JPH0741344B2 - Fe-Co alloy forging method - Google Patents

Fe-Co alloy forging method

Info

Publication number
JPH0741344B2
JPH0741344B2 JP24850587A JP24850587A JPH0741344B2 JP H0741344 B2 JPH0741344 B2 JP H0741344B2 JP 24850587 A JP24850587 A JP 24850587A JP 24850587 A JP24850587 A JP 24850587A JP H0741344 B2 JPH0741344 B2 JP H0741344B2
Authority
JP
Japan
Prior art keywords
alloy
container
forging
ingot
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24850587A
Other languages
Japanese (ja)
Other versions
JPH0191927A (en
Inventor
和彦 田部井
登 米沢
定雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP24850587A priority Critical patent/JPH0741344B2/en
Publication of JPH0191927A publication Critical patent/JPH0191927A/en
Publication of JPH0741344B2 publication Critical patent/JPH0741344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱間加工の難しい、Co:30〜60重量%、残
部:Feおよび不可避不純物からなる組成の合金(以下、
この合金をFe−Co合金という)製棒の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is directed to an alloy having a composition of Co: 30 to 60% by weight, the balance: Fe and inevitable impurities (hereinafter,
This alloy is referred to as an Fe-Co alloy) and a method for manufacturing a rod.

上記Fe−Co合金製棒は、適当な長さに切断されて粉砕さ
れ、Fe−Co合金粉末にされる。このFe−Co合金粉末は、
TbおよびGd粉末と共に焼結され、光磁気記録薄膜成形用
スパッタリングターゲットの原料粉末として使用されて
いる。
The Fe-Co alloy rod is cut into an appropriate length and crushed to obtain Fe-Co alloy powder. This Fe-Co alloy powder is
It is sintered together with Tb and Gd powders and used as a raw material powder for a sputtering target for forming a magneto-optical recording thin film.

〔従来の技術〕[Conventional technology]

上記Fe−Co合金は、まず真空溶解され、インゴットと
し、加熱して分塊鍛造し、さらに加熱して熱間鍛造され
る。上記Fe−Co合金は極めて脆いため、上記加熱→熱間
鍛造を注意深く繰り返えし行ったのち熱間仕上鍛造さ
れ、表面加工されて、棒に仕上げられていた。
The Fe-Co alloy is first vacuum-melted into an ingot, heated for slab forging, and further heated for hot forging. Since the above Fe-Co alloy is extremely brittle, the above heating and hot forging were carefully repeated, and then hot finish forging was performed, the surface was processed, and the bar was finished.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来のFe−Co合金製棒製造工程においては、加熱→
熱間鍛造工程を注意深く何回も繰り返す必要があるため
に、長時間を要し、上記Fe−Co合金は、きわめて脆く、
加工可能温度範囲も1150℃〜1300℃と狭いため、温度制
御が難しく、上記温度範囲を外れて熱間加工すると熱間
鍛造中に割れが発生し、歩留りが悪いという問題点があ
った。
In the above conventional Fe-Co alloy rod manufacturing process, heating →
It takes a long time because the hot forging process needs to be carefully repeated many times, and the Fe-Co alloy is extremely brittle.
Since the workable temperature range is as narrow as 1150 ° C to 1300 ° C, it is difficult to control the temperature. If hot working is performed outside the above temperature range, cracking occurs during hot forging, resulting in poor yield.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上記問題点を解決し、効率良く
Fe−Co合金丸棒を製造すべく研究を行った結果、 Fe−Co合金を真空溶解し、真空溶解して得られた溶湯
を、できるだけ最終素材製品の形状に近い容器に注入し
て、上記最終素材製品の形状に近いインゴットを作成
し、上記インゴットを上記容器ごと熱間鍛造することに
より、上記加熱→熱間鍛造の繰り返し工程を省略するこ
とができ、Fe−Co合金の表面が容器によって被覆されて
いるために酸化が防止され、表面の冷却による熱間鍛造
中の割れの発生がなく、加工が容易になるという知見を
得たのである。
Therefore, the present inventors have solved the above problems and efficiently
As a result of conducting research to produce a Fe-Co alloy round bar, the Fe-Co alloy was vacuum-melted, and the molten metal obtained by vacuum-melting was poured into a container as close to the shape of the final raw material product as possible. By creating an ingot close to the shape of the final material product and hot forging the ingot together with the container, it is possible to omit the repeating step of heating → hot forging, and the surface of the Fe-Co alloy depends on the container. It was found that the coating prevents oxidation, prevents cracking during hot forging due to surface cooling, and facilitates processing.

