αは0.5≦α<1.0の値とし、Hは(1)式より
求められる値(cm)とする。
According to the present invention, in the RH degassing process, when carbon in molten steel is removed by reaction with oxygen under reduced pressure, during the degassing process time period satisfying αH ≧ 15 cm. , RH vacuum treatment characterized by increasing the decarburization reaction rate by promoting the generation of CO gas bubbles at the bottom of the vacuum chamber by controlling the molten steel depth in the vacuum chamber to αH for degassing Is the way. However, the coefficient α is a value of 0.5 ≦ α <1.0, and H is a value (cm) obtained from the equation (1).

【0005】H=γ(PCO−PV −β) …(1) ここで、PCOは溶鋼中の炭素濃度と酸素濃度に平衡する
COガスの圧力(atm)、PV はRH真空槽内の圧力
(atm)、βは定数で0.02の値であり、γは係数
で140の値である。
H = γ (P CO −P V −β) (1) Here, P CO is the pressure (atm) of CO gas in equilibrium with the carbon concentration and oxygen concentration in the molten steel, and P V is the RH vacuum chamber. The internal pressure (atm) and β are constants having a value of 0.02, and γ is a coefficient having a value of 140.

【0006】[0006]

【作用】図1は、RH脱ガス処理方法を模式的に示した
図である。RH脱ガス処理方法としては、RH真空槽1
の下部に設置された浸漬管2および3を取鍋5内の溶鋼
10に浸漬し、真空槽内6を減圧すると、大気圧と真空
槽内の圧力の差に応じて取鍋内の溶鋼が真空槽に侵入す
る。浸漬管2の管壁よりArガスを吹き込むと、Arガ
スの浮力の作用によって溶鋼に上昇力が働き、溶鋼は取
鍋から浸漬管2に吸い込まれ真空槽内へ上昇し、真空槽
内の溶鋼9は浸漬管3から下降し、還流が生じることに
なる。
FUNCTION FIG. 1 is a diagram schematically showing the RH degassing treatment method. As the RH degassing treatment method, the RH vacuum chamber 1
When the dipping tubes 2 and 3 installed at the bottom of the ladle are immersed in the molten steel 10 in the ladle 5 and the vacuum tank 6 is decompressed, the molten steel in the ladle is removed according to the difference between the atmospheric pressure and the pressure in the vacuum tank. Enter the vacuum chamber. When Ar gas is blown from the wall of the immersion pipe 2, a rising force acts on the molten steel by the action of the buoyancy of the Ar gas, the molten steel is sucked from the ladle into the immersion pipe 2 and rises into the vacuum tank, and the molten steel in the vacuum tank 9 descends from the dip tube 3 and reflux occurs.

【0007】RH脱ガスプロセスにおいては、主に、
吹き込まれたArガス気泡と溶鋼の界面、真空槽内の
溶鋼湯面、真空槽内の溶鋼のスプラッシュ(溶鋼滴)
の界面などにおいて、溶鋼中の炭素と酸素との反応によ
りCOガスとなって気相側に脱ガスされることにより脱
炭が生じることの他に、真空槽内における溶鋼と耐火
物などとの不均一界面などにおいて、溶鋼中の炭素と酸
素との反応によりCOガス気泡が発生し、この気泡が溶
鋼中を浮上する間に脱炭が生じる。脱炭速度を増加する
ためには、これらからなどの種々の場所における反
応を促進することが重要であるが、RH脱ガス処理で
は、溶鋼中の炭素濃度と酸素濃度が比較的高い時期で
は、の真空槽内の耐火物界面におけるCOガス気泡に
よる脱炭が活発である。
In the RH degassing process, mainly
Interface between blown Ar gas bubbles and molten steel, molten steel surface in vacuum tank, splash of molten steel in vacuum tank (molten steel drop)
At the interface between the molten steel and carbon in the molten steel, CO gas becomes CO gas and is degassed to the gas phase side to cause decarburization. At a non-uniform interface or the like, CO gas bubbles are generated by the reaction between carbon and oxygen in the molten steel, and decarburization occurs while the bubbles float in the molten steel. In order to increase the decarburization rate, it is important to promote the reaction in various places such as these, but in the RH degassing process, when the carbon concentration and oxygen concentration in the molten steel are relatively high, Decarburization by CO gas bubbles is active at the refractory interface in the vacuum chamber.

