JPH0741803A - Production of metal powder sintered body - Google Patents

Production of metal powder sintered body

Info

Publication number
JPH0741803A
JPH0741803A JP5208894A JP20889493A JPH0741803A JP H0741803 A JPH0741803 A JP H0741803A JP 5208894 A JP5208894 A JP 5208894A JP 20889493 A JP20889493 A JP 20889493A JP H0741803 A JPH0741803 A JP H0741803A
Authority
JP
Japan
Prior art keywords
sintering furnace
green compact
sintered body
metal powder
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5208894A
Other languages
Japanese (ja)
Inventor
Jun Inahashi
潤 稲橋
Takuya Kodama
卓弥 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5208894A priority Critical patent/JPH0741803A/en
Publication of JPH0741803A publication Critical patent/JPH0741803A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a sintered body by forming a ceramic film on the surface of the green compact of metal powder while it is sintered. CONSTITUTION:The green compact 11 of stainless steel constituted of SUS304 with 120 mum average particle size is set on a bed, and the inside of a vacuum sintering furnace 1 is evacuated to regulate its atmospheric pressure into 1.0X10<-4> Torr. At this time, an auxiliary port 6 is also opened, and the inside of an auxiliary chamber 9 set with Al 10 is evacuated. After that, the inside of the sintering furnace 1 is heated at 120 deg.C/hr by a heater 4. In the case the auxiliary port 6 is opened at the point of time at which the temp. of the inside of the sintering furnace 1 reaches 1200 deg.C, the auxiliary chamber 9 is heated by radiation heat by the heater 4, and the Al 10 is evaporated and diffused into the sintering furnace 1. This Al is laminated on the surface of the green compact 11 and is brought into reaction with oxygen in the green compact 11 to form an aluminum oxide film on the surface of the green compact 11. In this state, heating is continued, the temp. of the inside of the sintering furnace 1 is raised to 1300 deg.C, and holding is executed for 2hr. Next, the auxiliary port 6 is closed, the heating is completed, and the sintering furnace 1 is air-cooled to obtain the sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属粉末焼結体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal powder sintered body.

【0002】[0002]

【従来の技術】粉末治金の製造に於いて、金属粉末を所
定形状に成形する場合、金型成形,静水圧成形,ホット
プレス,テープ形成,押出成形,鋳込成形,金属粉末射
出成形等の各種の方法が知られている。例えば、特開昭
59−123302号公報では、金属粉末と有機結合剤
とを混練し、成形型で圧縮して予備成形体を得た後、こ
の予備成形体を焼結している。
2. Description of the Related Art In the manufacture of powder metallurgy, when molding metal powder into a predetermined shape, mold molding, hydrostatic molding, hot pressing, tape forming, extrusion molding, casting molding, metal powder injection molding, etc. Various methods are known. For example, in Japanese Unexamined Patent Publication No. 59-123302, metal powder and an organic binder are kneaded and compressed by a molding die to obtain a preform, and then the preform is sintered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記い
ずれの方法で製造したとしても、焼結後の金属粉末焼結
体は多孔質にかわりなく、機械的強度は溶製材に比較し
て弱く、しかも表面が滑らかではない肌が荒い状態であ
る。すなわち、一定体積に対する表面積が溶製材に比べ
て極めて大きくなっている。このような状態において
は、よく知られているように表面積の増大が耐食性の劣
化の原因となる。従って、金属粉末焼結体の耐食性は溶
製材の同一形状のものに比して極めて悪いという問題が
あった。本発明は上記事情に鑑みてなされたものであっ
て、金属粉末焼結体の耐食性を向上させて製造すること
ができる方法を提供することを目的とする。
However, whichever method is used, the metal powder sintered body after sintering is not porous but its mechanical strength is weaker than that of the ingot material. The surface is not smooth and the skin is rough. That is, the surface area for a given volume is extremely larger than that of the ingot material. In such a state, as is well known, an increase in surface area causes deterioration of corrosion resistance. Therefore, there is a problem that the corrosion resistance of the metal powder sintered body is extremely poor compared with that of the ingot having the same shape. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of producing a metal powder sintered body with improved corrosion resistance.

