JPH0740527B2 - Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same - Google Patents

Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same

Info

Publication number
JPH0740527B2
JPH0740527B2 JP59196554A JP19655484A JPH0740527B2 JP H0740527 B2 JPH0740527 B2 JP H0740527B2 JP 59196554 A JP59196554 A JP 59196554A JP 19655484 A JP19655484 A JP 19655484A JP H0740527 B2 JPH0740527 B2 JP H0740527B2
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
grain
oriented electrical
magnetic domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59196554A
Other languages
Japanese (ja)
Other versions
JPS6175506A (en
Inventor
勇 市嶋
洋三 菅
克郎 黒木
尚 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59196554A priority Critical patent/JPH0740527B2/en
Publication of JPS6175506A publication Critical patent/JPS6175506A/en
Publication of JPH0740527B2 publication Critical patent/JPH0740527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、穿孔内のグラスにより磁区制御を施した方向
性電磁鋼板に関するものであり、特に、歪み取り焼鈍を
施しても消失しない磁区制御処理を施した方向性電磁鋼
板およびその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a grain-oriented electrical steel sheet in which magnetic domains are controlled by a glass in a perforation, and in particular, magnetic domain control that does not disappear even when strain relief annealing is performed. The present invention relates to a treated grain-oriented electrical steel sheet and a method for manufacturing the same.

(従来の技術) 方向性電磁鋼板では、結晶方位が可及的にGoss方位に近
くかつ、結晶粒径が数ミリメートル以上と比較的大きな
ものが磁束密度など鉄損以外の磁気特性的にすぐれてい
る。結晶方位がGoss方位に近くかつ結晶粒径が比較的大
きい方向性電磁鋼板の鉄損特性の比較的劣る主たる原因
は上記方位のよい材料の場合、磁区が比較的大きくなる
ことにある。この対策として当該分野では、レーザー処
理等の磁区細分化技術が既に考案されている(特公昭57
−2252号公報)。
(Prior Art) Among grain-oriented electrical steel sheets, those having a crystal orientation as close as possible to the Goss orientation and a relatively large crystal grain size of several millimeters or more have excellent magnetic characteristics other than iron loss such as magnetic flux density. There is. The main reason for the comparatively poor iron loss characteristics of grain-oriented electrical steel sheets whose crystal orientation is close to the Goss orientation and whose crystal grain size is relatively large is that in the case of the above-oriented material, the magnetic domain becomes relatively large. As a countermeasure against this problem, magnetic domain subdivision technology such as laser processing has already been devised in this field (Japanese Patent Publication No.
-2252 publication).

しかして、方向性電磁鋼板を用いて巻き鉄心トランスを
製造する際に鋼板にベンディングを与えざるをえず、こ
れにより、材料に歪みを与えてしまい必然的に磁気特性
が劣化するためベンディング後に歪取焼鈍を行い、上記
歪みを除き磁性を回復させるのが一般的である。
Therefore, when manufacturing a wound core transformer using a grain-oriented electrical steel sheet, the steel sheet must be bent, which causes strain on the material and inevitably deteriorates the magnetic properties. Generally, pre-annealing is performed to remove the strain and recover the magnetism.

従来のレーザー処理等の磁気細分化処理法では、最終焼
鈍された鋼板にレーザー等により内部歪みが与えられて
いるので、かかる内部歪みは、上記の歪み取り焼鈍を施
すことにより消失する。
In the conventional magnetic subdivision processing method such as laser treatment, internal strain is given to the finally annealed steel sheet by a laser or the like, and thus such internal strain disappears by performing the above-mentioned strain relief annealing.

(発明が解決すべき問題点) 本発明は、方向性電磁鋼板の磁気誘導特性が高い場合に
比較的鉄損が低くなるという従来技術の問題点を磁区制
御処理により解消するとともに、方向性電磁鋼板整形上
の理由により歪取り焼鈍を施こさざるを得ない場合は、
歪取り焼鈍を行ってもこれにより歪みが消失しない磁気
細分化技術を提供するものである。
(Problems to be Solved by the Invention) The present invention solves the problem of the prior art that the iron loss becomes relatively low when the magnetic induction characteristics of the grain-oriented electrical steel sheet are high by the magnetic domain control process, and the grain orientation electromagnetic If there is no choice but to perform strain relief annealing for steel plate shaping reasons,
It is intended to provide a magnetic subdivision technique in which strain is not lost even if strain relief annealing is performed.