【0008】このCOガス発生は、耐火物と溶鋼との不
均一界面で生じ易く、溶鋼の静圧が小さいほど、すなわ
ち溶鋼の深さが浅く、真空槽の圧力が小さいほど発生し
易い。また、耐火物との界面積が多いほどCO気泡の発
生場所は多くなり、COガス発生量が多くなる。
This CO gas generation is likely to occur at the non-uniform interface between the refractory and the molten steel, and tends to occur as the static pressure of the molten steel decreases, that is, the depth of the molten steel decreases and the pressure in the vacuum chamber decreases. In addition, the larger the area of contact with the refractory material, the greater the number of locations where CO bubbles are generated and the greater the amount of CO gas generated.

【0009】CO気泡が発生できる溶鋼深さの限界値H
(cm)は、気泡内の圧力が溶鋼静圧と気泡発生時の過
飽和圧力の和より大きい時に気泡が成長できると考えて
得られた次の(2)式で記述できる。
Limit value H of molten steel depth at which CO bubbles can be generated
(Cm) can be described by the following equation (2) obtained by considering that the bubble can grow when the pressure inside the bubble is larger than the sum of the static pressure of molten steel and the supersaturation pressure when the bubble is generated.

【0010】H=γ(PCO−PV −β) …(2) ここで、PCOは溶鋼中の炭素濃度と酸素濃度に平衡する
COガスの圧力(atm)、PV はRH真空槽内の圧力
(atm)、βは気泡が発生する際の過飽和圧力に関す
る定数で約0.02の値であり、γは係数で140の値
である。
H = γ (P CO −P V −β) (2) Here, P CO is the pressure (atm) of CO gas in equilibrium with the carbon concentration and oxygen concentration in the molten steel, and P V is the RH vacuum chamber. The internal pressure (atm), β is a constant related to the supersaturation pressure when bubbles are generated, which is a value of about 0.02, and γ is a coefficient of 140.

【0011】COガス気泡が発生する耐火物と溶鋼との
界面には、図1において、真空槽内の内壁8と底部7が
あるが、真空槽内の溶鋼深さh1 を上記の(2)式で記
述される深さHより深くしてしまうと、COガス気泡は
内壁8の一部でしか発生せず、底部7からは発生しなく
なる。そこで、脱炭速度を増加するためには、真空槽の
溶鋼深さh1 をHより浅くして脱ガス操作をする必要が
ある。しかし、真空槽の溶鋼深さを余りにも浅くしてし
まうと、溶鋼の還流に支障が起こり、還流量が減少して
脱炭速度が減少するため、溶鋼深さの下限値が存在す
る。なお、真空槽の溶鋼深さh1 については、取鍋内湯
面から真空槽内湯面までの溶鋼高さ(h2)が主に真空
槽内の圧力と溶鋼還流量によって支配されるため、取鍋
の位置を上下に移動させることによって所望の溶鋼深さ
に制御できる。
At the interface between the refractory in which the CO gas bubbles are generated and the molten steel, there is an inner wall 8 and a bottom portion 7 in the vacuum chamber in FIG. 1, but the molten steel depth h 1 in the vacuum chamber is set to the above (2). When the depth is made deeper than the depth H described by the formula), CO gas bubbles are generated only in a part of the inner wall 8 and are not generated from the bottom portion 7. Therefore, in order to increase the decarburization rate, it is necessary to make the molten steel depth h 1 of the vacuum chamber shallower than H and perform degassing operation. However, if the depth of molten steel in the vacuum tank is made too shallow, the flow of molten steel will be hindered, the amount of reflux will decrease, and the decarburization rate will decrease, so there is a lower limit for the depth of molten steel. Regarding the molten steel depth h 1 in the vacuum tank, the molten steel height (h 2 ) from the ladle inner surface to the vacuum tank inner molten surface is mainly controlled by the pressure in the vacuum tank and the molten steel recirculation amount. It is possible to control the depth of molten steel to the desired level by moving the position of the pan up and down.