この発明は、かかる知見にもとづいてなされたものであ
って、Co:20〜60重量%、残部Feおよび不可避不純物か
らなるFe−Co合金を真空溶解して金属容器に鋳造し、上
記金属容器でパッキングしたインゴットを作成し、上記
インゴットを金属容器ごと熱間鍛造することを特徴とす
るFe−Co合金の鍛造方法に特徴を有するものである。
This invention has been made based on such findings, Co: 20-60 wt%, the balance Fe and Fe-Co alloy consisting of inevitable impurities is vacuum-melted and cast into a metal container, the metal container The Fe-Co alloy forging method is characterized by producing a packed ingot and hot forging the ingot together with a metal container.

この発明のFe−Co合金をCo:20〜60重量%に限定した理
由は、Coが20重量%未満、あるいは60重量%を越えて含
有すると熱間加工が容易となり、従来の加工法でも十分
対応可能であるからである。この発明は、Fe−Co合金の
うちでも脆い性質を有するCo:20〜60重量%、そのうち
でもさらに脆いCo:40〜60重量%のFe−Co合金に対して
最も有効な方法である。
The reason for limiting the Fe-Co alloy of the present invention to Co: 20 to 60% by weight is that when Co is contained in an amount of less than 20% by weight or more than 60% by weight, hot working becomes easy, and conventional working methods are sufficient. This is because it is possible. The present invention is the most effective method for a Fe—Co alloy having a brittle property of Co: 20 to 60% by weight, and a more brittle Co: 40 to 60% by weight among Fe—Co alloys.

さらに、この発明で用いる金属容器の材質の要件は、Fe
−Co合金と反応を起こさないこと、および高温での変形
抵抗がFe−Co合金と似ていることであればよいが、これ
らの条件を満たす材料として炭素鋼、低合金鋼があげら
れる。
Furthermore, the requirements for the material of the metal container used in this invention are Fe
As long as it does not react with the --Co alloy and that the deformation resistance at high temperature is similar to that of the Fe--Co alloy, carbon steel and low alloy steel can be cited as materials satisfying these conditions.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically described based on Examples.

第1表に示される成分組成のFe−Co合金を、それぞれ15
0kg高周波誘導加熱真空溶解炉を用いて溶解し、内径:20
0mm×高さ:560mm×肉厚:20mmの炭素鋼製円筒容器に真空
鋳造し、上部に生じた引け巣部分を切断して、その上に
蓋をかぶせて溶接し、円筒容器でパッキングしたインゴ
ットを作成した。上記インゴットを温度:1250℃に加熱
して、容器ごと熱間鍛造し、表面温度が800℃になるま
で熱間鍛造を継続し、丸棒に成形した。上記丸棒の炭素
鋼表皮を切削除去してFe−Co合金の丸棒とし、上記Fe−
Co合金の丸棒の表面を検査したが、熱間鍛造による割れ
は発見されなかった。表面の温度は800℃であっても、
炭素鋼表皮内部のFe−Co合金の温度は、熱間鍛造可能な
1150℃以上になっていたものと思われる。
Fe-Co alloys with the composition shown in Table 1 are
Melted using 0kg high frequency induction heating vacuum melting furnace, inner diameter: 20
0mm × height: 560mm × wall thickness: 20mm vacuum cast into a carbon steel cylindrical container, cut the shrinkage cavity part that occurred on the top, weld it with a lid on it, packed in a cylindrical container It was created. The above ingot was heated to a temperature of 1250 ° C., hot forged together with the container, continued hot forged until the surface temperature reached 800 ° C., and formed into a round bar. The carbon steel skin of the round bar is removed by cutting to form a Fe-Co alloy round bar, and the Fe-
When the surface of the Co alloy round bar was inspected, no crack was found due to hot forging. Even if the surface temperature is 800 ℃,
The temperature of the Fe-Co alloy inside the carbon steel skin can be hot forged
It seems that the temperature was over 1150 ℃.