(問題点を解決するための手段および作用) 本発明に係る方向性電磁鋼板は、通常工程で得られた方
向性電磁鋼板の表面に穿った点列のほぼ三角錐状の穿孔
内に、フォルステライトを主成分としたグラスを有せし
めたことにより磁区制御処理を施したものであり、また
本発明に係る磁区制御処理方法は、方向性電磁鋼板の通
常の製造工程で得られた、冷間圧延板又は脱炭焼鈍板の
表面に点列に穿ち、次いでMgOを主成分としたコーティ
ングを施してから2次再結晶焼鈍を行い、2次再結晶焼
鈍板の表面にフォルステライトを形成させ、而して、上
記穿孔内にフォルステライトを主成分としたグラスを埋
収したことを特徴とする。以下、本発明を図面を参照し
つつ詳しく説明する。
(Means and Actions for Solving Problems) The grain-oriented electrical steel sheet according to the present invention has a structure in which substantially triangular pyramid-shaped perforations are formed in a point sequence formed on the surface of the grain-oriented electrical steel sheet obtained in a normal process. The magnetic domain control treatment is performed by having a glass containing stellite as a main component, and the magnetic domain control treatment method according to the present invention is obtained in a normal manufacturing process of grain-oriented electrical steel sheet, cold The surface of the rolled plate or decarburized annealed plate is perforated in a dot sequence, and then a coating containing MgO as a main component is applied, and then secondary recrystallization annealing is performed to form forsterite on the surface of the secondary recrystallization annealed plate. Thus, a glass containing forsterite as a main component is buried in the perforations. Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図中、「1」は通常の処理により成長せしめられた
2次再結晶組織を有する方向性電磁鋼板、2は最終焼鈍
工程で形成されたフォルステライトを主成分とする表面
皮膜である。本発明に係る方向性電磁鋼板1はその表面
にほぼ三角錐状の穿孔3が点状に穿たれており、穿孔3
はその内部に微小孔フォルステライト4を有している。
この微小孔フォルステライト4に接する方向性電磁鋼板
1の表面部ではグラス皮膜形成時に酸化され、Fe−Siを
主体とする表面酸化層5が形成されることがある。上記
のグラスの主成分であるフォルステライトは線膨張率が
鋼板1のFe−Siマトリックス6のそれよりもはるかに小
さいため、1000℃以上の高温での仕上焼鈍後、常温迄急
冷される過程で、フォルステライトが穿孔3内で収縮す
る時にFe−Siマトリックス6に引張応力を与え、この結
果穿孔3の周囲に局部的応力が発生する。また内部酸化
層5も、フォルステライトほどFe−Siマトリックス6と
の線膨張率の差はないが、酸化成分より構成されるため
に上記の急冷過程においてその根部5aで局部的歪を発生
させる。上述の如きフォルステライトを主成分とするグ
ラスによる内部応力発生作用によって、二次再結晶に固
有な磁区とは異なる方向を有する微小磁区が発生する。
In FIG. 1, "1" is a grain-oriented electrical steel sheet having a secondary recrystallized structure grown by a normal treatment, and 2 is a surface coating containing forsterite as a main component formed in the final annealing step. The grain-oriented electrical steel sheet 1 according to the present invention has substantially triangular pyramid-shaped perforations 3 formed in dots on its surface.
Has micropores forsterite 4 inside.
On the surface portion of the grain-oriented electrical steel sheet 1 in contact with the micropores forsterite 4, the surface oxide layer 5 mainly composed of Fe-Si may be formed by oxidation during formation of the glass film. Since the linear expansion coefficient of forsterite, which is the main component of the above glass, is much smaller than that of the Fe-Si matrix 6 of the steel sheet 1, in the process of quenching to room temperature after finish annealing at a high temperature of 1000 ° C or higher. When the forsterite contracts in the perforations 3, a tensile stress is applied to the Fe-Si matrix 6, so that local stress is generated around the perforations 3. Further, the internal oxide layer 5 also has a difference in linear expansion coefficient from that of the Fe-Si matrix 6 as compared with the forsterite, but since it is composed of an oxidative component, a local strain is generated at the root 5a in the above quenching process. Due to the internal stress generating action of the glass containing forsterite as a main component as described above, a minute magnetic domain having a direction different from the magnetic domain unique to the secondary recrystallization is generated.

