JPH0739932B2 - Grating interference displacement detector - Google Patents

Grating interference displacement detector

Info

Publication number
JPH0739932B2
JPH0739932B2 JP23090891A JP23090891A JPH0739932B2 JP H0739932 B2 JPH0739932 B2 JP H0739932B2 JP 23090891 A JP23090891 A JP 23090891A JP 23090891 A JP23090891 A JP 23090891A JP H0739932 B2 JPH0739932 B2 JP H0739932B2
Authority
JP
Japan
Prior art keywords
light
scale
mixed
diffraction
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23090891A
Other languages
Japanese (ja)
Other versions
JPH0545180A (en
Inventor
双一 佐藤
雅樹 富谷
龍夫 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP23090891A priority Critical patent/JPH0739932B2/en
Publication of JPH0545180A publication Critical patent/JPH0545180A/en
Publication of JPH0739932B2 publication Critical patent/JPH0739932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、格子干渉型変位検出装
置に関する。詳しくは、光源からの光束を2波に分岐し
てスケールの回折格子上の異なる回折点に入射させ、そ
の各回折点で生成された光束の混合波を電気信号として
検出する格子干渉型変位検出装置に係り、特に、光源へ
の戻り光を防止したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grating interference type displacement detecting device. More specifically, a grating interference type displacement detection in which a light flux from a light source is split into two waves and is made incident on different diffraction points on a diffraction grating of a scale, and a mixed wave of the light fluxes generated at each diffraction point is detected as an electric signal. The present invention relates to a device, and more particularly, to a device that prevents return light to a light source.

【0002】[0002]

【背景技術】従来の光電型エンコーダの高分解能化を図
ったものの1つとして、スケールにホログラフィの技術
を用いて微細なピッチ(通常、1μm程度)の目盛りを
形成し、その目盛りを回折格子として利用して相対変位
を高精度に検出する格子干渉型変位検出装置が知られて
いる。これは、光源からの光束を2波に分岐してスケー
ルの回折格子上の1または2つの回折点に入射させ、そ
の回折点で生成された複数の光束の混合波を電気信号と
して検出するもので、反射型回折格子を用いたものと、
透過型回折格子を用いたものとに分類できる。
BACKGROUND ART As one of the ones aiming at higher resolution of a conventional photoelectric encoder, a scale having a fine pitch (usually about 1 μm) is formed on a scale by using a holographic technique, and the scale is used as a diffraction grating. There is known a grating interference type displacement detection device which utilizes the above to detect relative displacement with high accuracy. This is a method in which a light beam from a light source is split into two waves, made incident on one or two diffraction points on the diffraction grating of the scale, and a mixed wave of a plurality of light beams generated at the diffraction points is detected as an electric signal. Then, with the one using a reflection type diffraction grating,
It can be classified into one using a transmission type diffraction grating.

【0003】前者の反射型回折格子を用いた格子干渉型
変位検出装置としては、図2に示す如く、図中左右方向
へ変位可能に設けられかつその変位方向に沿って反射型
回折格子2Aを有する反射型スケール1Aと、レーザ光
源11と、このレーザ光源11から出射されたレーザビ
ームを2波A,Bに分岐するハーフミラー24と、各分
岐光束A,Bを反射してスケール1Aの回折格子2A上
の同一回折点Pにそれぞれ対称方向から入射させる一対
のミラー23A,23Bと、回折点Pで真上へ出射され
た1次回折光A1,B1 を真下に反射させるミラー32
と、その反射光をスケール1A、ミラー23A,23B
およびハーフミラー24を通じて混合させた混合波を電
気信号に変換する検出器41とから構成されている。こ
こで、前記ハーフミラー24および一対のミラー23
A,23Bから光束分岐手段21が、前記ハーフミラー
24、一対のミラー23A,23Bおよびミラー32か
ら光束混合手段31がそれぞれ構成されている。
As the former, a grating interference type displacement detecting device using a reflection type diffraction grating, as shown in FIG. 2, a reflection type diffraction grating 2A is provided so as to be displaceable in the left and right direction in the figure and along the displacement direction. The reflective scale 1A, the laser light source 11, the half mirror 24 that splits the laser beam emitted from the laser light source 11 into two waves A and B, and the branched light fluxes A and B are reflected to diffract the scale 1A. A pair of mirrors 23A and 23B which are incident on the same diffraction point P on the grating 2A from symmetrical directions respectively, and a mirror 32 which reflects the first-order diffracted lights A1 and B1 emitted right above at the diffraction point P right below.
And the reflected light from the scale 1A and the mirrors 23A and 23B.
And a detector 41 for converting the mixed wave mixed through the half mirror 24 into an electric signal. Here, the half mirror 24 and the pair of mirrors 23
A luminous flux splitting means 21 is constituted by A and 23B, and a luminous flux mixing means 31 is constituted by the half mirror 24, a pair of mirrors 23A and 23B, and a mirror 32.