一方、比較のために、第1表に示される成分組成のFe−
Co合金を、それぞれ150kg高周波誘導加熱真空炉を用い
て溶解し、直径:200mm×高さ:560mmのインゴットを作成
し、上記インゴットを温度:1250℃に加熱して熱間鍛造
し、表面温度:1000℃になるまで従来法により熱間鍛造
を継続して丸棒を作成した。上記従来法により熱間鍛造
した丸棒には鍛造割れが発生し、加工不能となるものも
あった。鍛造割れの目視による検査結果も第1表に示し
た。
On the other hand, for comparison, Fe- having the composition shown in Table 1
Each Co alloy was melted using a 150 kg high frequency induction heating vacuum furnace to create an ingot with a diameter of 200 mm and a height of 560 mm, and the ingot was heated to a temperature of 1250 ° C. and hot forged, and the surface temperature was: Hot forging was continued by the conventional method until the temperature reached 1000 ° C to form a round bar. Some of the round bars hot forged by the above-mentioned conventional method are not capable of being machined due to forging cracks. Table 1 also shows the visual inspection results of forging cracks.

なお、この実施例では、容器として円筒容器を用いた
が、容器の形状はこれに限定されるものではなく、角柱
容器等の任意の形状の容器を用いることができ、上記容
器の材質として低合金鋼を用いることも可能である。
Although a cylindrical container was used as the container in this example, the shape of the container is not limited to this, and a container of any shape such as a prismatic container can be used, and the material of the container is low. It is also possible to use alloy steel.

上記第1表によると、パッキングしたインゴットを用い
て熱間鍛造すると、鍛造中のインゴットの表面温度が80
0℃になっても鍛造割れがないのに対し、従来法では、
インゴットの表面温度が1000℃になると製造割れが発生
しており、上記パッキングによりFe−Co合金の鍛造可能
温度範囲が大幅に広がっていることがわかる。
According to Table 1 above, when hot forging is performed using the packed ingot, the surface temperature of the ingot during forging is 80%.
While there is no forging crack at 0 ° C, in the conventional method,
It can be seen that when the surface temperature of the ingot reaches 1000 ° C, manufacturing cracks occur, and the above-mentioned packing greatly expands the forgeable temperature range of the Fe-Co alloy.

