JPH0740784B2 - Series resonance converter - Google Patents

Series resonance converter

Info

Publication number
JPH0740784B2
JPH0740784B2 JP62025327A JP2532787A JPH0740784B2 JP H0740784 B2 JPH0740784 B2 JP H0740784B2 JP 62025327 A JP62025327 A JP 62025327A JP 2532787 A JP2532787 A JP 2532787A JP H0740784 B2 JPH0740784 B2 JP H0740784B2
Authority
JP
Japan
Prior art keywords
current
mos
resonance
fet
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62025327A
Other languages
Japanese (ja)
Other versions
JPS63194570A (en
Inventor
豊 鍬田
省二 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62025327A priority Critical patent/JPH0740784B2/en
Publication of JPS63194570A publication Critical patent/JPS63194570A/en
Publication of JPH0740784B2 publication Critical patent/JPH0740784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は特に大電力用に適し、スイッチング素子を制
御して直列共振電流の半波を流して直流を交流にDC−AC
変換回路で変換し、その変換された交流出力を全波整流
して直流出力を得る直列共振コンバータに関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention is particularly suitable for high power, and controls a switching element to flow a half wave of series resonance current to convert direct current to alternating current DC-AC.
The present invention relates to a series resonant converter that converts a conversion circuit and full-wave rectifies the converted AC output to obtain a DC output.

「従来の技術」 従来において、直流‐直流(DC-DC)コンバータにおけ
る損失を低減するため、第4図に示すようにフォワード
タイプのコンバータの出力回路にMOS-FETが用いられて
いる。このコンバータは直流電源1が主スイッチ2を介
して主トランス3の1次側に接続され、主スイッチ2の
オン,オフと同期して主トランス3の2次側の整流用MO
S-FET4,5を交互にオン,オフさせることによりMOS-FET
で整流作用を行うものである。オン抵抗の小さいMOS-FE
Tを用いることにより、PNダイオードに比べて低損失化
を図るものである。
“Prior Art” Conventionally, in order to reduce loss in a direct current-direct current (DC-DC) converter, a MOS-FET is used in an output circuit of a forward type converter as shown in FIG. In this converter, a DC power supply 1 is connected to a primary side of a main transformer 3 via a main switch 2, and a rectifying MO on a secondary side of the main transformer 3 is synchronized with turning on / off of the main switch 2.
By turning on / off S-FET4 and 5 alternately, MOS-FET
The rectifying action is performed at. MOS-FE with low on-resistance
By using T, the loss is reduced compared to the PN diode.

主トランス3の2次側電圧V及び整流素子(MOS-FE
T)4,5に流れる電流i2,i3の波形を第5図に示す。主ト
ランス3の2次側に発生する電圧Vが正の期間にMOS-
FET4をオン、MOS-FET5をオフさせて主トランス3の1次
側から2次側へ電力を供給し、出力リアクタ6を通じて
出力コンデンサ7に充電し、電圧Vが負の期間はMOS-
FET4をオフ、MOS-FET5をオンさせることにより、出力リ
アクタ6に流れていた電流をMOS-FET5を通して出力コン
デンサ7に流すことができる。
Secondary voltage V t and the rectifying element of the main transformer 3 (MOS-FE
The waveforms of the currents i 2 and i 3 flowing through T) 4,5 are shown in FIG. When the voltage V t generated on the secondary side of the main transformer 3 is positive, the MOS-
On the FET 4, and turns off the MOS-FET 5 power supply from the primary side of the main transformer 3 to the secondary side to charge the output capacitor 7 through the output reactor 6, the period the voltage V t of the negative MOS-
By turning off the FET 4 and turning on the MOS-FET 5, the current flowing in the output reactor 6 can be passed through the MOS-FET 5 to the output capacitor 7.

