JPH074110Y2 - Polishing jig - Google Patents

Polishing jig

Info

Publication number
JPH074110Y2
JPH074110Y2 JP1989052322U JP5232289U JPH074110Y2 JP H074110 Y2 JPH074110 Y2 JP H074110Y2 JP 1989052322 U JP1989052322 U JP 1989052322U JP 5232289 U JP5232289 U JP 5232289U JP H074110 Y2 JPH074110 Y2 JP H074110Y2
Authority
JP
Japan
Prior art keywords
polishing
plane
crystal
jig
polishing jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989052322U
Other languages
Japanese (ja)
Other versions
JPH02143144U (en
Inventor
和弘 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1989052322U priority Critical patent/JPH074110Y2/en
Publication of JPH02143144U publication Critical patent/JPH02143144U/ja
Application granted granted Critical
Publication of JPH074110Y2 publication Critical patent/JPH074110Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【考案の詳細な説明】[Detailed description of the device] 【産業上の利用分野】[Industrial applications]

本考案は、半導体工業に利用される半導体単結晶の加工
具に関し、特に単結晶の特定の方位面の研磨をするため
の研磨工具に関する。
The present invention relates to a semiconductor single crystal processing tool used in the semiconductor industry, and more particularly to a polishing tool for polishing a specific azimuth plane of a single crystal.

【従来の技術】[Prior art]