【0004】従って、レーザ光源11からのレーザビー
ムは、ハーフミラー24によって2分される。各分岐光
束A,Bは、各ミラー23A,23Bで反射された後、
スケール1Aの回折格子2A上の同一回折点Pにそれぞ
れ対称方向から入射される。すると、その回折点Pで各
分岐光束A,Bの1次回折光A1,B1 が生成される。各
1次回折光A1,B1 は、ミラー32、スケール1A、一
対のミラー23A,23Bで順次反射された後、ハーフ
ミラー24で混合され、検出器41へ導かれる。検出器
41では、ハーフミラー24で混合された混合波の偏光
方向を偏光板によって一致させて干渉させた後、受光素
子によって電気信号に変換する。これにより、検出器4
1からは、スケール1Aが回折格子2Aの1ピッチ分だ
け変位したとき、2周期分の完全正弦波信号φAが得ら
れる。
Therefore, the laser beam from the laser light source 11 is divided into two by the half mirror 24. After each of the branched light fluxes A and B is reflected by each of the mirrors 23A and 23B,
The light is incident on the same diffraction point P on the diffraction grating 2A of the scale 1A from symmetrical directions. Then, the first-order diffracted lights A1 and B1 of the respective branched light beams A and B are generated at the diffraction point P. The first-order diffracted lights A1 and B1 are sequentially reflected by the mirror 32, the scale 1A, and the pair of mirrors 23A and 23B, then mixed by the half mirror 24, and guided to the detector 41. In the detector 41, the polarization directions of the mixed waves mixed by the half mirror 24 are matched by the polarizing plates to cause interference, and then converted into electric signals by the light receiving element. As a result, the detector 4
From 1, when the scale 1A is displaced by one pitch of the diffraction grating 2A, a complete sine wave signal φA for two cycles is obtained.

【0005】後者の透過型回折格子を用いた格子干渉型
変位検出装置としては、図3に示す如く、図中左右方向
へ変位可能に設けられかつその変位方向に沿って透過型
回折格子2Bを有する透過型スケール1Bと、レーザ光
源11と、このレーザ光源11から出射されたレーザビ
ームをその偏向方向に従って2波A,Bに分岐する偏光
ビームスプリッタ22と、各分岐光束A,Bを反射して
スケール1Bの回折格子2B上の同一回折点Pにそれぞ
れ対称方向から入射させる一対のミラー23A,23B
と、回折点Pで生成された1次回折光A1,B1 を真上に
反射させるミラー32と、その反射光を混合させるビー
ムスプリッタ34と、その混合波を電気信号に変換する
検出器41A,41Bとから構成されている。ここで、
前記偏光ビームスプリッタ22および一対のミラー23
A,23Bから光束分岐手段21が、前記ミラー32お
よびビームスプリッタ34から光束混合手段31がそれ
ぞれ構成されている。
As the latter grating interference type displacement detecting device using the transmission type diffraction grating, as shown in FIG. 3, a transmission type diffraction grating 2B is provided so as to be displaceable in the left and right directions in the figure and along the displacement direction. The transmission type scale 1B has, a laser light source 11, a polarization beam splitter 22 that splits a laser beam emitted from the laser light source 11 into two waves A and B according to the deflection direction thereof, and reflects each branched light flux A and B. And a pair of mirrors 23A and 23B which are incident on the same diffraction point P on the diffraction grating 2B of the scale 1B from symmetrical directions respectively.
, A mirror 32 for directly reflecting the first-order diffracted light A1, B1 generated at the diffraction point P, a beam splitter 34 for mixing the reflected light, and detectors 41A, 41B for converting the mixed wave into an electric signal. It consists of and. here,
The polarization beam splitter 22 and the pair of mirrors 23
A and 23B constitute a light beam splitting means 21, and the mirror 32 and the beam splitter 34 constitute a light beam mixing means 31, respectively.