MOS-FET4,5には寄生要素としてボディーダイオードがあ
り、このダイオードはリカバリー時間が長いため、ボデ
ィーダイオードに電流が流れると逆電圧印加時に大きな
リカバリー電流が流れることになる。第6図に第4図の
電流切り替わり時の時間軸拡大図を示す。出力リアクタ
6に流れる電流は連続になるため、MOS-FET4,5を流れる
電流i2,i3が同時に流れる期間T1,T2がある。この期間
T1,T2は負荷電流によって変化するため、MOS-FET4,5の
ゲート信号G2,G3を期間T1,T2の変化にあわせて変化させ
ないとMOS-FET4,5のボディーダイオードに電流が流れて
リカバリー電流が大きくなり、高周波化時の損失が増大
するという問題があった。また、負荷電流の変化にあわ
せて期間T1,T2が変化するため、それに合わせてゲート
信号G2,G3を発生させることは非常に困難であった。
Since the MOS-FETs 4 and 5 have a body diode as a parasitic element and this diode has a long recovery time, a large recovery current flows when a reverse voltage is applied when a current flows through the body diode. FIG. 6 shows an enlarged view of the time axis when the current is switched in FIG. Since the current flowing through the output reactor 6 is continuous, there are periods T 1 and T 2 during which the currents i 2 and i 3 flowing through the MOS-FETs 4 and 5 simultaneously flow. this period
Since T 1 and T 2 change depending on the load current, the gate signals G 2 and G 3 of the MOS-FETs 4 and 5 must be changed according to the changes of the periods T 1 and T 2 to the body diodes of the MOS-FETs 4 and 5. There was a problem that the current flows and the recovery current becomes large, and the loss at the time of high frequency increases. Further, since the periods T 1 and T 2 change according to the change of the load current, it is very difficult to generate the gate signals G 2 and G 3 according to the change.

又特開昭60−183977号公報に示すように、トランスの2
次側の電圧を検出して、これによりFETゲートを開閉制
御しているものもあるが、これは微弱電力である信号の
整流用としては有効である。然しこれを電力用整流器と
して用いることは、トランスに流れる電流がトランスの
リアクタンスの影響を受けて電圧よりも時間的に大きく
遅れるために、ボディーダイオード電流が流れ電力変換
効率が悪くなるので使用することはできない。
In addition, as shown in JP-A-60-183977, the transformer 2
There is also one that detects the voltage on the secondary side and controls the opening and closing of the FET gate by this, but this is effective for rectifying a signal that is weak power. However, when using this as a power rectifier, the current flowing in the transformer is affected by the reactance of the transformer and is delayed in time more than the voltage, so the body diode current flows and the power conversion efficiency deteriorates. I can't.

この発明の目的は駆動方法が簡単で高効率化が図れるMO
S-FETを整流回路に用いた直列共振コンバータを提供す
ることにある。
The object of the present invention is to provide an MO that can achieve high efficiency with a simple driving method.
It is to provide a series resonant converter using an S-FET in a rectifier circuit.

「問題点を解決するための手段」 この発明によればDC-AC変換回路により半波の直列共振
電流の交流出力を得、その交流出力を整流する整流回路
にMOS-FETが用いられる。更にDA−AC変換回路の出力側
には主トランスの1次側が接続され、その主トランスの
2次側の両端は第1,第2MOS−FETをそれぞれ通じて出力
コンデンサの一端に接続され、その出力コンデンサの他
端は上記主トランスの2次側の中点に接続され、上記第
1,第2MOS−FETを流れる第1,第2電流検出器が設けら
れ、それら第1,第2電流検出器の検出出力が共振電流幅
検出回路へ供給され、この共振電流幅検出回路の出力に
より第1,第2MOS−FETが駆動制御される。従来の技術と
異なるのは簡単な駆動回路で低損失なMOS-FET整流回路
を実現できる点である。
[Means for Solving the Problems] According to the present invention, a MOS-FET is used in a rectifier circuit that obtains an AC output of a half-wave series resonance current by a DC-AC conversion circuit and rectifies the AC output. Furthermore, the primary side of the main transformer is connected to the output side of the DA-AC conversion circuit, and both ends of the secondary side of the main transformer are connected to one end of the output capacitor through the first and second MOS-FETs, respectively. The other end of the output capacitor is connected to the midpoint of the secondary side of the main transformer,
First and second current detectors flowing through the first and second MOS-FETs are provided, and the detection outputs of the first and second current detectors are supplied to the resonance current width detection circuit, and the output of the resonance current width detection circuit Thus, the drive control of the first and second MOS-FETs is performed. What is different from the conventional technology is that a low loss MOS-FET rectifier circuit can be realized with a simple drive circuit.