【0012】図2は、溶鋼中の炭素濃度と酸素濃度に平
衡するCOガスの圧力PCOと真空槽内の圧力PV に関し
て、脱ガス処理時間中の経時変化を模式的に示した図で
ある。(2)式から、COガス気泡が発生できる溶鋼深
さの限界値Hは、PCOと(PV −β)の差が大きいほど
大きくなり、より深い位置でCOガス気泡が発生できる
ことが分かる。一方、図2から、PCOと(PV −β)の
差が正の値になり、Hの値が溶鋼の還流に支障を起こさ
ない値になる時期は、処理の初期と末期を除いた期間に
あり、この期間で真空槽内の溶鋼深さを十分に浅くなる
ように制御すれば、真空槽の底部からもCOガス気泡が
生じ、脱炭速度が増加する。
FIG. 2 is a diagram schematically showing changes with time in the degassing treatment time with respect to the pressure P CO of the CO gas and the pressure P V in the vacuum chamber, which are in equilibrium with the carbon concentration and the oxygen concentration in the molten steel. is there. (2) from the equation, the limit value H of the molten steel depth CO gas bubbles can be generated increases as the difference between P CO (P V-beta) is large, CO gas bubbles are seen to be generated in a deeper position . On the other hand, from FIG. 2, the difference between P CO (P V -β) becomes a positive value, the time value of H is a value that does not cause trouble in the reflux of molten steel, except for the initial and end of treatment If the molten steel depth in the vacuum chamber is controlled to be sufficiently shallow during this period, CO gas bubbles will also be generated from the bottom of the vacuum chamber and the decarburization rate will increase.

【0013】[0013]

【実施例】真空槽の内径が2.4m、浸漬管の内径が
0.65mのRH真空槽を使って、取鍋内の溶鋼(30
0t)の脱ガス処理実験を行った。処理前の溶鋼中の炭
素濃度は300ppm、酸素濃度は400ppmで、処
理時間中に一定間隔で取鍋内の溶鋼を採取し、溶鋼組成
の経時変化を測定した。真空槽内の溶鋼深さ(αH)
は、取鍋の位置を上下させることにより、上記の(1)
式のHの値に係数αを乗じたαHになるように、溶鋼深
さを制御した。(1)式中のPCOは(3)式より求め、
V には実測値を用いた。
[Example] Using an RH vacuum chamber with an inner diameter of the vacuum tank of 2.4 m and an inner diameter of the dip tube of 0.65 m, the molten steel (30
The degassing treatment experiment of 0t) was performed. The carbon concentration in the molten steel before the treatment was 300 ppm and the oxygen concentration was 400 ppm, and the molten steel in the ladle was sampled at regular intervals during the treatment time, and the change with time of the molten steel composition was measured. Molten steel depth in vacuum chamber (αH)
By moving the ladle up and down, the above (1)
The molten steel depth was controlled so that the value of H in the equation was multiplied by a coefficient α to obtain αH. P CO in equation (1) is calculated from equation (3),
Using the measured values in P V.

【0014】PCO=K・CC ・CO …(3) ここで、CC は炭素濃度(mass%)で、CC =CC0
・exp(−kC ・T)で表され、CO は酸素濃度(m
ass%)である。酸素濃度の値としては、脱ガス処理
中の変化が比較的少ないため、実測値の平均値を用い
た。KはCO反応の平衡定数、CC0は初期炭素濃度(m
ass%)、TはT=t−t0 であり、tは脱ガス処理
時間(min)、t0 は定数(min)、また、kC
脱炭速度定数(1/min)である。定数t0 と定数k
C の値は、炭素濃度の経時変化の実測値に計算値が一番
良く一致するように決めることができる。RH脱ガス処
理では、処理開始から時間t0 の間、炭素濃度は見かけ
上ほぼ一定で、時間t0 の後、炭素濃度が減少し始め
る。本実験では、定数t0 の値は約2.5分であった。
また、各実験のkC の値を求めたが、真空槽の溶鋼深さ
を変えた結果では約0.17から0.27(1/mi
n)の範囲の値となった。
[0014] In P CO = K · C C · C O ... (3) where, C C is a carbon concentration (mass%), C C = C C0
-Expressed by exp (-k C · T), C O is the oxygen concentration (m
%). As the value of the oxygen concentration, the average value of the measured values was used because the change during the degassing process is relatively small. K is the equilibrium constant of the CO reaction, C C0 is the initial carbon concentration (m
%), T is T = t−t 0 , t is a degassing treatment time (min), t 0 is a constant (min), and k C is a decarburization rate constant (1 / min). Constant t 0 and constant k
The value of C can be determined so that the calculated value best matches the measured value of the change in carbon concentration over time. In the RH degassing treatment, the carbon concentration is apparently substantially constant during the time t 0 from the start of the treatment, and after the time t 0 , the carbon concentration begins to decrease. In this experiment, the value of the constant t 0 was about 2.5 minutes.
Further, the value of k C in each experiment was obtained, and as a result of changing the molten steel depth of the vacuum chamber, it was about 0.17 to 0.27 (1 / mi
The value was in the range of n).