【0006】従って、レーザ光源11からのレーザビー
ムは、偏光ビームスプリッタ22の偏向方向に従って2
分される。各分岐光束A,Bは、各ミラー23A,23
Bで反射された後、スケール1Bの回折格子2B上の同
一回折点Pにそれぞれ対称方向から入射される。する
と、その回折点Pで各分岐光束A,Bの1次回折光A1,
B1 が生成される。各1次回折光A1,B1 は、ミラー3
2によって真上に反射され、続いて、ビームスプリッタ
34で混合された後、検出器41A,41Bへ導かれ
る。一方の検出器41Aでは、ビームスプリッタ34で
混合された一方の混合波の偏光方向を偏光板によって一
致させて干渉させた後、受光素子によって電気信号に変
換する。他方の検出器41Bでは、ビームスプリッタ3
4で混合された他方の混合波を1/4波長板によって前
記一方の検出器41Aに入射される混合波に対して位相
を90度遅らせ、続いて、混合波の偏光方向を偏光板に
よって一致させて干渉させた後、受光素子によって電気
信号に変換する。これにより、各検出器41A,41B
からは、スケール1Bが回折格子2Bの1ピッチ分だけ
変位したとき、90度位相差の異なる2周期分の完全正
弦波信号φA,φBが得られる。
Therefore, the laser beam from the laser light source 11 is divided into two beams according to the polarization direction of the polarization beam splitter 22.
Be divided. The respective branched light fluxes A and B are transmitted to the respective mirrors 23A and 23
After being reflected by B, they are respectively incident on the same diffraction point P on the diffraction grating 2B of the scale 1B from symmetrical directions. Then, at the diffraction point P, the first-order diffracted light A1, of each branched light flux A, B
B1 is generated. The first-order diffracted lights A1 and B1 are reflected by the mirror 3
It is reflected right above by 2 and then mixed by the beam splitter 34 and then guided to the detectors 41A and 41B. In the one detector 41A, the polarization directions of one of the mixed waves mixed in the beam splitter 34 are matched by the polarizing plates to cause interference, and then converted into an electric signal by the light receiving element. In the other detector 41B, the beam splitter 3
The other mixed wave mixed in 4 is delayed in phase by 90 degrees with respect to the mixed wave incident on the one detector 41A by the quarter wavelength plate, and then the polarization direction of the mixed wave is matched by the polarizing plate. After making them interfere with each other, they are converted into electric signals by the light receiving element. Thereby, each detector 41A, 41B
From the above, when the scale 1B is displaced by one pitch of the diffraction grating 2B, complete sine wave signals φA and φB for two periods having different 90 ° phase differences are obtained.

【0007】[0007]

【発明が解決しようとする課題】ところが、上述した格
子干渉型変位検出装置のいずれもが、分岐光束A,Bを
スケール1A,1Bに対して斜めから入射させ、スケー
ル1A,1Bに対して直角方向へ反射回折させる光学系
であるため、レーザ光源11への戻り光が存在する。こ
れを除去するためには、偏光素子や波長板などが必要で
ある上、これらを備えたとしても戻り光を完全に除去す
ることは困難であるから、レーザ光源からの出力が不安
定になるという欠点がある。
However, in any of the above-mentioned grating interference type displacement detecting devices, the branched light beams A and B are obliquely incident on the scales 1A and 1B and are perpendicular to the scales 1A and 1B. Since it is an optical system that reflects and diffracts light in the direction, there is return light to the laser light source 11. In order to remove this, a polarizing element, a wave plate, etc. are required, and even if these are provided, it is difficult to completely remove the return light, so the output from the laser light source becomes unstable. There is a drawback that.