かかる異方性磁区に前記の線膨張率の小さな表面皮膜2
の形成による面張力が付与されるので、スパイク状の18
0°磁区が多数伸張し、磁区が細分化されるのである。
かかる磁区細分化により高磁束密度を有する方向性電磁
鋼板の鉄損を改善して、高磁束密度故本来の磁区が比較
的大きい場合にも、鉄損の両者がすぐれた成品を得るこ
とができる。さらに、このようにして形成された細分化
磁区は従来の磁区細分化技術のような自存的な格子欠陥
ないしは歪みによる偏位によるものでなく、1200℃以上
の極めて高温まで形状変化することのない固形介在物に
よる偏位状態であるので、その後歪取焼鈍を行ってもそ
の効果が消失することはないのである。
The anisotropic magnetic domain has a surface coating 2 having a small coefficient of linear expansion.
Since the surface tension is applied by the formation of
Many 0 ° magnetic domains expand and the magnetic domains are subdivided.
By subdividing the magnetic domains, the iron loss of the grain-oriented electrical steel sheet having a high magnetic flux density can be improved, and even if the original magnetic domain is relatively large due to the high magnetic flux density, a product having excellent iron loss can be obtained. . Furthermore, the subdivided magnetic domains formed in this way are not caused by the displacement due to the existing lattice defects or strain as in the conventional magnetic domain subdivision technology. Since it is in a deflected state due to solid inclusions, the effect does not disappear even if stress relief annealing is performed thereafter.

本発明において最も効果的穿孔は、直径10μm〜1mm、
深さ3〜100μm、間隔10μm〜20mmの点列に穿孔され
たほぼ三角錐形状のものである。
The most effective perforation in the present invention is a diameter of 10 μm to 1 mm,
It has a substantially triangular pyramid shape in which a depth of 3 to 100 μm and a spacing of 10 μm to 20 mm are perforated.

本発明において、穿孔3の孔の直径の下限を10μmにし
たのはこれ未満の直径の孔を工業的に実用可能範囲で穿
孔することが難しく、また、上限を1mmとしたのはこの
値を越えると該孔によって生ずる磁区細分化による鉄損
改善が行われないからである。穿孔3の孔の深さの下限
を3μmとしたのは、通常の電磁鋼板皮膜の表面酸化層
5の厚さが2〜3μmであり、本発明を効果あらしめる
のは3μm以上であるからである。また、上限を100μ
mにしたのは次の理由による。
In the present invention, the lower limit of the diameter of the holes of the perforations 3 is set to 10 μm, it is difficult to perforate holes having a diameter smaller than this in an industrially practical range, and the upper limit is set to 1 mm. This is because if it exceeds, iron loss improvement due to magnetic domain subdivision generated by the holes is not performed. The lower limit of the depth of the holes 3 is set to 3 μm because the thickness of the surface oxide layer 5 of the ordinary electromagnetic steel sheet coating is 2 to 3 μm, and the effect of the present invention is 3 μm or more. is there. Also, the upper limit is 100μ
The reason for setting m is as follows.

磁束の通り抜ける鉄心の断面積占有率はトランスの場合
占積率として測定され重要な因子であるが、通常占積率
は1%以内の変動であれば許容誤差範囲とみなせるの
で、通常断面積に対する孔の断面積が1%以下となる範
囲を求め、これを深さの上限値とした。
The cross-sectional area occupancy rate of the iron core passing through the magnetic flux is an important factor that is measured as the space factor in the case of a transformer, but usually the space factor can be regarded as an allowable error range if it fluctuates within 1%. A range in which the cross-sectional area of the hole was 1% or less was determined, and this was set as the upper limit of the depth.

次に、穿孔3の間隔(d−第2図参照)の下限を10μm
としたのは、孔の最小径は10μmであり、この孔の外径
が接する最も密な条件が10μmであるので、これを下限
とした。また、上限を2mmにしたのは、最も配向性のよ
い材料の場合で磁区巾が約2mmであるので、これをより
細分化する与件として限定した。
Next, the lower limit of the distance between the perforations 3 (d-see FIG. 2) is 10 μm.
The reason is that the minimum diameter of the holes is 10 μm, and the densest condition in which the outer diameters of the holes are in contact is 10 μm, so this was made the lower limit. Moreover, the upper limit of 2 mm is set as a condition for further subdividing this because the magnetic domain width is about 2 mm in the case of the material having the best orientation.