【0015】一回の脱炭実験においては係数αを一定と
し、実験毎にαの値を変化させた。真空槽内の溶鋼深さ
以外の操業条件は一定にして実験を行った。なお、比較
のために、処理中溶鋼深さを50cmで一定にした実験
も行った。また、溶鋼深さを余りにも浅くすると溶鋼還
流量が低下し、脱炭速度が減少したため、αHの値が1
5cm以下になる期間においては、溶鋼深さを50cm
で一定にした。なお、比較のため、αH≧10cmの期
間に溶鋼高さをαHに制御する実験も行った。
In one decarburization experiment, the coefficient α was kept constant and the value of α was changed for each experiment. The experiment was conducted with the operating conditions other than the molten steel depth in the vacuum chamber being kept constant. For comparison, an experiment was also conducted in which the molten steel depth during processing was kept constant at 50 cm. Further, if the molten steel depth is made too shallow, the molten steel recirculation amount decreases and the decarburization rate decreases, so the value of αH is 1
In the period of 5 cm or less, the molten steel depth is 50 cm
It was fixed at. For comparison, an experiment was also conducted in which the molten steel height was controlled to αH during αH ≧ 10 cm.

【0016】実験の結果、真空槽の溶鋼深さを50cm
で一定にして処理した場合、処理時間15分における炭
素濃度は25ppmであった。これに対して、本発明に
従って、溶鋼深さをαHに制御した場合の処理時間15
分における炭素濃度を図3に示す。αH≧15cmの期
間において溶鋼深さを制御した場合、係数αが0.5≦
α<1.0の範囲で、炭素濃度は、溶鋼深さを変化させ
なかった場合の25ppmよりも減少しており、本発明
に従って処理中に溶鋼深さを浅くする方法の効果がある
ことが分かる。一方、αH≧10cmの期間溶鋼深さを
制御した場合には、溶鋼深さが15cm以下になり、溶
鋼の還流が悪化するため、15分後の炭素濃度は溶鋼深
さを制御しなかった場合の25ppmよりも高くなり、
脱炭にとって不利となる。
As a result of the experiment, the depth of molten steel in the vacuum chamber was set to 50 cm.
In the case where the treatment was carried out at the same temperature as above, the carbon concentration at the treatment time of 15 minutes was 25 ppm. On the other hand, according to the present invention, the processing time when the molten steel depth is controlled to αH is 15
The carbon concentration in minutes is shown in FIG. When the molten steel depth is controlled in the period of αH ≧ 15 cm, the coefficient α is 0.5 ≦
In the range of α <1.0, the carbon concentration is lower than 25 ppm when the molten steel depth is not changed, and there is an effect of the method of shallowing the molten steel depth during the treatment according to the present invention. I understand. On the other hand, when the molten steel depth is controlled for a period of αH ≧ 10 cm, the molten steel depth becomes 15 cm or less and the reflux of the molten steel deteriorates. Higher than 25 ppm of
It is disadvantageous for decarburization.

【0017】[0017]

【発明の効果】本発明を実施すれば、溶鋼の脱炭速度を
容易に促進でき、低炭素鋼の溶製を低コストでかつ安定
して行える。
According to the present invention, the decarburization rate of molten steel can be easily promoted, and low-carbon steel can be stably produced at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】RH脱ガス処理方法の概略を示す図。FIG. 1 is a diagram showing an outline of an RH degassing treatment method.

【図2】脱ガス処理中における真空槽の溶鋼深さの制御
期間を示す図。
FIG. 2 is a diagram showing a control period of molten steel depth in a vacuum chamber during a degassing process.

【図3】脱ガス処理15分における溶鋼中の炭素濃度を
示す図。
FIG. 3 is a diagram showing a carbon concentration in molten steel after 15 minutes of degassing.