【0008】また、上述したいずれもが、複数種の光学
素子を必要とする関係から、部品点数が多く、組立て、
調整に時間がかかる上、装置が大型化するという問題が
ある。特に、後者の透過型回折格子2Bの場合、スケー
ル1Bを挟んで、レーザ光源11、光束分岐手段21、
光束混合手段31および検出器41A,41Bなどの光
学系とは反対側にミラー32を配置しなければならない
から、装置への組み込みが困難であるという問題もあ
る。
Further, all of the above-mentioned devices have a large number of parts and are required to be assembled, because they require a plurality of types of optical elements.
There is a problem that the adjustment takes time and the device becomes large. Particularly, in the case of the latter transmission type diffraction grating 2B, the laser light source 11, the light beam splitting means 21, and the scale 1B are sandwiched therebetween.
Since the mirror 32 must be arranged on the side opposite to the optical system such as the light flux mixing means 31 and the detectors 41A and 41B, there is a problem that it is difficult to incorporate the mirror 32 into the apparatus.

【0009】ここに、本発明の目的は、このような従来
の欠点を解消し、光源への戻り光を完全に除去すること
ができるとともに、組立て、調整が容易な格子干渉型変
位検出装置を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to completely eliminate the return light to the light source, and to assemble and adjust the grating interference type displacement detecting device easily. To provide.

【0010】[0010]

【課題を解決するための手段】そのため、本発明の格子
干渉型変位検出装置は、反射型回折格子を有するスケー
ルと、光源と、この光源からの光束を2波に分岐する分
光素子を含み各分岐光束を前記スケールの回折格子上の
異なる回折点にそれぞれ入射させる光束分岐手段と、各
回折点で生成された光束を混合させる光混合素子と、こ
の光混合素子によって混合された混合波を電気信号に変
換する検出器とを備えた格子干渉型変位検出装置におい
て、前記分光素子および光混合素子をプリズムによって
構成するとともに、そのプリズム側面に前記分光素子に
よって2波に分岐された各分岐光束を前記スケールの回
折格子上の異なる回折点にそれぞれ反射させるとともに
前記光混合素子によって混合された混合波を透過させる
反射透過面を形成し、かつ、この反射透過面における各
分岐光束の反射点と混合波の透過点とを異ならせた、こ
とを特徴とする。
Therefore, the grating interference type displacement detecting apparatus of the present invention includes a scale having a reflection type diffraction grating, a light source, and a spectroscopic element for splitting a light beam from the light source into two waves. A light beam splitting unit that makes the split light beams incident on different diffraction points on the diffraction grating of the scale, a light mixing element that mixes the light beams generated at each diffraction point, and a mixed wave that is mixed by the light mixing element is electrically generated. In a grating interference type displacement detection device including a detector for converting into a signal, the spectroscopic element and the light mixing element are constituted by a prism, and each branched light flux branched into two waves by the spectroscopic element is formed on a side surface of the prism. Forming a reflective / transmissive surface that reflects at different diffraction points on the diffraction grating of the scale and transmits the mixed wave mixed by the light mixing element. And was different from the transmission point of the mixed wave and the reflection point of each branched light beam in the reflection and transmission plane, characterized in that.

【0011】[0011]