半導体単結晶の物理的性質あるいは化学的性質は異方性
を有し、単結晶を、ある特定の方位面に加工して、求め
る性質を引き出すことは電子デバイスや光学素子の作製
において重要な工程の一つである。単結晶の上記特定の
方位面に加工する方法は、X線回折装置により結晶の面
方位を測定しながら、切断、研磨をくり返し、最終的に
所定の方位面をもつ単結晶を得る方法が一般的である。
その第一の方法は、X線回折装置により目的の面方位に
合わせてワイヤーソーあるいは内周刃型切断機等で切断
する方法であるが、一度の切断で求める方位面を得るこ
とは難しく、数回の補正をしながら切断を繰り返し、は
じめて、求める結晶方位面が得られることが多かった。
水晶のような大型結晶の場合には、結晶を多少無駄にし
ても、この方法でかなり高精度の方位面をもつ加工物を
得ることができるが、大型結晶を成長させることが困難
な結晶、あるいは不定形に近い結晶の場合には、上記加
工法を適用すると、一回の切断では0.5〜1.0°程度の方
位精度しか得られない。 このように面方位のずれた結晶に対しては、ラッピング
の際に第7図に示すような修正治具等を用いて、X線回
折装置と組み合わせて、面方位を修正し、研磨していた
(Rev.,Sci.,Instrum.,48,1215(1977))。 第6図に示す面方位修正治具20は円筒21の内部にシャフ
ト22を配置し、該シャフト22は円筒21の上、下端周側部
に設けた複数の角度調整ねじ23およびストッパねじ25で
円筒21内で円筒半径方向および円筒軸方向に移動可能に
支持されている。シャフト22内にはピストン26が嵌挿さ
れており、そのピストン26の端部は、円筒21の研磨側端
部に臨み、かつその端部には結晶試料を保持するホルダ
27が取り付けられている。シャフト22のピストン26の嵌
挿側の反対側には、試料ホルダ27上の結晶研磨時の荷重
調整用の圧力調整ねじ29が取り付けられている。したが
って、円筒21下端部の鉄リング30の端部が形成する平面
より突出した試料ホルダ27上の結晶を鉄リング30となす
平面と面一になるまで(図示しない)研磨することがで
きる。 このような面方位修正治具とX線回折装置を組み合わせ
て結晶の面方位を修正する方法には、ディフラクトメー
タ法あるいは背面ラウエ法がある。ディフラクトメータ
法は第7図にその概略図を示すようにX線回折装置のV
ブロック31上に回転自在になるように面方位治具20を組
み込み、X線照射器41からのX線を面方位治具20上の試
料32に照射し、面方位治具20を回転させながらその反射
光を検出器42で検出することで目的の方位面を求める方
法である。 また、背面ラウエ法は第8図に示すように、Vブロック
31上の面方位修正治具20に支持される試料32の端部表面
に直交する方向からX線33をピンホールコリメータ34を
介して試料32に照射し、反射X線の回折斑点がピンホー
ルコリメータ34と直交する平面に配置される感光フィル
ム36上の位置「X」を該フィルム36上の入射X線33の通
過位置に合わせるために、面方位修正治具20の角度調整
ねじ23を調整して求める結晶方位面を見いだす方法であ
る。
The physical or chemical properties of semiconductor single crystals have anisotropy, and it is an important step in the fabrication of electronic devices and optical elements to process the single crystal into a specific orientation plane to bring out the desired properties. one of. As a method of processing the above-mentioned specific azimuth plane of a single crystal, generally, a method of repeatedly cutting and polishing while measuring the plane orientation of the crystal with an X-ray diffractometer to finally obtain a single crystal having a predetermined azimuth plane Target.
The first method is a method of cutting with a wire saw or an inner peripheral blade type cutting machine or the like according to a target plane orientation by an X-ray diffractometer, but it is difficult to obtain a desired azimuth plane by cutting once. It was often the case that the desired crystallographic orientation plane was obtained only after repeating cutting while making several corrections.
In the case of a large crystal such as quartz, even if the crystal is wasted to some extent, it is possible to obtain a work piece having a azimuth plane of considerably high accuracy by this method, but it is difficult to grow the large crystal. Alternatively, in the case of a crystal having an indefinite shape, if the above processing method is applied, the orientation accuracy of about 0.5 to 1.0 ° can be obtained with one cutting. For such a crystal whose plane orientation is deviated, the plane orientation is corrected and polished by using a correction jig as shown in FIG. 7 in combination with an X-ray diffractometer at the time of lapping. (Rev., Sci., Instrum., 48, 1215 (1977)). The plane orientation correction jig 20 shown in FIG. 6 has a shaft 22 arranged inside a cylinder 21, and the shaft 22 is composed of a plurality of angle adjusting screws 23 and stopper screws 25 provided on the upper and lower peripheral sides of the cylinder 21. It is movably supported in the cylinder 21 in the radial direction of the cylinder and the axial direction of the cylinder. A piston 26 is inserted into the shaft 22, and the end of the piston 26 faces the polishing side end of the cylinder 21, and the end holds a crystal sample.
27 is installed. A pressure adjusting screw 29 for adjusting the load on the sample holder 27 during crystal polishing is attached to the side of the shaft 22 opposite to the side where the piston 26 is fitted. Therefore, the crystal on the sample holder 27 protruding from the plane formed by the end of the iron ring 30 at the lower end of the cylinder 21 can be polished (not shown) until it is flush with the plane forming the iron ring 30. The diffractometer method or the back surface Laue method is known as a method for correcting the crystal plane orientation by combining such a plane orientation correction jig and an X-ray diffractometer. The diffractometer method is as shown in FIG.
The surface orientation jig 20 is rotatably mounted on the block 31, the X-ray from the X-ray irradiator 41 is applied to the sample 32 on the surface orientation jig 20, and the surface orientation jig 20 is rotated. This is a method in which the target azimuth plane is obtained by detecting the reflected light with the detector 42. In addition, as shown in FIG. 8, the back surface Laue method is a V block.
The X-ray 33 is irradiated onto the sample 32 through the pinhole collimator 34 from a direction orthogonal to the end surface of the sample 32 supported by the surface orientation correcting jig 20 on the surface 31 and the diffraction spots of the reflected X-ray are pinholes. The angle adjusting screw 23 of the plane orientation correcting jig 20 is adjusted so that the position "X" on the photosensitive film 36 arranged on the plane orthogonal to the collimator 34 is aligned with the passing position of the incident X-ray 33 on the film 36. This is a method of finding the crystal orientation plane to be obtained.