【符号の説明】[Explanation of symbols]

1…真空槽 2…浸漬管(上昇
管) 3…浸漬管(下降管) 4…Arガス吹込
み位置 5…取鍋 6…真空槽内部 7…真空槽底部 8…真空槽内壁 9…真空槽内の溶鋼 10…取鍋内の溶
鋼 11…スラグ h1 …真空槽内溶
鋼深さ h2 …取鍋内湯面から真空槽内湯面までの高さ(溶鋼ヘ
ッド)
1 ... Vacuum tank 2 ... Immersion pipe (upward pipe) 3 ... Immersion pipe (downward pipe) 4 ... Ar gas injection position 5 ... Ladle 6 ... Vacuum tank inside 7 ... Vacuum tank bottom 8 ... Vacuum tank inner wall 9 ... Vacuum tank molten steel 10 ... from the molten steel 11 ... slag h 1 ... vacuum tank molten steel depth h 2 ... ladle molten steel surface in the ladle to a vacuum vessel molten steel surface level of the inner (molten steel head)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 RH脱ガス処理において、減圧下で溶鋼
中の炭素を酸素との反応により除去する際、αH≧15
cmを満足する脱ガス処理時間内の期間において、真空
槽内の溶鋼深さをαHに制御して脱ガス処理することに
より、真空槽の底部におけるCOガス気泡の発生を促進
して脱炭反応速度を増加することを特徴とするRH真空
処理方法 ただし、係数αは0.5≦α<1.0の値とし、Hは
(1)式より求められる値(cm) H=γ(PCO−PV −β) …(1) PCO:溶鋼中の炭素濃度と酸素濃度に平衡するCOガス
の圧力(atm) PV :RH真空槽内の圧力(atm) β :定数で0.02の値 γ :係数で140の値
1. In RH degassing treatment, when carbon in molten steel is removed by reaction with oxygen under reduced pressure, αH ≧ 15
The degassing treatment is performed by controlling the molten steel depth in the vacuum chamber to αH during the degassing treatment time that satisfies the cm, thereby promoting the generation of CO gas bubbles at the bottom of the vacuum chamber and performing the decarburization reaction. RH vacuum treatment method characterized by increasing speed However, the coefficient α is a value of 0.5 ≦ α <1.0, and H is a value (cm) obtained from the equation (1) H = γ (P CO -P V -β) (1) P CO : Pressure of CO gas in equilibrium with carbon concentration and oxygen concentration in molten steel (atm) P V : Pressure in RH vacuum chamber (atm) β: 0.02 in constant Value γ: 140 value as a coefficient
JP16122693A 1993-06-30 1993-06-30 Rh vacuum degassing treatment Withdrawn JPH0741837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16122693A JPH0741837A (en) 1993-06-30 1993-06-30 Rh vacuum degassing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16122693A JPH0741837A (en) 1993-06-30 1993-06-30 Rh vacuum degassing treatment

Publications (1)

Publication Number Publication Date
JPH0741837A true JPH0741837A (en) 1995-02-10

Family

ID=15731031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16122693A Withdrawn JPH0741837A (en) 1993-06-30 1993-06-30 Rh vacuum degassing treatment

Country Status (1)

Country Link
JP (1) JPH0741837A (en)

Similar Documents

Publication Publication Date Title
JPH0741838A (en) Rh vacuum degassing treatment
JPH0741837A (en) Rh vacuum degassing treatment
KR930011671B1 (en) Method of producting ultra-low-carbon steel
JP2007031820A (en) Vacuum-degassing treating method for molten steel
KR101796088B1 (en) Refining method of alloy steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
KR20060028933A (en) Refining method of enamel molten steel containing high concentration titanium and nitrogen
JPH0754034A (en) Production of ultralow carbon steel
JPH05214430A (en) Method for vacuum-refining molten steel
JPH0649528A (en) Vacuum decarburization refining method of extra-low carbon steel
JP2915631B2 (en) Vacuum refining of molten steel in ladle
JP2648769B2 (en) Vacuum refining method for molten steel
JPH0741833A (en) Production of extra-low carbon steel
JPH08109410A (en) Finish decarburization refining of stainless steel
JPH0633130A (en) Method for melting ultralow carbon steel
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
JPH0949013A (en) Method for refining molten steel by vacuum degassing apparatus and vacuum degassing apparatus
JPH04183814A (en) Production of extra-low carbon steel
JPH06145771A (en) Smelting method of extra-low carbon steel
JP3070416B2 (en) Vacuum degassing method for molten steel
JPH04308029A (en) Production of ultralow carbon steel
JPH116010A (en) Reduced pressure oxygen-blowing refining method of stainless steel
JPH0733540B2 (en) Ultra low carbon steel manufacturing method
JPH04141512A (en) Method for refining ultra low carbon steel by rh process
JPH05132710A (en) Manufacture of dead soft steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905