【作用】光源からの光束は、まず、分光素子によって2
波に分岐された後、それぞれ一体プリズムの反射透過面
で反射されスケールの回折格子上の異なる回折点にそれ
ぞれ入射される。すると、その各回折点で互いに逆方向
へ位相シフトされた1次回折光が生成される。各1次回
折光は、光混合素子によって混合された後、プリズムの
反射透過面を透過して検出器に入射される。このとき、
各分岐光束の反射点と混合波の透過点とが異なっている
から、光源への戻り光を除去できる。しかも、分光素子
および光混合素子がプリズムによって構成されているか
ら、部品点数も削減でき、組立て、調整も容易に行うこ
とができる。
The light flux from the light source is first reflected by the spectroscopic element.
After being split into waves, they are reflected by the reflection / transmission surface of the integral prism and are incident on different diffraction points on the diffraction grating of the scale. Then, at each diffraction point, first-order diffracted light whose phases are shifted in opposite directions is generated. The respective first-order diffracted lights are mixed by the light mixing element and then transmitted through the reflection / transmission surface of the prism to be incident on the detector. At this time,
Since the reflection point of each branched light beam and the transmission point of the mixed wave are different, the return light to the light source can be removed. Moreover, since the spectroscopic element and the light mixing element are constituted by the prism, the number of parts can be reduced and the assembly and adjustment can be easily performed.

【0012】[0012]

【実施例】以下、本発明に係る格子干渉型変位検出装置
について好適な実施例を挙げ、添付の図面を参照しなが
ら詳細に説明する。なお、以下の説明に当たって、前述
した図2および図3と同一構成要件については、同一符
号を付し、その説明を省略もしくは簡略化する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the grating interference type displacement detector according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description, the same components as those in FIGS. 2 and 3 described above will be designated by the same reference numerals, and the description thereof will be omitted or simplified.

【0013】図1に本実施例の格子干渉型変位検出装置
を示す。同格子干渉型変位検出装置では、前記光束分岐
手段21および光束混合手段31が一体プリズム51に
よって構成されている。プリズム51の内部中央位置に
は、前記レーザ光源11からのレーザビームをその偏向
方向に従って2波A,Bに分岐する分光素子としての偏
光ビームスプリッタ22と、光混合素子としてのビーム
スプリッタ34とがそれぞれ設けられている。また、両
側面には、前記偏光ビームスプリッタ22で分岐された
分岐光束A,Bを前記スケール1Aに対して直角方向へ
反射させ回折格子2A上の異なる回折点Pa,Pbにそ
れぞれ入射させるとともに、前記ビームスプリッタ34
によって混合された1次回折光A1,B1 の混合波を透過
させる反射透過面51A,51Bが形成されている。
FIG. 1 shows a grating interference type displacement detector of this embodiment. In the same grating interference type displacement detection device, the light beam splitting means 21 and the light beam mixing means 31 are constituted by an integral prism 51. A polarizing beam splitter 22 as a spectroscopic element for splitting the laser beam from the laser light source 11 into two waves A and B according to the deflection direction of the laser beam and a beam splitter 34 as a light mixing element are provided at a central position inside the prism 51. Each is provided. Further, on both side surfaces, the branched light beams A and B branched by the polarization beam splitter 22 are reflected in the direction perpendicular to the scale 1A and are made incident on different diffraction points Pa and Pb on the diffraction grating 2A, respectively. The beam splitter 34
Reflective / transmissive surfaces 51A and 51B for transmitting the mixed wave of the first-order diffracted lights A1 and B1 mixed by are formed.

【0014】ここで、各反射透過面51A,51Bにお
いて、前記各分岐光束A,Bの反射点Qa,Qbと1次
回折光A1,B1 の混合波の透過点Ra,Rbとが互いに
異なるように各反射透過面51A,51Bが形成されて
いる。なお、前記偏光ビームスプリッタ22および反射
透過面51A,51Bによって本実施例の光束分岐手段
21が構成されている。また、前記ビームスプリッタ3
4によって本実施例の光束混合手段31が構成されてい
る。
Here, on the reflection / transmission surfaces 51A and 51B, the reflection points Qa and Qb of the branched light fluxes A and B and the transmission points Ra and Rb of the mixed wave of the first-order diffracted lights A1 and B1 are different from each other. Reflective / transmissive surfaces 51A and 51B are formed. The polarization beam splitter 22 and the reflective / transmissive surfaces 51A and 51B constitute the light beam splitting means 21 of this embodiment. Also, the beam splitter 3
4 constitutes the light flux mixing means 31 of the present embodiment.