「実施例」 第1図はこの発明の実施例を説明する回路図である。直
流電源1の両端に共振コンデンサ10,10′の直列回路が
接続され、共振用コンデンサ10,10′と並列にその電圧
をクランプするダイオード11,11′がそれぞれ接続され
る。直流電源1の両端に主スイッチ13,13′の直列回路
が接続され、共振用コンデンサ10,10′の接続と、主ス
イッチ13,13′の接続点との間に共振用リアクタ12を介
して主トランス14の1次側が接続される。主トランス14
の2次側の両端はMOS-FET整流素子15,15′を通じて互に
接続され、その接続点と、主トランス14の2次側の中点
との間に出力コンデンサ16が接続され、出力コンデンサ
16と並列に負荷17が接続される。制御回路18は負荷17の
電圧を検出して主スイッチ13,13′の動作周波数を変化
させることにより、定電圧制御を行う。共振電流幅検出
回路19は整流素子15,15′に流れる共振電流を検出器20,
20′により検出して共振電流の幅を求め、MOS-FET整流
素子15,15′を駆動する。
[Embodiment] FIG. 1 is a circuit diagram for explaining an embodiment of the present invention. A series circuit of resonance capacitors 10 and 10 'is connected to both ends of the DC power supply 1, and diodes 11 and 11' for clamping the voltage are connected in parallel with the resonance capacitors 10 and 10 ', respectively. A series circuit of main switches 13 and 13 'is connected to both ends of the DC power supply 1, and a resonance reactor 12 is provided between the connection of the resonance capacitors 10 and 10' and the connection point of the main switches 13 and 13 '. The primary side of the main transformer 14 is connected. Main transformer 14
Both ends of the secondary side of are connected to each other through MOS-FET rectifier elements 15 and 15 ', and an output capacitor 16 is connected between the connection point and the middle point of the secondary side of the main transformer 14,
A load 17 is connected in parallel with 16. The control circuit 18 detects the voltage of the load 17 and changes the operating frequency of the main switches 13 and 13 'to perform constant voltage control. The resonance current width detection circuit 19 detects the resonance current flowing through the rectifier elements 15 and 15 ′ by the detector 20,
The width of the resonance current is obtained by detecting with 20 ', and the MOS-FET rectifying elements 15 and 15' are driven.

共振用コンデンサ10,10′、ダイオード11,11′、共振用
リアクタ12、主スイッチ13,13′は直列共振形のDC−AC
変換回路21を構成している。
The resonance capacitors 10, 10 ', the diodes 11, 11', the resonance reactor 12, and the main switches 13, 13 'are series resonance type DC-AC.
It constitutes the conversion circuit 21.