〔発明の効果〕〔The invention's effect〕

パッキングしたFe−Co合金インゴットを用いて熱間鍛造
すると、Fe−Co合金素材表面が露出していないために表
面酸化することがなく、またパッキングされたインゴッ
トの表面温度が1150℃より下がったとしても、鍛造割れ
の発生がなく、鍛造可能温度範囲が大幅に広がるので、
熱間鍛造中の素材の温度管理が極めて容易になり、さら
に金属容器の形状を最終素材製品の形状にできる限り近
い形状とすることにより、製造工程を大幅に短縮できる
等のすぐれた効果がある。
When hot forging is performed using the packed Fe-Co alloy ingot, the surface of the Fe-Co alloy material is not exposed, so that surface oxidation does not occur, and the surface temperature of the packed ingot falls below 1150 ° C. Also, since there is no forging cracking and the temperature range that can be forged is greatly expanded,
The temperature control of the material during hot forging becomes extremely easy, and by making the shape of the metal container as close as possible to the shape of the final material product, there is an excellent effect that the manufacturing process can be greatly shortened. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Co:20〜60重量%、残部:Feおよび不可避不
純物からなる組成のFe−Co合金を真空溶解し、 上記真空溶解したFe−Co合金を金属容器に鋳造して、上
記金属容器でパッキングしたインゴットを作成し、 上記インゴットを金属容器ごと熱間鍛造することを特徴
とするFe−Co合金の鍛造方法。
1. A Fe-Co alloy having a composition of Co: 20 to 60% by weight, the balance: Fe, and unavoidable impurities is vacuum-melted, and the vacuum-melted Fe-Co alloy is cast into a metal container to obtain the above-mentioned metal. A method for forging a Fe-Co alloy, which comprises forming an ingot packed in a container, and hot forging the ingot together with a metal container.
JP24850587A 1987-10-01 1987-10-01 Fe-Co alloy forging method Expired - Lifetime JPH0741344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24850587A JPH0741344B2 (en) 1987-10-01 1987-10-01 Fe-Co alloy forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24850587A JPH0741344B2 (en) 1987-10-01 1987-10-01 Fe-Co alloy forging method

Publications (2)

Publication Number Publication Date
JPH0191927A JPH0191927A (en) 1989-04-11
JPH0741344B2 true JPH0741344B2 (en) 1995-05-10

Family

ID=17179177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24850587A Expired - Lifetime JPH0741344B2 (en) 1987-10-01 1987-10-01 Fe-Co alloy forging method

Country Status (1)

Country Link
JP (1) JPH0741344B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001282589A1 (en) * 2000-09-01 2002-03-13 Showa Denko K K Metal-casting method and apparatus, casting system and cast-forging system
CN112719173B (en) * 2020-12-18 2023-03-14 陕西宏远航空锻造有限责任公司 Forging method of 15-5PH disc shaft integrated forging

Also Published As

Publication number Publication date
JPH0191927A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
US4844746A (en) Method of producing a tantalum stock material of high ductility
JPH04232234A (en) Production of product from doping material containing alloy on basis of titanium aluminide
US3305923A (en) Methods for bonding dissimilar materials
GB2302551A (en) Improvements on or relating to alloys
JPS6053099B2 (en) Method of manufacturing hot-processed titanium products
JPH0741344B2 (en) Fe-Co alloy forging method
US4808225A (en) Method for producing an alloy product of improved ductility from metal powder
JPS5935642A (en) Production of mo alloy ingot
JP4537501B2 (en) Cemented carbide and method for producing the same
JP4384727B2 (en) Manufacturing method of heat-resistant molded parts
JPH05453B2 (en)
JPH0364436A (en) Manufacture of high purity ni material
JPS6058289B2 (en) Manufacturing method of high chromium alloy material
DE19505689A1 (en) Prodn. of reactive metal castings
JPS59157202A (en) Manufacture of al alloy machine parts
JPS61502615A (en) Titanium, hafnium and zirconium group 4B transition metal group passivated metal powder for powder metallurgy and method for producing the same
JPS6362854A (en) Production of processed product of corrosion and oxidation resistant ni-al-si-b alloy
JP2599729B2 (en) Ingot making method for alloy articles
JPS6296604A (en) Production of powder metallurgical product
JPH06256918A (en) Production of molybdenum or molybdenum alloy sheet
JPS61223106A (en) Production of high alloy clad product
JPH0565568B2 (en)
NO161603B (en) APPLICATION OF FLUORATED NORBORNYLSILOXANES FOR DEFINING NEW TRANSPORTED, EXHAUSTED OIL OIL.
JP2684477B2 (en) High carbon steel manufacturing method
SU833374A1 (en) Method of producing sintered material