【0015】このような構成であるから、レーザ光源1
1から出射されたレーザビームは、偏光ビームスプリッ
タ22によって2波A,Bに分岐される。各分岐光束
A,Bは、それぞれプリズム51の反射透過面51A,
51Bによって反射された後、スケール1Aの回折格子
2A上の異なる回折点Pa,Pbに入射される。する
と、その各回折点Pa,Pbで各分岐光束A,Bの1次
回折光A1,B1 が生成される。各1次回折光A1,B1
は、ビームスプリッタ34で混合される。
Due to such a constitution, the laser light source 1
The laser beam emitted from No. 1 is split into two waves A and B by the polarization beam splitter 22. The branched luminous fluxes A and B are respectively reflected and transmitted surfaces 51A and 51A of the prism 51.
After being reflected by 51B, it is incident on different diffraction points Pa and Pb on the diffraction grating 2A of the scale 1A. Then, the first-order diffracted lights A1 and B1 of the branched luminous fluxes A and B are generated at the diffraction points Pa and Pb, respectively. First-order diffracted light A1, B1
Are mixed in the beam splitter 34.

【0016】つまり、一方の1次回折光A1 の反射光と
他方の1次回折光B1 の透過光とが混合されるととも
に、一方の1次回折光A1 の透過光と他方の1次回折光
B1 の反射光とが混合される。その後、一方の混合波
は、反射透過面51Aを透過して一方の検出器41Aへ
導かれ、そこで、電気信号に変換され正弦波信号φAと
して取り出される。また、他方の混合波は、反射透過面
51Bを透過して他方の検出器41Bへ導かれ、そこ
で、一方の混合波に対して90度位相が遅らされた後、
電気信号に変換され正弦波信号φBとして取り出され
る。
That is, the reflected light of one first-order diffracted light A1 and the transmitted light of the other first-order diffracted light B1 are mixed, and the transmitted light of one first-order diffracted light A1 and the reflected light of the other first-order diffracted light B1 are mixed. And are mixed. After that, one of the mixed waves passes through the reflection / transmission surface 51A and is guided to the one detector 41A, where it is converted into an electric signal and taken out as a sine wave signal φA. The other mixed wave is transmitted through the reflection / transmission surface 51B and guided to the other detector 41B, where the phase is delayed by 90 degrees with respect to the one mixed wave.
It is converted into an electric signal and taken out as a sine wave signal φB.

【0017】従って、本実施例によれば、レーザビーム
を偏光ビームスプリッタ22によって2波A,Bに分岐
させた後、反射透過面51A,51Bによって反射させ
スケール1Aの回折格子2A上の異なる2つの回折点P
a,Pbに入射させる。その各回折点Pa,Pbで発生
した互いに逆方向へ位相シフトされた1次回折光A1,B
1 をビームスプリッタ34で混合させた後、反射透過面
51A,51Bを透過させて検出器41A,41Bに入
射させるとともに、反射透過面51A,51Bにおける
各分岐光束A,Bの反射点Qa,Qbと1次回折光A1,
B1 の混合波が透過する透過点Ra,Rbとを異ならせ
たので、光源11への戻り光を除去できる。
Therefore, according to this embodiment, after the laser beam is split into two waves A and B by the polarization beam splitter 22, the laser beam is reflected by the reflection / transmission surfaces 51A and 51B, and the two different wavelengths on the diffraction grating 2A of the scale 1A. Two diffraction points P
It is made incident on a and Pb. First-order diffracted lights A1 and B generated at the diffraction points Pa and Pb and phase-shifted in mutually opposite directions.
After 1 is mixed by the beam splitter 34, it is transmitted through the reflection / transmission surfaces 51A and 51B and is incident on the detectors 41A and 41B, and the reflection points Qa and Qb of the respective branched light fluxes A and B on the reflection / transmission surfaces 51A and 51B. And the first-order diffracted light A1,
Since the transmission points Ra and Rb through which the mixed wave of B1 is transmitted are made different, the return light to the light source 11 can be removed.