MOS-FET整流素子15,15′には寄生要素としてボディーダ
イオードがあるためソースからドレインに電流を流すよ
うに接続する。主スイッチ13,13′を半サイクルごとに
交互にオン、オフさせることにより、主トランス14に共
振電流を流す。すなわち共振用コンデンサ10が充電さ
れ、共振用コンデンサ10′が放電されている状態で、主
スイッチ13がオンになされると、直流電源1、及び共振
用コンデンサ10から主スイッチ13-共振用リアクタ12-主
トランス14の1次側‐共振用コンデンサ10′を通じる直
列共振電流が流れ、共振用コンデンサ10は放電し、共振
用コンデンサ10′は充電される。この共振電流がゼロに
なると主スイッチ13は自動的にオフになり、その後、主
スイッチ13′がオンにされ、同様に動作して共振電流が
流れ、共振用コンデンサ10は充電され、共振用コンデン
サ10′は放電され、かつ主トランス14の1次側に流れる
共振電流は反対方向となる。
Since MOS-FET rectifiers 15 and 15 'have body diodes as parasitic elements, they are connected so that current flows from the source to the drain. By alternately turning on and off the main switches 13 and 13 'every half cycle, a resonance current is passed through the main transformer 14. That is, when the main switch 13 is turned on while the resonance capacitor 10 is charged and the resonance capacitor 10 'is discharged, the DC power supply 1 and the resonance capacitor 10 are connected to the main switch 13-resonance reactor 12 -Primary side of main transformer 14-A series resonance current flows through the resonance capacitor 10 ', the resonance capacitor 10 is discharged, and the resonance capacitor 10' is charged. When the resonance current becomes zero, the main switch 13 is automatically turned off, then the main switch 13 'is turned on, the resonance current flows in the same manner, the resonance capacitor 10 is charged, and the resonance capacitor 10' is charged. 10 'is discharged, and the resonance current flowing in the primary side of the main transformer 14 is in the opposite direction.

主トランス14の2次側に誘起された電圧がMOS-FET整流
素子15,15′により全波整流される。つまり主トランス1
4の2次側に電圧が誘起されると、その電圧の極性に応
じて、MOS-FET整流素子15,15′の一方がそのボディーダ
イオードを通じて電流が流れる。この時、主トランス14
の2次側に接続されているMOS-FET整流素子15,15′に流
れる電流I4,I5を第2図に示す。第2図に示すようにこ
れら電流I4,I5は正弦半波状であり、MOS-FET整流素子1
5,15′に同時に電流が流れない期間T3,T4がある。共振
電流I4,I5は直流電流1の電圧、負荷17の電圧、共振用
リアクタ12、共振用コンデンサ10,10′の各値によって
決まる。ダイオード11,11′が直流電源1の電圧に共振
用コンデンサ10,10′の電圧をクランプするためMOS-FET
15,15′を流れる電流は、正弦半波状となる。共振電流I
4,I5を検出器20,20′により検出し、共振電流が流れて
いる期間を共振電流幅検出回路19で求め、MOS-FET15,1
5′を第2図に示すような信号A,Bで駆動することによ
り、MOS-FETのボディーダイオードに電流を流すことな
く、MOS-FETをオンさせることができる。つまり駆動信
号A,Bの終りを共振電流I4,I5の終り(零になった時)と
一致させればよい。
The voltage induced on the secondary side of the main transformer 14 is full-wave rectified by the MOS-FET rectifying elements 15, 15 '. That is the main transformer 1
When a voltage is induced on the secondary side of 4, a current flows through one of the MOS-FET rectifier elements 15 and 15 'through its body diode according to the polarity of the voltage. At this time, the main transformer 14
FIG. 2 shows the currents I 4 and I 5 flowing through the MOS-FET rectifying elements 15 and 15 'connected to the secondary side of the. As shown in FIG. 2, these currents I 4 and I 5 have a half-sine wave shape, and the MOS-FET rectifier 1
There are periods T 3 and T 4 in which current does not flow at the same time in 5,15 ′. The resonance currents I 4 and I 5 are determined by the voltage of the direct current 1, the voltage of the load 17, the resonance reactor 12, and the resonance capacitors 10 and 10 ′. MOS-FET for diode 11,11 'to clamp the voltage of resonance capacitor 10,10' to the voltage of DC power supply 1
The current flowing through 15,15 'has a half-sine wave shape. Resonance current I
4 and I 5 are detected by the detectors 20 and 20 ', the period during which the resonance current is flowing is found by the resonance current width detection circuit 19, and the
By driving 5'with signals A and B as shown in FIG. 2, the MOS-FET can be turned on without passing a current through the body diode of the MOS-FET. That is, the ends of the drive signals A and B may be matched with the ends of the resonance currents I 4 and I 5 (when they reach zero).