【考案が解決すべき課題】[Issues to be solved by the device]

しかしながら、上記従来の結晶の面方位修正方法は、多
くの問題点を有している。すなわち、ディフラクトメー
タ法を用いるには、X線回折装置のような複雑で、かつ
高精度の精密機械の回転自在の面方位修正治具を組み込
みことが必要で、X線回折装置の大幅な改造を余儀なく
させられる。また、背面ラウエ法はX線回折装置とは独
立した部材上で結晶の面方位を修正するため、背面ラウ
エ法用の装置はX線回折装置自体の大幅な改造を必要と
しない点で、ディフラクトメータ法の装置より簡単な装
置で測定ができるが、それでも、面方位修正治具をX線
回折装置に連結する必要があり、その連結方式には高精
度なものが要求される。背面ラウエ法による方位測定精
度は、ラウエカメラの配置、Vブロックの正確度等に依
存し、方位測定誤差は約0.5°が限度である。ところが
現在の半導体製造技術においては、この方位測定誤差を
0.1°以内に抑えることが要求されており、現在の背面
ラウエ法では、ほとんど対応できないといってよい。そ
の上、面方位のずれがわかっていてもX線照射下で修正
する必要があり、面方位修正治具の角度調整ねじ単独で
は、その面方位のずれを定量的に修正することができな
いという欠点もあった。 そこで、本考案は、上記従来技術のもつ問題点を解決
し、面方位修正治具をX線回折装置に連結する必要をな
くし、したがって、面方位修正治具とX線回折装置を連
結した場合に生じる測定誤差をなくし、また、両者を連
結した状態でX線により測定するわずらわしさをなくす
と共に、比較的簡単な構造をもった研磨治具を提供する
ことを目的としている。
However, the above-described conventional crystal plane orientation correction method has many problems. That is, in order to use the diffractometer method, it is necessary to incorporate a complicated and highly accurate precision machine-rotatable plane orientation correction jig, such as an X-ray diffractometer, and the X-ray diffractometer requires a large amount of space. It is forced to be remodeled. Further, since the back surface Laue method corrects the crystal plane orientation on a member independent of the X-ray diffractometer, the back Laue method does not require a major modification of the X-ray diffractometer itself. Measurement can be performed with a device simpler than that of the fractometer method, but still, it is necessary to connect the plane orientation correction jig to the X-ray diffractometer, and the connection method must be highly accurate. The azimuth measurement accuracy by the back Laue method depends on the layout of the Laue camera, the accuracy of the V block, etc., and the azimuth measurement error is limited to about 0.5 °. However, in the current semiconductor manufacturing technology, this azimuth measurement error is
It is required to be kept within 0.1 °, and it can be said that the current back surface Laue method is hardly applicable. In addition, even if the deviation of the plane orientation is known, it is necessary to correct it under X-ray irradiation, and it is impossible to quantitatively correct the deviation of the plane orientation by the angle adjusting screw alone of the plane orientation correction jig. There were also drawbacks. Therefore, the present invention solves the above-mentioned problems of the prior art and eliminates the need to connect the plane orientation correction jig to the X-ray diffraction apparatus. Therefore, when the plane orientation correction jig and the X-ray diffraction apparatus are connected, It is an object of the present invention to provide a polishing jig having a relatively simple structure while eliminating the measurement error that occurs in step (1) and eliminating the hassle of measuring with X-rays in a state in which both are connected.

【課題を解決するための手段】[Means for Solving the Problems]

本考案の上記目的は研磨治具回転保持具に上下方向の中
央貫通穴を設け、該貫通穴にスライド自在なピストンを
配置し、研磨治具回転保持具の研磨用側面にある該ピス
トンの一端部に研磨対象となる結晶を保持できるゴニオ
メータを取り付け、研磨治具回転保持具から延出する該
ピストンの他端部側に該ピストンを弾性部材を介して研
磨治具回転保持具に支持させ、かつ前記弾性部材の弾発
力を調整可能な弾性部材保持具を取り付けたことを特徴
とする研磨治具により達成される。
The above object of the present invention is to provide a polishing jig rotary holder with a central through hole in the up-and-down direction, and dispose a slidable piston in the through hole. One end of the piston is provided on the polishing side surface of the polishing jig rotary holder. A goniometer capable of holding a crystal to be polished is attached to the part, and the piston is supported by the polishing jig rotary holder via the elastic member on the other end side of the piston extending from the polishing jig rotary holder. The polishing jig is characterized in that an elastic member holder capable of adjusting the elastic force of the elastic member is attached.