【0018】また、光束分岐手段21や光束混合手段3
1を構成する光学素子、つまり、偏光ビームスプリッタ
22、ビームスプリッタ34および反射透過面51A,
51Bなどを一体プリズム51によって構成したので、
1つのプリズムによって主な検出系を構成することがで
きる。このことは、部品点数の削減につながるから、組
立、調整も容易に行うことができ、コストダウンがはか
れる。
The beam splitting means 21 and the beam mixing means 3 are also provided.
1, that is, the polarization beam splitter 22, the beam splitter 34, and the reflection / transmission surface 51A,
Since 51B and the like are configured by the integral prism 51,
The main detection system can be configured by one prism. This leads to a reduction in the number of parts, so that the assembly and adjustment can be easily performed, and the cost can be reduced.

【0019】しかも、スケール1Bの片側に、光源1
1、光束分岐手段21、光束混合手段31および検出器
41A,41Bなどの全ての光学系を配置した構成であ
るから、装置への組み込みも容易である。
Moreover, the light source 1 is provided on one side of the scale 1B.
1. Since all the optical systems such as 1, the light beam splitting unit 21, the light beam mixing unit 31, and the detectors 41A and 41B are arranged, they can be easily incorporated into the apparatus.

【0020】以上、本発明について好適な実施例を挙げ
て説明したが、本発明はこの実施例に限定されるもので
なく、本発明の要旨を逸脱しない範囲において種々の改
良並びに設計の変更が可能なことは勿論である。
Although the present invention has been described with reference to the preferred embodiment, the present invention is not limited to this embodiment, and various improvements and design changes can be made without departing from the gist of the present invention. Of course it is possible.

【0021】例えば、上記実施例では、偏光ビームスプ
リッタ22、ビームスプリッタ34および反射透過面5
1A,51Bなどを一体プリズム51によって構成した
が、複数のプリズム素子を組み合わせて構成するように
してもよい。
For example, in the above embodiment, the polarization beam splitter 22, the beam splitter 34 and the reflection / transmission surface 5 are used.
1A, 51B and the like are configured by the integral prism 51, but may be configured by combining a plurality of prism elements.

【0022】また、上記実施例では、レーザ光源11、
光束分岐手段21、光束混合手段31および検出器41
A,41Bなどの光学系に対してスケール1Aが変位可
能に設けられていたが、スケール1Aに対して上記光学
系が変位するものでもよく、あるいは、両者が共に変位
するものでもよい。要は、スケール1Aと光学系とが相
対変位するもの全てに適用することができる。
In the above embodiment, the laser light source 11,
Light flux splitting means 21, light flux mixing means 31, and detector 41
Although the scale 1A is provided so as to be displaceable with respect to the optical systems such as A and 41B, the optical system may be displaced with respect to the scale 1A, or both may be displaced. In short, the present invention can be applied to all scales in which the scale 1A and the optical system are displaced relative to each other.

【0023】[0023]

【発明の効果】以上の通り、本発明の格子干渉型変位検
出装置によれば、光源への戻り光を除去できるととも
に、組立て、調整も容易に行うことができる。
As described above, according to the displacement detecting apparatus of the grating interference type of the present invention, the return light to the light source can be removed, and the assembly and the adjustment can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の格子干渉型変位検出装置の一実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment of a grating interference type displacement detection device of the present invention.

【図2】従来の格子干渉型変位検出装置(反射型回折格
子を用いた)を示す図である。
FIG. 2 is a diagram showing a conventional grating interference type displacement detection device (using a reflection type diffraction grating).

【図3】従来の格子干渉型変位検出装置(透過型回折格
子を用いた)を示す図である。
FIG. 3 is a diagram showing a conventional grating interference type displacement detection device (using a transmission type diffraction grating).