MOS-FET整流素子15,15′に流れる電流I4,I5を検出し、
電流I4,I5が同時にオンしないように制御回路18によ
り、主スイッチ13,13′を制御する動作周波数を制御す
れば負荷電流が変化した場合にも共振電流I4,I5が同時
に流れるということはない。このため、MOS-FETターン
オフ時にリカバリー電流が流れず、高周波化時に従来の
ように損失が増加するといった問題はなくなり、従来の
フォワードコンバータのように整流素子4,5を同時オン
させたり、負荷電流の変化にあわせて同時オンの期間を
制御するといったような複雑な制御をする必要がなくな
る。
Detects the currents I 4 and I 5 flowing in the MOS-FET rectifiers 15 and 15 ′,
If the operating frequency for controlling the main switches 13, 13 'is controlled by the control circuit 18 so that the currents I 4 , I 5 do not turn on at the same time, the resonance currents I 4 , I 5 flow simultaneously even if the load current changes. There is no such thing. Therefore, the recovery current does not flow when the MOS-FET turns off, and the problem of increased loss at high frequencies is eliminated, and the rectifiers 4 and 5 are turned on at the same time as in conventional forward converters, and load current is reduced. There is no need to perform complicated control such as controlling the period of simultaneous ON in accordance with the change of.

この結果から明らかなように、直列共振コンバータの整
流素子としてMOS-FETを用いることにより、従来の技術
に比べて簡単な駆動回路でMOS-FET整流素子のボディー
ダイオードに電流を流さずに駆動することができ高周波
化時にも損失を増加させることのない低損失なMOS-FET
整流回路を実現できる。なおMOS-FET15,15′に対する駆
動信号A,Bをそれぞれ共振電流I4,I5が流れている期間内
とするのは、MOS-FET15,15′の駆動信号が共振電流I4,I
5のオン幅以上になると出力コンデンサ16が電源となっ
て主トランス14を介して1次側に帰還電流を流し、損失
が増加するのを防止するためである。
As is clear from this result, by using a MOS-FET as the rectifying element of the series resonant converter, a simple driving circuit compared to the conventional technology can drive the body diode of the MOS-FET rectifying element without passing a current. A low-loss MOS-FET that can be used and does not increase loss even at high frequencies
A rectifier circuit can be realized. Note MOS-FET15,15 'driving signals A for resonance current I 4 B respectively, to within a period during which I 5 is flowing, MOS-FET15,15' drive signal resonance current I 4 of, I
This is because when the ON width of 5 or more is reached, the output capacitor 16 serves as a power source and a feedback current flows through the main transformer 14 to the primary side to prevent an increase in loss.

直流を交流に変換する直列共振形のDC-AF変換回路21と
しては第1図に示したものに限らず、各種のものを用い
ることができる。またDC-AC変換回路21の出力交流を整
流回路へ供給する場合に主トランスを用いることなく、
4つのMOS-FET整流素子をブリッジ接続した全波整流回
路を用いてもよい。整流回路の損失をなるべく小とする
点からは主トランス14を使用した方がよい。
The series resonance type DC-AF conversion circuit 21 for converting direct current into alternating current is not limited to the one shown in FIG. 1, and various types can be used. Further, when supplying the output alternating current of the DC-AC conversion circuit 21 to the rectifier circuit, without using a main transformer,
A full-wave rectification circuit in which four MOS-FET rectification elements are bridge-connected may be used. From the viewpoint of minimizing the loss of the rectifier circuit, it is better to use the main transformer 14.