本発明による穿孔3の方向性電磁鋼板表面上での点状配
列形態、ピッチおよび間隔の好ましい具体例を第2図に
より説明する。
A preferred specific example of the dot-like array form, pitch and spacing of the perforations 3 on the surface of the grain-oriented electrical steel sheet according to the present invention will be described with reference to FIG.

本発明において穿孔3の点列の好ましいピッチ(t)を
10μm〜20mmにしたのは、最小孔径10μmと接する条件
を下限値とし、磁気特性、特に鉄損値の改善を行わせる
ため20mm以下とした。なお、ピッチ(t)は等間隔ピッ
チでなく、たとえば0.5〜2mmのピッチと3〜15mmのピッ
チの組合わせでもよい。さらに、点状に配列された穿孔
3が圧延方向(RD)に対してなす好ましい角度(θ)は
45℃〜90である。上記角度であると、素材鉄損値を改善
でき、しかもトランス鉄損値も小さくしうるのである。
In the present invention, the preferable pitch (t) of the point sequence of the perforations 3 is set to
The lower limit is set to 10 μm to 20 mm under the condition of being in contact with the minimum pore diameter of 10 μm, and is set to 20 mm or less in order to improve the magnetic properties, particularly the iron loss value. Note that the pitch (t) is not a regular pitch, but may be a combination of a pitch of 0.5 to 2 mm and a pitch of 3 to 15 mm, for example. Further, the preferable angle (θ) formed by the perforations 3 arranged in a dot shape with respect to the rolling direction (RD) is
45 ° C to 90. With the above angle, the material iron loss value can be improved and the transformer iron loss value can be reduced.

以下、本発明に係る方法を説明する。Hereinafter, the method according to the present invention will be described.

方向性電磁鋼板の通常の製造工程、即ち、製鋼、熱間圧
延、熱延板焼鈍、冷間圧延工程をへて冷延板を製造し、
次いで該冷延板に、パルスレーザーを照射し、微小な穿
孔の点列を形成する。次にこの微小な穿孔が形成された
冷延板を脱炭焼鈍し、表層にできた酸化皮膜を除去した
後、マグネシヤコーティングを通常の目付量で施し、続
いて仕上焼鈍を通常の条件で行う。また、上記の微小な
穿孔の点列を脱炭焼鈍板の表面に形成する場合は、脱炭
焼鈍中に板表面に生成した酸化膜を除去するに足る熱処
理条件で仕上焼鈍を行う。
Ordinary electromagnetic steel sheet manufacturing process, namely, steel making, hot rolling, hot rolled sheet annealing, cold rolling process to produce a cold rolled sheet,
Next, the cold-rolled sheet is irradiated with a pulse laser to form a point array of minute perforations. Next, after decarburizing and annealing the cold-rolled sheet with the minute perforations formed to remove the oxide film formed on the surface layer, magnesia coating is applied at a normal basis weight, followed by finish annealing under normal conditions. To do. Further, when forming the above-mentioned point train of minute perforations on the surface of the decarburized and annealed plate, the finish annealing is performed under a heat treatment condition sufficient to remove the oxide film formed on the surface of the decarburized and annealed plate.

上記の穿孔はパルスレーザー光照射で行うが、パルス強
度を10〜300mJ/Pulseにすると実技に適する。なお、レ
ーザー光の他に、放電加工、電子ビーム、または他の機
械的手段等の手段で穿孔してもよい。
The above-mentioned perforation is carried out by pulsed laser light irradiation, but a pulse intensity of 10 to 300 mJ / Pulse is suitable for practical use. In addition to laser light, holes may be formed by means of electric discharge machining, electron beam, or other mechanical means.

(実施例) 以下、本発明を実施例に基づき説明する。(Example) Hereinafter, the present invention will be described based on examples.

実施例1 通常の方向性電磁鋼板製造工程で得られた板厚0.225mm
の冷延板に以下の条件でレーザー照射を行った。
Example 1 Plate thickness 0.225 mm obtained in a normal grain-oriented electrical steel sheet manufacturing process
Laser irradiation was performed on the cold-rolled sheet of No. 1 under the following conditions.