【0004】[0004]

【課題を解決するための手段および作用】本発明の製造
方法は、金属粉末の成形体を焼結しながら成形体表面に
金属酸化膜またはセラミックス膜を被着させることを特
徴とする。上記方法では金属粉末焼結体の表面に金属酸
化膜またはセラミックス膜が被着して焼結体表面を覆う
ため、焼結体の耐食性が向上する。
The manufacturing method of the present invention is characterized by depositing a metal oxide film or a ceramics film on the surface of a compact while sintering the compact of the metal powder. In the above method, the metal oxide film or the ceramic film is adhered to the surface of the metal powder sintered body to cover the surface of the sintered body, so that the corrosion resistance of the sintered body is improved.

【0005】[0005]

【実施例1】図1は本発明の実施例1に用いられる真空
焼結炉1を示す。この真空焼結炉1は排気口2が側面部
分に、補助口6が底面部分に設けられると共に、内部に
は設置台12が設けられ、この設置台12に金属粉末を
成形した圧粉体11が載置されている。また、真空焼結
炉1内部における設置台12の周囲には加熱ヒータ4が
配設されており、この加熱ヒータ4に対して焼結炉1の
天井部分を貫通したヒータ端子3から電力が供給され
る。排気口2には排気バブル7およびリークバルブ8が
取り付けられ、排気バブル7の延長線上には真空ポンプ
(図示省略)が接続されている。一方、補助口6にはバ
ルブ6aを介して補助室9が連結されており、この補助
室9内にアルミニウム10がセットされている。
Example 1 FIG. 1 shows a vacuum sintering furnace 1 used in Example 1 of the present invention. In this vacuum sintering furnace 1, an exhaust port 2 is provided on a side surface portion, an auxiliary port 6 is provided on a bottom surface portion, an installation table 12 is provided inside, and a powder compact 11 formed by molding metal powder on the installation table 12 is provided. Is placed. A heating heater 4 is arranged around the installation table 12 inside the vacuum sintering furnace 1, and electric power is supplied to the heating heater 4 from a heater terminal 3 penetrating the ceiling portion of the sintering furnace 1. To be done. An exhaust bubble 7 and a leak valve 8 are attached to the exhaust port 2, and a vacuum pump (not shown) is connected to an extension of the exhaust bubble 7. On the other hand, an auxiliary chamber 9 is connected to the auxiliary port 6 via a valve 6a, and aluminum 10 is set in the auxiliary chamber 9.

【0006】上記構成において、平均粒度120μmの
SUS304からなるステンレンス鋼の圧粉体11を真
空焼結炉1内の設置台12上に設置する。その後、排気
バルブ7を開放し、真空ポンプで真空焼結炉1内を排気
し、雰囲気圧力を1.33×10-2Pa(1.0×10
-4Torr)とする。この時、補助口6も開放して補助
室9内を排気する。その後、補助口6を閉鎖し、加熱ヒ
ータ4に通電して、真空焼結炉1内を昇温速度120℃
/Hで加熱する。真空焼結炉1内が1200℃になった
時点で再び補助口6を開放する。この状態で加熱を続
け、真空焼結炉1内を1300℃まで昇温し、2時間保
持する。その後、補助口6を閉鎖し、加熱ヒータ4の通
電を終了し、真空焼結炉1を放冷し、金属粉末焼結体を
得る。
In the above structure, a stainless steel powder compact 11 made of SUS304 having an average grain size of 120 μm is installed on the installation table 12 in the vacuum sintering furnace 1. Then, the exhaust valve 7 is opened, the inside of the vacuum sintering furnace 1 is evacuated by a vacuum pump, and the atmospheric pressure is set to 1.33 × 10 −2 Pa (1.0 × 10
-4 Torr). At this time, the auxiliary port 6 is also opened to exhaust the inside of the auxiliary chamber 9. After that, the auxiliary port 6 is closed, the heater 4 is energized, and the temperature inside the vacuum sintering furnace 1 is increased by 120 ° C.
/ H. When the temperature inside the vacuum sintering furnace 1 reaches 1200 ° C., the auxiliary port 6 is opened again. Heating is continued in this state, the temperature in the vacuum sintering furnace 1 is raised to 1300 ° C., and the temperature is maintained for 2 hours. After that, the auxiliary port 6 is closed, the energization of the heater 4 is terminated, and the vacuum sintering furnace 1 is allowed to cool to obtain a metal powder sintered body.