【作用】[Action]

予めX線回折装置により結晶の面方位のずれを測定し、
本研磨治具のゴニオメータの下端部に、この結晶をセッ
トし、ゴニオメータにより面方位の傾きを修正する。そ
の後、面方位の修正された結晶の表面を図示していない
研磨機で研磨する。
In advance, measure the deviation of the crystal plane orientation with an X-ray diffractometer,
This crystal is set at the lower end of the goniometer of the present polishing jig, and the inclination of the plane orientation is corrected by the goniometer. After that, the surface of the crystal whose plane orientation is corrected is polished by a polishing machine (not shown).

【実施例】【Example】

第1図に本考案の研磨治具の一実施例の断面図を示す。
研磨治具回転保持体1の中央の貫通穴2に上下方向にス
ライド自在にピストン3が配置される。ピストン3の上
端部には中心軸体5が研磨治具回転保持体より延出して
設けられている。この中心軸体5に円盤状のバネ保持体
6が螺合されており、このバネ保持体6上には、ストッ
パーねじ7も螺合されている。さらに中心軸体5には適
宜の重さをもつ重り9が挿脱可能となっている。バネ保
持体6と研磨治具回転保持具1とはバネ10を介して連結
されている。バネ10は本考案の弾性部材の一例であり、
バネ保持体6とストッパーねじ7と重り9の組み合わせ
が本考案の弾性部材保持具の一例である。また、バネ保
持体6とストッパーねじ7の中心軸体5の軸方向への移
動距離を調整することでバネ10の弾発力を調整できるの
で、このバネ保持体6とストッパーねじ7との組み合わ
せはバネ10の弾発力を調整可能にする。一方、ピストン
3の下端部であって、研磨治具回転保持具1の脚部11の
内側にゴニオメータ12,13が固定されている。ゴニオメ
ータ12,13は第2図にその詳細図を示すように、互いに
直交する方向の傾きを調整できるゴニオメータを組み合
わせたものである。すなわちゴニオメータ12は第2図
(a)に示すように傾き調整ねじ15を回転させることに
より矢印(イ)方向に回転可能であり、またゴニオメー
タ13は第2図(b)に示すように傾き調整ねじ16を回転
させることにより、矢印(ロ)方向に回転可能となる。 第2図(c)は本考案の研磨治具を下からみた要部平面
図である。試料ホルダ17上に、予めX線回折装置(図示
せず)で面方位のずれを測定された結晶試料19がワック
スを介して取り付けられる。 また、研磨治具回転保持器1の断面傾斜図を第3図に示
すが、研磨治具回転保持器1の脚部11のつくる平面より
試料ホルダ上の結晶が若干下方へ突出した状態となるよ
うに重り9により調整される。 次にヨウ素輸送法で成長させたZnSe単結晶を例にあげ、
本研磨治具の使い方を説明する。II-VI族の化合物半導
体結晶であるZnSe単結晶をヨウ素輸送法で成長し、ワイ
ヤーソーで切断して、(100)面に対して数度のオフ角
度を持つオフオリエンテーション面を持つ単結晶基板を
作製した。該オフオリエンテーション面の水平方向と上
下方向の面方位をX線回折装置により測定し、正規の面
方位からのずれを求めた。面方位を測定した結晶面を試
料ホルダー17に接着させる際の面方位精度を高く保つた
めにできるだけ少量のグリコールフタレート試料取り付
けワックスを用いて結晶の水平方向と上下方向を意識し
つつ試料ホルダー17に接着した。そしてその試料ホルダ
ー17を結晶の水平方向と上下方向を意識しつつ試料接着
部であるゴニオメータ12に取り付け、ゴニオメータ12,1
3を用いて水平方向および上下方向の傾きを研磨によっ
て正確な(100)面が形成されるように修正した。 その後以下の操作により結晶面と研磨治具回転保持体1
の底部の面を一致させ、かつ適当な研磨荷重を得た。 バネ保持体6を回転して上下へ移動させることでバネを
調整して荷重調整を行い、調整後ストッパねじ7でばね
保持体6の中心軸体5上での位置を固定する。次いで、
結晶面を研磨するのに適切な荷重、通常は約100g/cm2
研磨荷重がかかるように重り9を中心軸体5に挿入し
た。 このような準備が終了後、結晶試料の下端表面を粒径3
μmのダイヤモンド砥粒で研磨し、再び研磨面の面方位
を測定した。研磨機(図示せず)には、小型研磨機を用
いた。研磨の際、砥粒が定盤全面にある程度均一にゆき
わたるように研磨治具回転保持具1には、第3図に示す
ように溝15つきのものを用いた。第4図は、試料の水平
方向に対して面方位修正治具の正確度を調べた結果であ
り、ゴニオメータの修正角度と実際に修正された角度の
関係を示したものである。一次の相関が成立し、目標と
する角度との誤差は0.2°以内であった。第5図は、試
料の上下方向に対して面方位修正治具の正確度を調べた
結果であり、ゴニオメータの修正角度と実際に修正され
た角度の関係を示したものである。同様に、一次の相関
が成立し、目標とする角度との誤差は0.3°以内であっ
た。 試料接着部であるゴニオメータの水平方向と上下方向の
傾きを同時に修正し、面方位修正治具で研磨した場合に
も、誤差は0.3°以内であり、本考案方法を用いること
により研磨の段階で面方位を修正することが可能である
ことがわかった。
FIG. 1 shows a sectional view of an embodiment of the polishing jig of the present invention.
A piston 3 is arranged in a through hole 2 in the center of the polishing jig rotary holder 1 so as to be vertically slidable. A central shaft body 5 is provided at an upper end portion of the piston 3 so as to extend from the polishing jig rotation holder. A disk-shaped spring holder 6 is screwed onto the central shaft body 5, and a stopper screw 7 is also screwed onto the spring holder 6. Further, a weight 9 having an appropriate weight can be inserted into and removed from the central shaft body 5. The spring holder 6 and the polishing jig rotation holder 1 are connected via a spring 10. The spring 10 is an example of the elastic member of the present invention,
A combination of the spring holder 6, the stopper screw 7 and the weight 9 is an example of the elastic member holder of the present invention. Further, since the elastic force of the spring 10 can be adjusted by adjusting the moving distance of the spring holder 6 and the stopper screw 7 in the axial direction of the central shaft body 5, the combination of the spring holder 6 and the stopper screw 7 can be adjusted. Makes the resilience of the spring 10 adjustable. On the other hand, the goniometers 12 and 13 are fixed to the lower end of the piston 3 and inside the leg 11 of the polishing jig rotary holder 1. The goniometers 12 and 13 are a combination of goniometers capable of adjusting inclinations in directions orthogonal to each other, as shown in the detailed view of FIG. That is, the goniometer 12 can be rotated in the direction