レーザーのパルス強度:150mJ/Pulse レーザーの照射方向 :圧延方向に対し90° レーザーの照射ピッチ:5mm 微小な穿孔:直径0.08mm、深さ0.02mm、間隔0.5mm 上記穿孔冷延板にN:25%・DP65℃の雰囲気で850℃×120
秒の脱炭焼鈍を施し、脱炭焼鈍中に酸化膜も除去した
後、MgOを主体とした焼鈍分離剤を塗布し1200℃×20時
間の仕上焼鈍を行った。
Laser pulse intensity: 150mJ / Pulse Laser irradiation direction: 90 ° to rolling direction Laser irradiation pitch: 5mm Micro perforation: Diameter 0.08mm, depth 0.02mm, interval 0.5mm N: 25 for the above cold rolled sheet % ・ DP65 ℃ atmosphere 850 ℃ × 120
After decarburizing and annealing for 2 seconds, the oxide film was also removed during the decarburizing and annealing, and then an annealing separator containing MgO as a main component was applied and finish annealing was performed at 1200 ° C for 20 hours.

かくして製造された方向性電磁鋼板の磁束密度B8は1.90
T、鉄損(W17/50)は0.84W/kgであった。また方向性電
磁鋼板の断面を400倍の光学顕微鏡で観察したところ、
ほぼ三角錐状の微小な穿孔が形成されており、その内部
にはフォルステライトを主成分とするグラスが形成され
ていることが確認された。また方向性電磁鋼板の表面を
走査型電子顕微鏡で観察したところ、通常の二次再結晶
組織に見られる磁区が細分化された多数の180°磁区が
圧延方向に伸長していることが確認された。
The magnetic flux density B 8 of the grain-oriented electrical steel sheet thus manufactured is 1.90.
T, iron loss (W 17/50) was 0.84 W / kg. In addition, when observing the cross section of the grain-oriented electrical steel sheet with a 400x optical microscope,
It was confirmed that minute perforations with a substantially triangular pyramid shape were formed, and a glass containing forsterite as a main component was formed inside the perforations. Also, when the surface of the grain-oriented electrical steel sheet was observed with a scanning electron microscope, it was confirmed that a large number of 180 ° magnetic domains in which the magnetic domains found in the ordinary secondary recrystallized structure were subdivided were elongated in the rolling direction. It was

上記の仕上焼鈍ずみ鋼板に850℃×4時間の歪取焼鈍を
行った。
The above finish annealed steel sheet was subjected to strain relief annealing at 850 ° C. for 4 hours.

上記レーザー照射を行わない同一ロットの比較機と共に
鉄損値を次に示す。
The iron loss values are shown below, together with the comparison machine of the same lot not subjected to the laser irradiation.

実施例2 通常工程で得られた板圧0.225mmの冷延板を脱炭焼鈍
し、しかるのち、該脱炭焼鈍板に以下の条件でレーザー
照射を行った。
Example 2 A cold-rolled sheet having a plate pressure of 0.225 mm obtained in a normal process was decarburized and annealed, and then the decarburized and annealed sheet was irradiated with laser under the following conditions.

レーザーパルス強度:100mJ/Pulse レーザーの照射方向:圧延方向に対し70° レーザー照射ピッチ:0.5mmと6mmの組合せ 微小な穿孔:直径0.06mm、深さ0.02mm、間隔0.5mm 上記穿孔脱炭焼鈍板にN:25%・DP60℃の雰囲気で850℃
×120秒の予備仕上焼鈍を行い、脱炭焼鈍時に形成され
た酸化膜を除去した後、MgOを主体とした焼鈍分離剤を
塗布し、1200℃×20時間の仕上焼鈍を行った。
Laser pulse intensity: 100mJ / Pulse Laser irradiation direction: 70 ° to rolling direction Laser irradiation pitch: Combination of 0.5mm and 6mm Micro perforation: Diameter 0.06mm, depth 0.02mm, interval 0.5mm Above decarburized annealing plate 850 ℃ in N: 25% ・ DP60 ℃ atmosphere
After pre-annealing for 120 seconds to remove the oxide film formed during decarburization annealing, an annealing separator containing MgO as a main component was applied and finish annealing was performed at 1200 ° C for 20 hours.