【0007】上記方法では1200℃で補助口6を開放
することにより、補助室9内が加熱ヒータ4の放射熱に
より加熱される。この加熱と雰囲気圧力が1.33×1
0Pa(1.0×10-4Torr)であることにより、
アルミニウム10が蒸発し、真空焼結炉1内に拡散す
る。そして、このガス化したアルミニウムは圧粉体11
の表面に積層され、圧粉体11中の酸素と反応して、A
lO,AlO2 ,Al23 などの酸化アルミニウム膜
が圧粉体11の表面に被着する。
In the above method, by opening the auxiliary port 6 at 1200 ° C., the inside of the auxiliary chamber 9 is heated by the radiant heat of the heater 4. This heating and atmospheric pressure is 1.33 × 1
By being 0 Pa (1.0 × 10 −4 Torr),
Aluminum 10 evaporates and diffuses into the vacuum sintering furnace 1. And this gasified aluminum is the green compact 11
Is laminated on the surface of the powder, reacts with oxygen in the green compact 11,
An aluminum oxide film such as 10 or AlO 2 or Al 2 O 3 is deposited on the surface of the green compact 11.

【0008】このような本実施例では、最終の金属粉末
焼結体の表面に酸化アルミニウム膜が被着されているの
で、耐食性が極めて向上する。しかも酸化アルミニウム
膜の形成を焼結と同時に行うことができるので工程が増
えることもない。
In this embodiment, since the aluminum oxide film is deposited on the surface of the final metal powder sintered body, the corrosion resistance is extremely improved. Moreover, since the aluminum oxide film can be formed simultaneously with the sintering, the number of steps is not increased.

【0009】[0009]

【実施例2】図2は本発明の実施例2に使用する真空焼
結炉1を示し、前記実施例の真空焼結炉と同一の要素は
同一の符号を付して対応させてある。この実施例の真空
焼結炉1の上部側面部分にはガス導入バルブ22を備え
たガス導入口21が設けられ、このガス導入口21から
2 ガスが供給されるようになっている。また、補助室
9内にはシリコン23がセットされている。
[Embodiment 2] FIG. 2 shows a vacuum sintering furnace 1 used in Embodiment 2 of the present invention. The same elements as those in the vacuum sintering furnace of the above embodiment are designated by the same reference numerals. A gas inlet 21 having a gas inlet valve 22 is provided in the upper side surface portion of the vacuum sintering furnace 1 of this embodiment, and N 2 gas is supplied from the gas inlet 21. Silicon 23 is set in the auxiliary chamber 9.

【0010】上記構成において、圧粉体11としてはF
e粉96%、Ni粉4%からなる成形体が使用される。
まず排気バルブ7を開放し、真空ポンプで真空焼結炉1
内を排気し、雰囲気圧力を1.33×10-2Pa(1.
0×10-4Torr)にする。この時、補助口6も開放
して、補助室9内を排気する。その後、補助口6を閉鎖
し、加熱ヒータ4に通電し、真空焼結炉1内を昇温速度
145℃/Hで加熱する。真空焼結炉内が1000℃に
なった時点で再び補助口6を開放すると供に、ガス導入
バルブ22を開放して、ガス導入口21からN2 ガスを
真空焼結炉1内に導入する。この状態で加熱を続け、真
空焼結炉1内を1200℃まで昇温し、3時間保持す
る。
In the above structure, F is used as the green compact 11.
A compact made of 96% e powder and 4% Ni powder is used.
First, the exhaust valve 7 is opened, and the vacuum pump 1 is used for the vacuum sintering furnace 1.
The inside is evacuated and the atmospheric pressure is 1.33 × 10 -2 Pa (1.
0 × 10 −4 Torr). At this time, the auxiliary port 6 is also opened to exhaust the inside of the auxiliary chamber 9. After that, the auxiliary port 6 is closed, the heater 4 is energized, and the inside of the vacuum sintering furnace 1 is heated at a temperature rising rate of 145 ° C./H. When the inside of the vacuum sintering furnace reaches 1000 ° C., the auxiliary port 6 is opened again, and at the same time, the gas introduction valve 22 is opened to introduce N 2 gas into the vacuum sintering furnace 1 from the gas introduction port 21. . Heating is continued in this state, the temperature inside the vacuum sintering furnace 1 is raised to 1200 ° C., and the temperature is maintained for 3 hours.

【0011】このような方法では、1000℃で補助口
6を開放することにより、補助室9内が加熱ヒータ4の
放射熱により加熱される。この加熱と雰囲気圧力が1.
33×10-2Pa(1.0×10-4Torr)であるこ
とにより、シリコン23が蒸発する。そして、このガス
化したシリコンは真空焼結炉1内を満たしているN2
スと反応してSi3 4 となり、このSi3 4 膜が圧
粉体11の表面に被着する。
In such a method, by opening the auxiliary port 6 at 1000 ° C., the inside of the auxiliary chamber 9 is heated by the radiant heat of the heater 4. This heating and atmospheric pressure are 1.
Since it is 33 × 10 −2 Pa (1.0 × 10 −4 Torr), the silicon 23 evaporates. Then, this gasified silicon reacts with N 2 gas filling the vacuum sintering furnace 1 to become Si 3 N 4 , and this Si 3 N 4 film adheres to the surface of the green compact 11.