of arrow (a) by rotating the tilt adjusting screw 15 as shown in FIG. 2 (a), and the goniometer 13 can be tilted as shown in FIG. 2 (b). By rotating the screw 16, it becomes possible to rotate in the arrow (B) direction. FIG. 2 (c) is a plan view of an essential part of the polishing jig of the present invention seen from below. On the sample holder 17, a crystal sample 19 whose plane orientation shift has been measured by an X-ray diffractometer (not shown) in advance is attached via wax. Further, FIG. 3 shows a sectional inclination view of the polishing jig rotary holder 1, in which the crystals on the sample holder are slightly projected from the plane formed by the legs 11 of the polishing jig rotary holder 1. Is adjusted by the weight 9. Next, the ZnSe single crystal grown by the iodine transport method is taken as an example,
How to use this polishing jig will be explained. ZnSe single crystal, which is a II-VI group compound semiconductor crystal, is grown by the iodine transport method, cut with a wire saw, and has a single crystal substrate with an off-orientation plane having an off angle of several degrees with respect to the (100) plane. Was produced. The plane orientations of the off-orientation surface in the horizontal direction and the vertical direction were measured by an X-ray diffractometer to determine the deviation from the normal plane orientation. In order to keep the plane orientation accuracy when bonding the crystal plane whose plane orientation was measured to the sample holder 17, use the minimum amount of glycol phthalate sample mounting wax as much as possible in the sample holder 17 while paying attention to the horizontal and vertical directions of the crystal. Glued Then, the sample holder 17 is attached to the goniometer 12 which is the sample bonding portion while paying attention to the horizontal and vertical directions of the crystal, and the goniometers 12, 1
The horizontal and vertical tilts of 3 were corrected by polishing so that an accurate (100) plane was formed. After that, the crystal plane and the polishing jig rotary holder 1 are subjected to the following operations.
The bottom surface of the was matched and an appropriate polishing load was obtained. By rotating the spring holder 6 and moving it up and down, the spring is adjusted to adjust the load, and after adjustment, the stopper screw 7 fixes the position of the spring holder 6 on the central shaft body 5. Then
A weight 9 was inserted into the central shaft body 5 so that a load suitable for polishing the crystal plane, usually about 100 g / cm 2 was applied. After such preparation is completed, the lower end surface of the crystal sample has a grain size of 3
After polishing with a diamond abrasive grain of μm, the plane orientation of the polished surface was measured again. A small polishing machine was used as the polishing machine (not shown). As shown in FIG. 3, a polishing jig rotary holder 1 having a groove 15 was used so that the abrasive grains spread to the entire surface of the platen uniformly to some extent during polishing. FIG. 4 is a result of examining the accuracy of the plane orientation correction jig with respect to the horizontal direction of the sample, and shows the relationship between the correction angle of the goniometer and the actually corrected angle. The first-order correlation was established, and the error with the target angle was within 0.2 °. FIG. 5 shows the results of examining the accuracy of the plane orientation correction jig in the vertical direction of the sample, and shows the relationship between the correction angle of the goniometer and the actually corrected angle. Similarly, a first-order correlation was established and the error with the target angle was within 0.3 °. Even if the horizontal and vertical inclinations of the goniometer, which is the sample adhesion part, are corrected at the same time and the surface orientation correction jig is used for polishing, the error is within 0.3 °. It turns out that it is possible to correct the plane orientation.