かくして製造された方向性電磁鋼板の磁束密度B8は1.91
T、鉄損8(W17/50)は0.79W/kgであった。
The magnetic flux density B 8 of the grain-oriented electrical steel sheet thus manufactured is 1.91.
T, iron loss 8 (W 17/50) was 0.79W / kg.

実施冷1と同様の方法により、ほぼ三角錐状の微小な穿
孔、フォルステライトを主成分とするグラスの形成およ
び磁区の細分化を確認した。しかる後、該鋼板に850℃
×4時間の標準歪取焼鈍を施した。得られた材料の鉄損
値を上記レーザー照射を行わない同一のロットの比較材
の鉄損値と共に下記に示す。
By the same method as in Example 1, it was confirmed that substantially triangular pyramid-shaped minute perforations, formation of glass containing forsterite as a main component, and subdivision of magnetic domains were confirmed. After that, 850 ℃ on the steel plate
A standard strain relief annealing was performed for 4 hours. The iron loss value of the obtained material is shown below together with the iron loss value of the comparative material of the same lot not subjected to the laser irradiation.

(発明の効果) 本発明の磁区制御手段によれば、歪取焼鈍を施した後で
も、その効果は消滅しないので、巻き鉄心トランスの材
料として利用でき、その工業的価値は甚大である。
(Effect of the Invention) According to the magnetic domain control means of the present invention, the effect does not disappear even after the stress relief annealing is performed, so that it can be used as a material for a wound core transformer, and its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による磁区制御処理鋼の一部断面模式
図、第2図は本発明による磁区制御処理鋼の点状穿孔の
配列を説明する説明図である。 1…方向性電磁鋼板、2…表面被膜、3…穿孔、4…微
小孔フォルステライト。
FIG. 1 is a schematic partial cross-sectional view of a magnetic domain control treated steel according to the present invention, and FIG. 2 is an explanatory view for explaining an arrangement of point-like perforations of the magnetic domain control treated steel according to the present invention. 1 ... Grain-oriented electrical steel sheet, 2 ... Surface coating, 3 ... Perforation, 4 ... Micropore forsterite.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒木 克郎 福岡県北九州市八幡東区枝光1−1―1 新日本製鐵株式会社生産技術研究所内 (72)発明者 小林 尚 福岡県北九州市八幡東区枝光1−1―1 新日本製鐵株式会社生産技術研究所内 (56)参考文献 特開 昭57−152423(JP,A) 特開 昭60−114519(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuro Kuroki 1-1-1 Edamitsu, Hachimanto-ku, Kitakyushu, Fukuoka Prefecture, Nippon Steel Corporation Production Technology Laboratory (72) Inventor Takashi Kobayashi Yawatahigashi, Kitakyushu, Fukuoka Kuedaemitsu 1-1-1 Production Engineering Laboratory, Nippon Steel Corporation (56) References JP-A-57-152423 (JP, A) JP-A-60-114519 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】通常工程で得られた方向性電磁鋼板の表面
に穿った直径10μm〜1mm、深さ3〜100μm間隔10μm
〜2mmの点列のほぼ三角錐状の穿孔内に、フォルステラ
イトを主成分としたグラスを有せしめたことを特徴とす
る磁区制御処理を施した方向性電磁鋼板。
1. A diameter of 10 μm to 1 mm perforated on the surface of a grain-oriented electrical steel sheet obtained in a normal process, a depth of 3 to 100 μm and an interval of 10 μm.
A grain-oriented electrical steel sheet that has been subjected to a magnetic domain control process, characterized by having a glass containing forsterite as a main component inside a perforation in the shape of a triangular pyramid with a dot array of ~ 2 mm.
【請求項2】前記点列が圧延方向に対し90°〜45°の角
度範囲に、かつ、そのピッチが10μm〜20mmである特許
請求の範囲第1項に記載の方向性電磁鋼板。
2. The grain-oriented electrical steel sheet according to claim 1, wherein the dot sequence is in an angle range of 90 ° to 45 ° with respect to the rolling direction and the pitch is 10 μm to 20 mm.
【請求項3】方向性電磁鋼板の通常の製造工程で得られ
た、冷間圧延板又は脱炭焼鈍板の表面に直径10μm〜1m
m、深さ3〜100μmのほぼ三角錐状の孔を10μm〜2mm
の間隔で点列に穿ち、次いでMgOを主成分としたコーテ
ィングを施してから2次再結晶焼鈍を行い、2次再結晶
焼鈍板の表面にフォルステライトを形成させ、而して、
上記穿孔内にフォルステライトを主成分としたグラスを
形成せしめたことを特徴とする磁区制御処理を施した方
向性電磁鋼板の製造方法。
3. A diameter of 10 μm to 1 m on the surface of a cold-rolled plate or a decarburized annealed plate obtained by a normal production process of grain-oriented electrical steel sheet.
m, depth of 3 ~ 100μm, almost triangular pyramidal hole 10μm ~ 2mm
To form a forsterite on the surface of the secondary recrystallized annealed plate, after applying a coating containing MgO as the main component, and then forming a forsterite on the surface of the secondary recrystallized annealed plate.
A method of manufacturing a grain-oriented electrical steel sheet subjected to a magnetic domain control process, characterized in that a glass containing forsterite as a main component is formed in the perforations.
【請求項4】点列が圧延方向に対し90°〜45°の角度範
囲に、かつ、そのピッチが10μm〜20mmである特許請求
の範囲第3項記載の方法。
4. The method according to claim 3, wherein the dot sequence is in the angle range of 90 ° to 45 ° with respect to the rolling direction and the pitch is 10 μm to 20 mm.
【請求項5】レーザー光を照射して穿孔する特許請求の
範囲第3項記載の方法。
5. The method according to claim 3, wherein the hole is formed by irradiating with a laser beam.
JP59196554A 1984-09-21 1984-09-21 Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same Expired - Lifetime JPH0740527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196554A JPH0740527B2 (en) 1984-09-21 1984-09-21 Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196554A JPH0740527B2 (en) 1984-09-21 1984-09-21 Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6175506A JPS6175506A (en) 1986-04-17
JPH0740527B2 true JPH0740527B2 (en) 1995-05-01