【0012】このような本実施例2においても、最終の
金属粉末焼結体の表面にSi3 4膜が被着するので、
耐食性が極めて向上する。しかもSi3 4 膜の形成を
焼結と同時に行うので工程が増えることもない。
Also in the second embodiment as described above, since the Si 3 N 4 film is deposited on the surface of the final sintered metal powder,
Corrosion resistance is extremely improved. Moreover, since the Si 3 N 4 film is formed simultaneously with the sintering, the number of steps is not increased.

【0013】[0013]

【発明の効果】以上のとおり本発明は、金属粉末の成形
体を焼結しながら、その表面に金属酸化膜、またはセラ
ミックス膜を被着させるので、金属粉末焼結体の耐食性
が著しく向上する。
As described above, according to the present invention, the metal oxide film or the ceramic film is adhered to the surface of the metal powder compact while sintering, so that the corrosion resistance of the metal powder sintered body is remarkably improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に使用される真空焼結炉の断
面図。
FIG. 1 is a sectional view of a vacuum sintering furnace used in Example 1 of the present invention.

【図2】本発明の実施例2に使用される真空焼結炉の断
面図。
FIG. 2 is a sectional view of a vacuum sintering furnace used in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 真空焼結炉 4 加熱ヒータ 6 補助口 9 補助室 1 Vacuum sintering furnace 4 Heater 6 Auxiliary port 9 Auxiliary chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末の成形体を焼結しながら成形体
表面に金属酸化膜またはセラミックス膜を被着させるこ
とを特徴とする金属粉末焼結体の製造方法。
1. A method for producing a metal powder sintered body, which comprises depositing a metal oxide film or a ceramics film on the surface of the molded body while sintering the molded body of metal powder.
JP5208894A 1993-07-30 1993-07-30 Production of metal powder sintered body Withdrawn JPH0741803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208894A JPH0741803A (en) 1993-07-30 1993-07-30 Production of metal powder sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208894A JPH0741803A (en) 1993-07-30 1993-07-30 Production of metal powder sintered body

Publications (1)

Publication Number Publication Date
JPH0741803A true JPH0741803A (en) 1995-02-10

Family

ID=16563895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208894A Withdrawn JPH0741803A (en) 1993-07-30 1993-07-30 Production of metal powder sintered body

Country Status (1)

Country Link
JP (1) JPH0741803A (en)

Similar Documents

Publication Publication Date Title
JPS5839707A (en) High density sintering method for powder molding
US20060027950A1 (en) Method for manufacturing soft magnetic material
US4886639A (en) Construction elements produced by powder metallurgy
CN105483624A (en) Manufacturing method for molybdenum-silicon target and combination thereof
CN110668821A (en) Method for preparing MAX phase ceramic under no pressure
JP2587476B2 (en) Manufacturing method of silicon nitride molded product
JPH0348242B2 (en)
ES8203980A1 (en) Process for producing sintered ferrous alloys.
JPH0741803A (en) Production of metal powder sintered body
JPS60186480A (en) Manufacture of press processed matter
JP3497212B2 (en) Method for producing sintered metal powder
IE850242L (en) Improved process for compacting a porous structural member¹for hot-isostatic moulding.
JPH021793B2 (en)
JPS5918165A (en) Manufacture of silicon nitride sintered body
JP4122664B2 (en) Method for manufacturing acoustic diaphragm
JP2970131B2 (en) Method for producing silicon nitride sintered body
JPH0234572A (en) Method for sintering oxide-type ceramic superconducting material
KR101955438B1 (en) Preparation Method For Complex-Shaped Sintered Ceramics Parts
JPH0118031B2 (en)
JP2967243B2 (en) Ceramic intake / exhaust port liner and method of manufacturing the same
JPS605552B2 (en) Manufacturing method of silicon nitride molded body
JPH06279805A (en) Production of ceramic powder or metallic powder sintered compact
JPH04347329A (en) Ceramics sub-combustion chamber for diesel engine and manufacture thereof
JP2926881B2 (en) Ceramic firing method
JPH07207305A (en) Setter for sintering rare earth magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003