「発明の効果」 以上説明したように、直流共振コンバータの整流素子と
してMOS-FETを用いることにより簡単な駆動回路で低損
失な整流回路を大電力用に対しても実現できるため、直
列共振コンバータの一層の高効率化が可能となる。また
この整流素子としてファーストリカバリーダイオードを
用いた場合よりこの発明のコンバータは整流回路の損失
が少ない。すなわち直流電源1の電圧を250V、出力コン
デンサ16の出力電圧V0を−54Vとし、整流素子としてMOS
-FET15,15′を用いた場合と、その代りにファーストリ
カバリーダイオードを用いた場合との各整流回路の損失
を第3図に示す。MOS-FETのボディーダイオードに電流
を流すと損失が増加するため、MOS-FETのオン電圧がボ
ディーダイオードの順方向降下電圧より低くなるように
MOS-FET15,15′のオン抵抗を選んである。第3図より明
らかなように、ファーストリカバリーダイオードに比べ
MOS-FETでは低損失化が図られており、出力電流I0=10A
の時、損失はMOS-FETを用いる場合ファーストリカバリ
ーダイオードを用いる場合の約60%となっている。MOS-
FETはオン抵抗を並列接続により小さくすることができ
るので更に低損失化が可能である。
[Advantages of the Invention] As described above, by using a MOS-FET as a rectifying element of a DC resonant converter, a low loss rectifying circuit can be realized with a simple driving circuit even for high power, and therefore a series resonant converter It is possible to further improve efficiency. Further, the converter of the present invention has less loss in the rectifier circuit than in the case where a fast recovery diode is used as the rectifier element. That is, the voltage of the DC power supply 1 is 250 V, the output voltage V 0 of the output capacitor 16 is −54 V, and the rectifying element is a MOS.
Fig. 3 shows the loss of each rectifier circuit when using -FET15,15 'and when using a fast recovery diode instead. Since the loss increases when a current is applied to the body diode of the MOS-FET, make sure that the on-voltage of the MOS-FET is lower than the forward voltage drop of the body diode.
The on resistance of the MOS-FETs 15 and 15 'is selected. As is clear from Fig. 3, compared to the fast recovery diode
In MOS-FET, low loss is achieved and output current I 0 = 10A
At that time, the loss is about 60% when using the MOS-FET and when using the fast recovery diode. MOS-
Since the on resistance of the FET can be reduced by parallel connection, the loss can be further reduced.

共振電流幅検出回路19により共振電流が流れている期間
を求めてMOS-FET115,15′を駆動することによりボディ
ーダイオードに電流を流すことなく、MOS-FETをオンさ
せることができる。
By driving the MOS-FETs 115 and 15 'by determining the period during which the resonance current is flowing by the resonance current width detection circuit 19, the MOS-FET can be turned on without passing a current through the body diode.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の直列共振コンバータの構成例を示す
接続図、第2図は第1図の整流回路に流れる電流波形及
び駆動信号波形図、第3図は整流回路の損失特性図、第
4図はMOS-FETを整流回路に用いた従来のフォワードコ
ンバータを示す接続図、第5図は第4図のMOS-FET整流
回路の電圧、電流波形図、第6図は第5図の時間軸拡大
およびMOS-FET整流素子駆動信号を示す図である。
FIG. 1 is a connection diagram showing a configuration example of a series resonance converter of the present invention, FIG. 2 is a waveform diagram of a current flowing through the rectifier circuit of FIG. 1 and a drive signal waveform diagram, and FIG. 3 is a loss characteristic diagram of the rectifier circuit. Fig. 4 is a connection diagram showing a conventional forward converter using a MOS-FET in a rectifier circuit, Fig. 5 is a voltage / current waveform diagram of the MOS-FET rectifier circuit in Fig. 4, and Fig. 6 is time in Fig. 5. It is a figure which shows an axis expansion and a MOS-FET rectifying element drive signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スイッチング素子を制御して直列共振電流
を流し、直流を交流にDC−AC変換回路で変換し、その変
換された交流を整流素子により全波整流して直流出力を
得る直列共振コンバータにおいて、 上記DC−AC変換回路の出力側には主トランスの1次側が
接続され、その主トランスの2次側の両端は第1,第2MOS
-FETをそれぞれ通じて出力コンデンサの一端に接続さ
れ、その出力コンデンサの他端は上記主トランスの2次
側の中点に接続され、上記第1,第2MOS-FETを流れる第1,
第2電流検出器が設けられ、それら第1,第2電流検出器
の検出出力が共振電流幅検出回路へ供給され、この共振
電流幅検出回路の出力により上記共振電流が流れている
期間の上記第1,第2MOS-FETが駆動制御されることを特徴
とする直列共振コンバータ。
1. A series resonance in which a switching element is controlled to flow a series resonance current, direct current is converted into alternating current by a DC-AC conversion circuit, and the converted alternating current is full-wave rectified by a rectifying element to obtain a direct current output. In the converter, the primary side of the main transformer is connected to the output side of the DC-AC conversion circuit, and both ends of the secondary side of the main transformer are the first and second MOSs.
-Connected to one end of the output capacitor through each of the FETs, the other end of the output capacitor is connected to the midpoint of the secondary side of the main transformer, and the first and the second that flow through the first and second MOS-FETs.
A second current detector is provided, the detection outputs of the first and second current detectors are supplied to the resonance current width detection circuit, and the output of the resonance current width detection circuit causes the resonance current to flow during the above period. A series resonant converter characterized in that the first and second MOS-FETs are drive-controlled.
JP62025327A 1987-02-04 1987-02-04 Series resonance converter Expired - Lifetime JPH0740784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62025327A JPH0740784B2 (en) 1987-02-04 1987-02-04 Series resonance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62025327A JPH0740784B2 (en) 1987-02-04 1987-02-04 Series resonance converter