【考案の効果】[Effect of device]

本考案によればIV族、III-V族、II-VI族の半導体単結晶
を水平方向と垂直方向の傾きを制御できるゴニオメータ
のついた研磨治具を用い、研磨の段階で修正する方法を
採用することによりX線回折装置と連結する必要がな
く、試料接着部に設置されたゴニオメータ単独で定量的
に面方位を修正できるとともに所定の方位面に精度よく
加工することを実現できる。 本考案によれば特に、従来困難であったII-VI族の半導
体単結晶面方位を精度よく加工することができる。
According to the present invention, a method for correcting a group IV, III-V, or II-VI semiconductor single crystal at the polishing stage using a polishing jig with a goniometer that can control the inclination in the horizontal and vertical directions is provided. By adopting this, it is not necessary to connect it to the X-ray diffractometer, and it is possible to quantitatively correct the plane orientation by the goniometer alone installed in the sample adhesion portion and to perform processing to a predetermined orientation plane with high accuracy. According to the present invention, in particular, it is possible to accurately process the II-VI group semiconductor single crystal plane orientation, which has been difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案の面方位修正方法に用いた研磨治具の
断面図、第2図(a)、(b)は本考案の研磨治具の一
部拡大側面図および(c)はその要部平面図、第3図は
研磨治具回転保持体1の断面斜視図、第4図は、本考案
の面方位修正方法を用いて研磨した場合の水平方向に対
する面方位修正治具のゴニオメータの修正角度と実際に
修正された角度との関係図、第5図は、本考案の面方位
修正方法を用いて研磨した場合の上下方向に対する面方
位修正治具のゴニオメータの修正角度と実際に修正され
た角度との関係図、第6図は、従来の面方位修正方法に
用いられている面方位修正治具の斜視図、第7図はディ
フラクトメータ法を用いる方位測定装置の概略図、第8
図はバックラウエ法を用いた方位測定装置の概略図をそ
れぞれ表す。
FIG. 1 is a sectional view of a polishing jig used in the surface orientation correction method of the present invention, FIGS. 2 (a) and 2 (b) are partially enlarged side views of the polishing jig of the present invention, and FIG. FIG. 3 is a cross-sectional perspective view of the main part of the polishing jig rotary holder 1, and FIG. 4 is a schematic view of a plane orientation correction jig with respect to the horizontal direction when polishing is performed using the plane orientation correction method of the present invention. FIG. 5 shows the relationship between the corrected angle of the goniometer and the actually corrected angle, and FIG. 5 shows the corrected angle of the goniometer of the plane direction correction jig and the actual direction when the plane direction correction method of the present invention is used for polishing. FIG. 6 is a perspective view of a plane orientation correcting jig used in a conventional plane orientation correcting method, and FIG. 7 is a schematic view of an orientation measuring apparatus using a diffractometer method. Figure, 8th
Each of the figures shows a schematic view of an azimuth measuring apparatus using the Backlaue method.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】研磨治具回転保持具に上下方向の中央貫通
穴を設け、該貫通穴にスライド自在なピストンを配置
し、研磨治具回転保持具の研磨用側面にある該ピストン
の一端部に研磨対象となる結晶を保持できるゴニオメー
タを取り付け、研磨治具回転保持具から延出する該ピス
トンの他端部側に該ピストンを弾性部材を介して研磨治
具回転保持具に支持させ、かつ前記弾性部材の弾発力を
調整可能な弾性部材保持具を取り付けたことを特徴とす
る研磨治具。
1. A polishing jig rotary holder is provided with a central through hole in the vertical direction, and a slidable piston is arranged in the through hole, and one end of the piston is provided on a polishing side surface of the polishing jig rotary holder. A goniometer capable of holding a crystal to be polished is attached to the other end of the piston extending from the polishing jig rotary holder, and the piston is supported by the polishing jig rotary holder via an elastic member, and A polishing jig equipped with an elastic member holder capable of adjusting the elastic force of the elastic member.
JP1989052322U 1989-05-01 1989-05-01 Polishing jig Expired - Lifetime JPH074110Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989052322U JPH074110Y2 (en) 1989-05-01 1989-05-01 Polishing jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989052322U JPH074110Y2 (en) 1989-05-01 1989-05-01 Polishing jig