【符号の説明】[Explanation of symbols]

1A 反射型スケール 2A 反射型回折格子 11 レーザ光源(光源) 21 光束分岐手段 22 偏光ビームスプリッタ(分光素子) 34 ビームスプリッタ(光混合素子) 41A,41B 検出器 51 プリズム 51A,51B 反射透過面 Pa,Pb 回折点 Qa,Qb 反射点 Ra,Rb 透過点 1A Reflective Scale 2A Reflective Diffraction Grating 11 Laser Light Source (Light Source) 21 Luminous Flux Splitting Unit 22 Polarizing Beam Splitter (Spectroscopic Element) 34 Beam Splitter (Light Mixing Element) 41A, 41B Detector 51 Prism 51A, 51B Reflective Transmission Surface Pa, Pb Diffraction point Qa, Qb Reflection point Ra, Rb Transmission point

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反射型回折格子を有するスケールと、光源
と、この光源からの光束を2波に分岐する分光素子を含
み各分岐光束を前記スケールの回折格子上の異なる回折
点にそれぞれ入射させる光束分岐手段と、各回折点で生
成された光束を混合させる光混合素子と、この光混合素
子によって混合された混合波を電気信号に変換する検出
器とを備えた格子干渉型変位検出装置において、 前記分光素子および光混合素子をプリズムによって構成
するとともに、そのプリズム側面に前記分光素子によっ
て2波に分岐された各分岐光束を前記スケールの回折格
子上の異なる回折点にそれぞれ反射させるとともに前記
光混合素子によって混合された混合波を透過させる反射
透過面を形成し、かつ、この反射透過面における各分岐
光束の反射点と混合波の透過点とを異ならせた、 ことを特徴とする格子干渉型変位検出装置。
1. A scale having a reflection type diffraction grating, a light source, and a spectroscopic element that splits a light beam from the light source into two waves, and each branched light beam is made incident on different diffraction points on the diffraction grating of the scale. In a grating interference type displacement detection device provided with a light beam splitting means, a light mixing element for mixing light beams generated at respective diffraction points, and a detector for converting a mixed wave mixed by the light mixing element into an electric signal The light-splitting element and the light mixing element are configured by a prism, and the branched light beams split into two waves by the light-splitting element on the prism side surface are respectively reflected at different diffraction points on the diffraction grating of the scale and A reflective / transmissive surface that transmits the mixed wave mixed by the mixing element is formed, and the reflection point of each branched light flux on the reflective / transmissive surface and the mixed wave A grating interference type displacement detection device characterized in that the transmission point is different.
JP23090891A 1991-08-19 1991-08-19 Grating interference displacement detector Expired - Lifetime JPH0739932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23090891A JPH0739932B2 (en) 1991-08-19 1991-08-19 Grating interference displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23090891A JPH0739932B2 (en) 1991-08-19 1991-08-19 Grating interference displacement detector

Publications (2)

Publication Number Publication Date
JPH0545180A JPH0545180A (en) 1993-02-23
JPH0739932B2 true JPH0739932B2 (en) 1995-05-01

Family

ID=16915176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23090891A Expired - Lifetime JPH0739932B2 (en) 1991-08-19 1991-08-19 Grating interference displacement detector

Country Status (1)

Country Link
JP (1) JPH0739932B2 (en)

Also Published As

Publication number Publication date
JPH0545180A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4979826A (en) Displacement measuring apparatus
US4970388A (en) Encoder with diffraction grating and multiply diffracted light
JPH03148015A (en) Position measuring apparatus
JPH06300520A (en) Optical type displacement measuring device
US5000542A (en) Optical type encoder
US6570660B2 (en) Measuring instrument
US5017777A (en) Diffracted beam encoder
JPH05296722A (en) Measurement device
JPH046884B2 (en)
JPH0781817B2 (en) Position measuring device
JPH085328A (en) Lattice-interference type displacement detector
JP3068408B2 (en) Lattice interference displacement detector
US5424829A (en) Apparatus wherein diffracted light does not return to the source
JPH0739932B2 (en) Grating interference displacement detector
JPH04130220A (en) Encoder
JPH0739931B2 (en) Grating interference displacement detector
JPH085324A (en) Lattice-interference type displacement detector
CN113532279B (en) Optical displacement sensor
JPH051926A (en) Grating interference type displacement detecting device
JP3152330B2 (en) Lattice interference displacement detector
JP2003035570A (en) Diffraction interference type linear scale
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JPH051923A (en) Grating interference type displacement detecting device
JP3392898B2 (en) Lattice interference displacement measuring device
JP3068407B2 (en) Lattice interference displacement detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951024