Publications (2)

Publication Number Publication Date
JPS63194570A JPS63194570A (en) 1988-08-11
JPH0740784B2 true JPH0740784B2 (en) 1995-05-01

Family

ID=12162857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62025327A Expired - Lifetime JPH0740784B2 (en) 1987-02-04 1987-02-04 Series resonance converter

Country Status (1)

Country Link
JP (1) JPH0740784B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2029209C (en) * 1989-11-22 1999-07-27 Patrizio Vinciarelli Zero-current switching forward power conversion with controllable energy transfer
JP5220646B2 (en) * 2009-02-12 2013-06-26 新電元工業株式会社 Control means for series resonant converter
JP5857489B2 (en) * 2011-07-15 2016-02-10 サンケン電気株式会社 Resonant converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207871A (en) * 1982-05-29 1983-12-03 Nippon Telegr & Teleph Corp <Ntt> Full wave rectifying circuit
JPS60183977A (en) * 1984-03-01 1985-09-19 Mitsubishi Electric Corp High accuracy rectifier circuit

Also Published As

Publication number Publication date
JPS63194570A (en) 1988-08-11

Similar Documents

Publication Publication Date Title
US7042740B2 (en) Soft-switching half-bridge inverter power supply system
US9118259B2 (en) Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current
US5303138A (en) Low loss synchronous rectifier for application to clamped-mode power converters
US5907481A (en) Double ended isolated D.C.--D.C. converter
US5329439A (en) Zero-voltage-switched, three-phase pulse-width-modulating switching rectifier with power factor correction
US7859870B1 (en) Voltage clamps for energy snubbing
JPH10164837A (en) Power supply
US6535407B1 (en) DC/DC converter having a piezoelectric transformer and rectification-smoothing circuit
WO2005025043A1 (en) Synchronous commutation dc-dc converter
KR101000561B1 (en) Series resonant converter
KR20030011337A (en) Switch-mode power supply with autonomous primary inverter
US20170025969A1 (en) Synchronous rectifier phase control to improve load efficiency
JPH07222444A (en) Dc-dc converter
JPH07115774A (en) Power supply
JP4913395B2 (en) converter
JP3555137B2 (en) Bidirectional DC-DC converter
US5680301A (en) Series/parallel resonant converter
US20060083029A1 (en) Switching power supply
US20230299665A1 (en) Power converting device
JPH0740784B2 (en) Series resonance converter
JP5105819B2 (en) DC-DC converter
JPH0746903B2 (en) Resonant switching power supply circuit
JP2917857B2 (en) Resonant converter device
JP2777892B2 (en) Resonant inverter type X-ray device
JP2618931B2 (en) Power converter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term