Family

ID=16359664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196554A Expired - Lifetime JPH0740527B2 (en) 1984-09-21 1984-09-21 Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0740527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012562A1 (en) * 2013-07-24 2015-01-29 주식회사 포스코 Directional electric steel plate and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI342582B (en) 2003-07-17 2011-05-21 Applied Materials Inc Method of surface texturizing
KR101296990B1 (en) 2010-07-28 2013-08-14 신닛테츠스미킨 카부시키카이샤 Orientated electromagnetic steel sheet and manufacturing method for same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836051B2 (en) * 1982-03-14 1983-08-06 新日本製鐵株式会社 Processing method for electrical steel sheets
JPS60114519A (en) * 1983-11-22 1985-06-21 Kawasaki Steel Corp Production of grain oriented silicon steel sheet having low iron loss

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012562A1 (en) * 2013-07-24 2015-01-29 주식회사 포스코 Directional electric steel plate and method for manufacturing same
US10793929B2 (en) 2013-07-24 2020-10-06 Posco Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JPS6175506A (en) 1986-04-17

Similar Documents

Publication Publication Date Title
JP7245285B2 (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
US4770720A (en) Method for producing a grain-oriented electrical steel sheet having a low watt-loss
JPWO2013099272A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH05335128A (en) Manufacturing method of low iron-loss unidirectional silicon steel plate having excellent noise characteristic
JP6372581B1 (en) Oriented electrical steel sheet
CA2939336C (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for manufacturing said sheet
US4919733A (en) Method for refining magnetic domains of electrical steels to reduce core loss
JPS6342332A (en) Production of low iron loss grain oriented electrical steel sheet
US4915750A (en) Method for providing heat resistant domain refinement of electrical steels to reduce core loss
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP2014512453A (en) Directional flat steel product manufacturing method
JPH0740527B2 (en) Directional electrical steel sheet subjected to magnetic domain control treatment and method of manufacturing the same
KR102163142B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH03260020A (en) Method for radiating eb
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JP3393218B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP2023507438A (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
JP2019135323A (en) Grain-oriented electromagnetic steel sheet, wound iron core, method for manufacturing grain-oriented electromagnetic steel sheet, and method for manufacturing wound iron core
JP7365416B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JP4807064B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
US5067992A (en) Drilling of steel sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term