Publications (2)

Publication Number Publication Date
JPH02143144U JPH02143144U (en) 1990-12-05
JPH074110Y2 true JPH074110Y2 (en) 1995-02-01

Family

ID=31572530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989052322U Expired - Lifetime JPH074110Y2 (en) 1989-05-01 1989-05-01 Polishing jig

Country Status (1)

Country Link
JP (1) JPH074110Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120493A (en) * 1976-04-03 1977-10-08 Koga Tadashi Grinding machine
JPS5511516U (en) * 1978-07-07 1980-01-24

Also Published As

Publication number Publication date
JPH02143144U (en) 1990-12-05

Similar Documents

Publication Publication Date Title
US9134260B2 (en) Intelligent machines and process for production of monocrystalline products with goniometer continual feedback
US4710259A (en) Setting the orientation of crystals
US5720271A (en) Process for the orientation of single crystals for cutting in a cutting machine and device for practicing this process
TWI330254B (en) Process and device for the measurement,alighment and fixation of at least a single crystal
KR100291047B1 (en) Process and device for producing a cylindrical single crystal and process for cutting semiconductor wafers
JP3205402B2 (en) Method and apparatus for determining crystal orientation
JP6923067B2 (en) Semiconductor single crystal ingot slicing method
JPH074110Y2 (en) Polishing jig
JPH09325124A (en) Method and device for crystallographic axis orientation adjustment of ingot using x ray
US4961210A (en) High resolution technique and instrument for measuring lattice parameters in single crystals
CN116734776A (en) Leveling method of three-point supporting turntable based on auto-collimator measurement
JP2003254918A (en) Orientation measuring device of single crystal, detection method of angle error of guide member in the device and orientation measuring method of single crystal
JPH06122119A (en) Seed rod cutting method
JPH085008B2 (en) Single crystal plane orientation correction method
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JP2001272359A (en) Monocrystal ingot processing device and its method
Denne A new concept in goniometer head design
JP3635324B2 (en) Method for setting and adjusting a single crystal polishing processed surface to a predetermined azimuth angle, and polishing jig used for carrying out this method
Berger et al. Application of the/spl Omega/scan to the sorting of doubly rotated quartz blanks
JP2004268509A (en) Method for cutting single crystal ingot by wire saw
Berger X-ray orientation determination of single crystals by means of the $\Omega $-Scan Method
JP2567840B2 (en) Crystal orientation determination device
JPH06258262A (en) Azimuth determining method and device for monocrystal ingot
JPS62223655A (en) Measuring instrument for grating constant
JP2001336992A (en) X-ray stress measuring method and x-ray stress measuring device